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Abstract. In this paper we prove large deviations results for partial sums constructed from the

solution to a stochastic recurrence equation. We assume Kesten’s condition [17] under which
the solution of the stochastic recurrence equation has a marginal distribution with power law

tails, while the noise sequence of the equations can have light tails. The results of the paper

are analogs of those obtained by A.V. and S.V. Nagaev [21, 22] in the case of partial sums of
iid random variables. In the latter case, the large deviation probabilities of the partial sums are

essentially determined by the largest step size of the partial sum. For the solution to a stochastic

recurrence equation, the magnitude of the large deviation probabilities is again given by the tail
of the maximum summand, but the exact asymptotic tail behavior is also influenced by clusters

of extreme values, due to dependencies in the sequence. We apply the large deviation results to

study the asymptotic behavior of the ruin probabilities in the model.

1. Introduction

Through the last 40 years, the stochastic recurrence equation

Yn = An Yn−1 +Bn , n ∈ Z ,(1.1)

and its stationary solution have attracted much attention. Here (Ai, Bi), i ∈ Z, is an iid sequence,
Ai > 0 a.s. and Bi assumes real values. (In what follows, we write A,B, Y, . . . , for generic elements
of the strictly stationary sequences (Ai), (Bi), (Yi), . . ., and we also write c for any positive constant
whose value is not of interest.)

It is well known that if E logA < 0 and E log+ |B| <∞, there exists a unique strictly stationary
ergodic solution (Yi) to the stochastic recurrence equation (1.1) with representation

Yn =

n∑
i=−∞

Ai+1 · · ·AnBi , n ∈ Z ,

where, as usual, we interpret the summand for i = n as Bn.
One of the most interesting results for the stationary solution (Yi) to the stochastic recurrence

equation (1.1) was discovered by Kesten [17]. He proved under general conditions that the marginal
distributions of (Yi) have power law tails. For later use, we formulate a version of this result due to
Goldie [10].

Theorem 1.1. (Kesten [17], Goldie [10]) Assume that the following conditions hold:
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• There exists α > 0 such that

EAα = 1 .(1.2)

• ρ = E(Aα logA) and E|B|α are both finite.
• The law of logA is non-arithmetic.
• For every x, P{Ax+B = x} < 1.

Then Y is regularly varying with index α > 0. In particular, there exist constants c+∞, c
−
∞ ≥ 0 such

that c+∞ + c−∞ > 0 and

P{Y > x} ∼ c+∞ x−α , and P{Y ≤ −x} ∼ c−∞ x−α as x→∞ .(1.3)

Moreover, if B ≡ 1 a.s. then the constant c+∞ takes on the form

c∞ := E[(1 + Y )α − Y α]/(αρ) ,

Goldie [10] also showed that similar results remain valid for the stationary solution to stochastic
recurrence equations of the type Yn = f(Yn−1, An, Bn) for suitable functions f satisfying some
contraction condition.

The power law tails (1.3) stimulated research on the extremes of the sequence (Yi) . Indeed, if
(Yi) were iid with tail (1.3) and c+∞ > 0, then the maximum sequence Mn = max(Y1, . . . , Yn) would
satisfy the limit relation

lim
n→∞

P{(c+∞ n)−1/αMn ≤ x} = e−x
−α

= Φα(x) , x > 0 ,(1.4)

where Φα denotes the Fréchet distribution, i.e. one of the classical extreme value distributions; see
Gnedenko [11]; cf. Embrechts et al. [6], Chapter 3. However, the stationary solution (Yi) to (1.1)
is not iid and therefore one needs to modify (1.4) as follows: the limit has to be replaced by Φθα for
some constant θ ∈ (0, 1), the so-called extremal index of the sequence (Yi); see de Haan et al. [12];
cf. [6], Section 8.4.

The main objective of this paper is to derive another result which is a consequence of the power
law tails of the marginal distribution of the sequence (Yi): we will prove large deviation results for
the partial sum sequence

Sn = Y1 + · · ·+ Yn , n ≥ 1 , S0 = 0 .

This means we will derive exact asymptotic results for the left and right tails of the partial sums Sn.
Since we want to compare these results with those for an iid sequence we recall the corresponding
classical results due to A.V. and S.V. Nagaev [21, 22] and Cline and Hsing [3].

Theorem 1.2. Assume that (Yi) is an iid sequence with a regularly varying distribution , i.e. there
exists an α > 0, constants p, q ≥ 0 with p+ q = 1 and a slowly varying function L such that

P{Y > x} ∼ p L(x)

xα
and P{Y ≤ −x} ∼ q L(x)

xα
as x→∞.(1.5)

Then the following relations hold for α > 1 and suitable sequences bn ↑ ∞:

lim
n→∞

sup
x≥bn

∣∣∣∣P{Sn − ESn > x}
nP{|Y | > x}

− p
∣∣∣∣ = 0(1.6)

and

lim
n→∞

sup
x≥bn

∣∣∣∣P{Sn − ESn ≤ −x}
nP{|Y | > x}

− q
∣∣∣∣ = 0 .(1.7)

If α > 2 one can choose bn =
√
an log n, where a > α − 2, and for α ∈ (1, 2], bn = nδ+1/α for any

δ > 0.
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For α ∈ (0, 1], (1.6) and (1.7) remain valid if the centering ESn is replaced by 0 and bn = nδ+1/α

for any δ > 0.

For α ∈ (0, 2] one can choose a smaller bound bn if one knows the slowly varying function
L appearing in (1.5). A functional version of Theorem 1.2 with multivariate regularly varying
summands was proved in Hult et al. [13] and the results were used to prove asymptotic results
about multivariate ruin probabilities. Large deviation results for iid heavy-tailed summands are also
known when the distribution of the summands is subexponential, including the case of regularly
varying tails; see the recent paper by Denisov et al. [5] and the references therein. In this case,
the regions where the large deviations hold very much depend on the decay rate of the tails of the
summands. For semi-exponential tails (such as for the log-normal and the heavy-tailed Weibull
distributions) the large deviation regions (bn,∞) are much smaller than those for summands with
regularly varying tails. In particular, x = n is not necessarily contained in (bn,∞).

The aim of this paper is to study large deviation probabilities for a particular dependent sequence
(Yn) as described in Kesten’s Theorem 1.1. For dependent sequences (Yn) much less is known about
the large deviation probabilities for the partial sum process (Sn). Gantert [8] proved large deviation
results of logarithmic type for mixing subexponential random variables. Davis and Hsing [4] and
Jakubowski [14, 15] proved large deviation results of the following type: there exist sequences
sn →∞ such that

P{Sn > ansn}
nP{Y > an sn}

→ cα

for suitable positive constants cα under the assumptions that Y is regularly varying with index
α ∈ (0, 2), nP (|Y | > an) → 1 and (Yn) satisfies some mixing conditions. Both Davis and Hsing
[4] and Jakubowski [14, 15] could not specify the rate at which the sequence (sn) grows to infinity,
and an extension to α > 2 was not possible. These facts limit the applicability of these results,
for example for deriving the asymptotics of ruin probabilities for the random walk (Sn). Large
deviations results for particular stationary sequences (Yn) with regularly varying finite-dimensional
distributions were proved in Mikosch and Samorodnitsky [19] in the case of linear processes with iid
regularly varying noise and in Konstantinides and Mikosch [18] for solutions (Yn) to the stochastic
recurrence equation (1.1), where B is regularly varying with index α > 1 and EAα < 1. This means
that Kesten’s condition (1.2) is not satisfied in this case and the regular variation of (Yn) is due to
the regular variation of B. For these processes, large deviation results and ruin bounds are easier
to derive by applying the “heavy-tail large deviation heuristics”: a large value of Sn happens in the
most likely way, namely it is due to one very large value in the underlying regularly varying noise
sequence, and the particular dependence structure of the sequence (Yn) determines the clustering
behavior of the large values of Sn. This intuition fails when one deals with the partial sums Sn
under the conditions of Kesten’s Theorem 1.1: here a large value of Sn is not due to a single large
value of the Bn’s or An’s but to large values of the products A1 · · ·An.

The paper is organized as follows. In Section 2 we prove an analog to Theorem 1.2 for the partial
sum sequence (Sn) constructed from the solution to the stochastic recurrence equation (1.1) under
the conditions of Kesten’s Theorem 1.1. The proof of this result is rather technical: it is given in
Section 3 where we split the proof into a series of auxiliary results. There we treat the different cases
α ≤ 1, α ∈ (1, 2] and α > 2 by different tools and methods. In particular, we will use exponential
tail inequalities which are suited for the three distinct situations. In contrast to the iid situation
described in Theorem 1.2, we will show that the x-region where the large deviations hold cannot
be chosen as an infinite interval (bn,∞) for a suitable lower bound bn → ∞, but one also needs
upper bounds cn ≥ bn. In Section 4 we apply the large deviation results to get precise asymptotic
bounds for the ruin probability related to the random walk (Sn). This ruin bound is an analog of
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the celebrated result by Embrechts and Veraverbeke [7] in the case of a random walk with iid step
sizes.

2. Main result

The following is the main result of this paper. It is an analog of the well known large deviation
result of Theorem 1.2.

Theorem 2.1. Assume that the conditions of Theorem 1.1 are satisfied and additionally there exists
ε > 0 such that EAα+ε and E|B|α+ε are finite. Then the following relations hold:

(1) For α ∈ (0, 2], M > 2,

(2.1) sup
n

sup
n1/α(logn)M≤x

P{Sn − dn > x}
nP{|Y | > x}

<∞ ,

If additionally esn ≥ n1/α(log n)M and limn→∞ sn/n = 0 then

(2.2) lim
n→∞

sup
n1/α(logn)M≤x≤esn

∣∣∣∣P{Sn − dn > x}
nP{|Y | > x}

− c+∞ c∞

c+∞ + c−∞

∣∣∣∣ = 0 ,

where dn = 0 or dn = ESn according as α ∈ (0, 1] or α ∈ (1, 2].
(2) For α > 2 and any cn →∞,

(2.3) sup
n

sup
cn n0.5 logn≤x

P{Sn − ESn > x}
nP{|Y | > x}

<∞ .

If additionally cnn
0.5 log n ≤ esn and limn→∞ sn/n = 0 then

(2.4) lim
n→∞

sup
cn n0.5 logn≤x≤esn

∣∣∣∣P{Sn − ESn > x}
nP{|Y | > x}

− c+∞ c∞

c+∞ + c−∞

∣∣∣∣ = 0 .

Clearly, if we exchange the variables Bn by −Bn in the above results we obtain the corresponding
asymptotics for the left tail of Sn. For example, for α > 1 the following relation holds uniformly for
the x-regions indicated above:

lim
n→∞

P{Sn − nEY ≤ −x}
nP{|Y | > x}

=
c−∞c∞

c+∞ + c−∞
.

Remark 2.2. The deviations of Theorem 2.1 from the iid case (see Theorem 1.2) are two-fold.
First, the extremal clustering in the sequence (Yn) manifests in the presence of the additional
constants c∞ and c±∞. Second, the precise large deviation bounds (2.2) and (2.4) are proved for
x-regions bounded from above by a sequence esn for some sn → ∞ with sn/n → 0. Mikosch and
Wintenberger [20] extended Theorem 2.1 to more general classes of stationary sequences (Yt). In
particular, they proved similar results for stationary Markov chains with regularly varying finite-
dimensional distributions, satisfying a drift condition. The solution (Yt) to (1.1) is a special case of
this setting if the distributions of A,B satisfy some additional conditions. Mikosch and Wintenberger
[20] use a regeneration argument to explain that the large deviation results do not hold uniformly
in the unbounded x-regions (bn,∞) for suitable sequences (bn), bn →∞.

3. Proof of the main result

3.1. Basic decompositions. In what follows, it will be convenient to use the following notation

Πij =

{
Ai · · ·Aj i ≤ j
1 otherwise

and Πj = Π1j ,
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and

Ỹi = Π2iB1 + Π3iB2 + · · ·+ ΠiiBi−1 +Bi , i ≥ 1 .

Since Yi = ΠiY0 + Ỹi the following decomposition is straightforward:

(3.1) Sn = Y0

n∑
i=1

Πi +

n∑
i=1

Ỹi =: Y0 ηn + S̃n ,

where

(3.2) S̃n = Ỹ1 + · · ·+ Ỹn and ηn = Π1 + · · ·+ Πn , n ≥ 1 .

In view of (3.1) and Lemma 3.1 below it suffices to bound the ratios

P{S̃n − d̃n > x}
nP{|Y | > x}

uniformly for the considered x-regions, where d̃n = ES̃n for α > 1 and d̃n = 0 for α ≤ 1.
The proof of the following bound is given at the end of this subsection.

Lemma 3.1. Let (sn) be a sequence such that sn/n→ 0. Then for any sequence (bn) with bn →∞
the following relations hold:

lim
n→∞

sup
bn≤x≤esn

P{|Y0| ηn > x}
nP{|Y | > x}

= 0 and lim sup
n→∞

sup
bn≤x

P{|Y0| ηn > x}
nP{|Y | > x}

<∞,

Before we further decompose S̃n we introduce some notation to be used throughout the proof:
for any x in the considered large deviation regions,

• m = [(log x)0.5+σ] for some positive number σ < 1/4, where [·] denotes the integer part.
• n0 = [ρ−1 log x], where ρ = E(Aα logA).
• n1 = n0 −m and n2 = n0 +m
• For α > 1, let D be the smallest integer such that −D logEA > α − 1. Notice that the

latter inequality makes sense since EA < 1 due to (1.2) and the convexity of the function
ψ(h) = EAh, h > 0.
• For α ≤ 1, fix some β < α and let D be the smallest integer such that −D logEAβ > α− β

where, by the same remark as above, EAβ < 1.
• Let n3 be the smallest integer satisfying

D log x ≤ n3 , x > 1 .(3.3)

Notice that since the function Ψ(h) = logψ(h) is convex, putting β = 1 if α > 1, by the

choice of D we have 1
D < Ψ(α)−Ψ(β)

α−β < Ψ′(α) = ρ, therefore n2 < n3 if x is sufficiently large.

For fixed n, we change the indices i → j = n − i + 1 and, abusing notation and suppressing the
dependence on n, we reuse the notation

Ỹj = Bj + ΠjjBj+1 + · · ·+ Πj,n−1Bn.

Writing n4 = min(j + n3, n), we further decompose Ỹj :

Ỹj = Ũj + W̃j = Bj + ΠjjBj+1 + · · ·+ Πj,n4−1Bn4 + W̃j .(3.4)

Clearly, W̃j vanishes if j ≥ n− n3 and therefore the following lemma is nontrivial only for n > n3.
The proof is given at the end of this subsection.
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Lemma 3.2. For any small δ > 0, there exists a constant c > 0 such that

P
{∣∣∣ n∑

j=1

(W̃j − cj)
∣∣∣ > x

}
≤ c n x−α−δ, x > 1 ,(3.5)

where cj = 0 or cj = EW̃j according as α ≤ 1 or α > 1.

By virtue of (3.5) and (3.4) it suffices to study the probabilities P
{∑n

j=1(Ũj − aj) > x
}
, where

aj = 0 for α ≤ 1 and aj = EŨj for α > 1.

We further decompose Ũi into

(3.6) Ũi = X̃i + S̃i + Z̃i,

where for i ≤ n− n3,

X̃i = Bi + ΠiiBi+1 + · · ·+ Πi,i+n1−2Bi+n1−1 ,

S̃i = Πi,i+n1−1Bi+n1 + · · ·+ Πi,i+n2−1Bi+n2 ,(3.7)

Z̃i = Πi,i+n2Bi+n2+1 + · · ·+ Πi,i+n3−1Bi+n3 .

For i > n− n3, define X̃i, S̃i, Z̃i as follows: For n2 < n− i < n3 choose X̃i, S̃i as above and

Z̃i = Πi,i+n2
Bi+n2+1 + · · ·+ Πi,n−1Bn.

For n1 ≤ n− i ≤ n2, choose Z̃i = 0, X̃i as before and

S̃i = Πi,i+n1−1Bi+n1
+ · · ·+ Πi,n−1Bn.

Finally, for n− i < n1, define S̃i = 0, Z̃i = 0 and

X̃i = Bi + ΠiiBi+1 + · · ·+ Πi,n−1Bn.

Let p1, p, p3 be the largest integers such that p1n1 ≤ n−n1 + 1, pn1 ≤ n−n2 and p3n1 ≤ n−n3,
respectively. We study the asymptotic tail behavior of the corresponding block sums given by

Xj =

jn1∑
i=(j−1)n1+1

X̃i , Sj =

jn1∑
i=(j−1)n1+1

S̃i , Zj =

jn1∑
i=(j−1)n1+1

Z̃i,(3.8)

where j is less or equal p1, p, p3 respectively.
The remaining steps of the proof are organized as follows.

• Section 3.2. We show that the Xj ’s and Zj ’s do not contribute to the considered large
deviation probabilities. This is the content of Lemmas 3.4 and 3.5.

• Section 3.3. We provide bounds for the tail probabilities of Sj ; see Proposition 3.6 and
Lemma 3.8. These bounds are the main ingredients in the proof of the large deviation
result.

• Section 3.4. In Proposition 3.9 we combine the bounds provided in the previous subsections.
• Section 3.5: We apply Proposition 3.9 to prove the main result.

Proof of Lemma 3.1. The infinite series η =
∑∞
i=0 Πi has the distribution of the stationary solu-

tion to the stochastic recurrence equation (1.1) with B ≡ 1 a.s. and therefore, by Theorem 1.1,
P (η > x) ∼ c∞x

−α , x → ∞ . It follows from a slight modification of Jessen and Mikosch [16],
Lemma 4.1(4), and the independence of Y0 and η that

(3.9) P{|Y0| η > x} ∼ c x−α log x , x→∞ .
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Since sn/n→ 0 as n→∞ we have

sup
bn≤x≤esn

P{|Y0| ηn > x}
nP{|Y | > x}

≤ sup
bn≤x≤esn

P{|Y0| η > x}
nP{|Y | > x}

→ 0 .

There exist c0, x0 > 0 such that P{|Y0| > y} ≤ c0y−α for y > x0. Therefore

P{|Y0| ηn > x} ≤ P{x/ηn ≤ x0}+ c0x
−αEηαn1{x/ηn>x0} ≤ cx

−αEηαn .

By Bartkiewicz et al. [1], Eηαn ≤ cn. Hence

In = sup
bn≤x

P{|Y0| ηn > x}
nP{|Y | > x}

≤ sup
bn≤x

cx−αEηαn
nP{|Y | > x}

<∞.

This concludes the proof. �

Proof of Lemma 3.2. Assume first that α > 1. Since EW̃j is finite, −D logEA > α−1 and D log x ≤
n3, we have for some positive δ

(3.10) E|W̃j | ≤
(EA)n3

1− EA
E|B| ≤ c eD log x log EA ≤ c x−(α−1)−δ ,

and hence by Markov’s inequality

P
{∣∣∣ n∑

j=1

(W̃j − EW̃j)
∣∣∣ > x

}
≤ 2x−1

n∑
j=1

E|W̃j | ≤ c n x−α−δ.

If β < α ≤ 1 an application of Markov’s inequality yields for some positive δ,

P
{ n∑
j=1

W̃j > x
}
≤ x−β

n∑
j=1

E|W̃j |β ≤ x−β
nE|B|β(EAβ)n3

(1− EAβ)

≤ cx−βneD log x log EAβ ≤ c n x−α−δ .

In the last step we used the fact that −D logEAβ > α − β. This concludes the proof of the
lemma. �

3.2. Bounds for P{Xj > x} and P{Zj > x}. We will now study the tail behavior of the single
block sums X1, Z1 defined in (3.8). We start with a useful auxiliary result.

Lemma 3.3. Assume ψ(α+ε) = EAα+ε <∞ for some ε > 0. Then there is a constant C = C(ε) >
0 such that ψ(α+ γ) ≤ C eργ for |γ| ≤ ε/2, where ρ = E(Aα logA).

Proof. By a Taylor expansion and since ψ(α) = 1, ψ′(α) = ρ, we have for some θ ∈ (0, 1),

ψ(α+ γ) = 1 + ργ + 0.5ψ′′(α+ θγ)γ2 .(3.11)

If |θγ| < ε/2 then, by assumption, ψ′′(α + θγ) = EAα+θγ(logA)2 is bounded by a constant c > 0.
Therefore,

ψ(α+ γ) ≤ 1 + ργ + cγ2 = elog(1+ργ+c γ2) ≤ C eργ .

�

The following lemma ensures that the Xi’s do not contribute to the considered large deviation
probabilities.
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Lemma 3.4. There exist positive constants C1, C2, C3 such that

P{X1 > x} ≤ P{X1 > x} ≤ C1 x
−αe−C2 (log x)C3

, x > 1,

where

X1 =

n1∑
i=1

(|Bi|+ Πii|Bi+1|+ · · ·+ Πi,i+n1−2|Bi+n1−1|).

Proof. We have X1 =
∑n0

k=m+1Rk, where for m < k ≤ n0,

Rk = Π1,n0−k|Bn0−k+1|+ · · ·+ Πi,i+n0−k−1|Bi+n0−k|+ · · ·+ Πn1,n1+n0−k−1|Bn1+n0−k| .

Notice that for x sufficiently large,{ n0∑
k=m+1

Rk > x
}
⊂

n0⋃
k=m+1

{Rk > x/k3}.

Indeed, on the set {Rk ≤ x/k3 ,m < k ≤ n0} we have for some c > 0 and sufficiently large x, by
the definition of m = [(log x)0.5+σ],

n0∑
k=m+1

Rk ≤
x

m+ 1

∞∑
k=1

1

k2
≤ c x

(log x)0.5+σ
< x .

We conclude that, with Ik = P{Rk > x/k3},

P
{ n0∑
k=m+1

Rk > x
}
≤

n0∑
k=m+1

Ik .

Next we study the probabilities Ik. Let δ = (log x)−0.5. By Markov’s inequality,

Ik ≤ (x/k3)−(α+δ) ERα+δ
k ≤ (x/k3)−(α+δ)nα+δ

0 (EAα+δ)n0−kE|B|α+δ .

By Lemma 3.3 and the definition of n0 = [ρ−1 log x],

Ik ≤ c (x/k3)−(α+δ) nα+δ
0 e(n0−k)ρδ ≤ c x−α k3(α+δ) nα+δ

0 e−kρδ .

Since k ≥ (log x)0.5+σ ≥ m there are positive constants ζ1, ζ2 such that kδ ≥ kζ1(log x)ζ2 and
therefore for sufficiently large x and appropriate positive constants C1, C2, C3,

n0∑
k=m+1

Ik ≤ c x−α nα+δ
0

n1∑
k=m+1

e−ρ k
ζ1 (log x)ζ2k3(α+δ) ≤ C1 x

−α e−C2 (log x)C3
.

This finishes the proof. �

The following lemma ensures that the Zi’s do not contribute to the considered large deviation
probabilities.

Lemma 3.5. There exist positive constants C4, C5, C6 such that

P{Z1 > x} ≤ P{Z1 > x} ≤ C4 x
−αe−C5 (log x)C6

, x > 1,

where

Z1 =

n1∑
i=1

(Πi,i+n2
|Bi+n2+1|+ · · ·+ Πi,i+n3−1|Bi+n3

|) .
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Proof. We have Z1 =
∑n3−n2

k=1 R̃k, where

R̃k = Π1,n2+k|Bn2+k+1|+ · · ·+ Πi,i+n2+k−1|Bi+n2+k|+ · · ·+ Πn1,n1+n2+k−1|Bn1+n2+k|.

As in the proof of Lemma 3.4 we notice that, with Jk = P{R̃k > x/(n2 + k)3}, for x sufficiently
large

P{
n3−n2∑
k=1

R̃k > x} ≤
n3−n2∑
k=1

Jk.

Next we study the probabilities Jk. Choose δ = (n2 + k)−0.5 < ε/2 with ε as in Lemma 3.3. By
Markov’s inequality,

Jk ≤ ((n2 + k)3/x)α−δER̃α−δk ≤ ((n2 + k)3/x)α−δ nα−δ1 (EAα−δ)n2+kE|B|α−δ .

By Lemma 3.3 and since n2 + k = n0 +m+ k,

(EAα−δ)n2+k ≤ c e−δρ(n2+k) ≤ c x−δe−δρ(m+k) .

There is ζ3 > 0 such that δ(m+ k) ≥ (log x+ k)ζ3 . Hence, for appropriate constants C4, C5, C6 > 0,

n3−n2∑
k=1

Jk ≤ c x−αnα−δ1

n3−n2∑
k=1

(n2 + k)3(α−δ)e−ρ(log x+k)ζ3 ≤ C4 x
−αe−C5 (log x)C6

.

This finishes the proof. �

3.3. Bounds for P{Sj > x}. The next proposition is a first major step towards the proof of the

main result. For the formulation of the result and its proof, recall the definitions of S̃i and Si from
(3.7) and (3.8), respectively.

Proposition 3.6. Assume that c+∞ > 0 and let (bn) be any sequence such that bn →∞. Then the
following relation holds:

lim
n→∞

sup
x≥bn

∣∣∣ P{S1 > x}
n1P{Y > x}

− c∞
∣∣∣ = 0 .(3.12)

If c+∞ = 0 then

lim
n→∞

sup
x≥bn

P{S1 > x}
n1P{|Y | > x}

= 0 .(3.13)

The proof depends on the following auxiliary result whose proof is given in Appendix B.

Lemma 3.7. Assume that Y and ηk (defined in (3.2)) are independent and ψ(α+ ε) = EAα+ε <∞
for some ε > 0. Then for n1 = n0 − m = [ρ−1 log x] − [(log x)0.5+σ] for some σ < 1/4 and any
sequences bn →∞ and rn →∞ the following relation holds:

lim
n→∞

sup
rn≤k≤n1,bn≤x

∣∣∣P{ηk Y > x}
k P{Y > x}

− c∞
∣∣∣ = 0 ,

provided c+∞ > 0. If c+∞ = 0 then

lim
n→∞

sup
rn≤k≤n1,bn≤x

P{ηk Y > x}
k P{|Y | > x}

= 0.
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Proof of Proposition 3.6. For i ≤ n1, consider

S̃i + S′i

= Πi,n1Bn1+1 + · · ·+ Πi,i+n1−2Bi+n1−1 + S̃i + Πi,i+n2Bi+n2+1 + · · ·+ Πi,n2+n1−1Bn2+n1

= Πi,n1
(Bn1+1 +An1+1Bn1+2 + · · ·+ Πn1+1,n2+n1−1Bn2+n1

) .

Notice that

P{|S′1 + · · ·+ S′n1
| > x} ≤ n1 P{|S′1| > x/n1}.

Therefore and by virtue of Lemmas 3.4 and 3.5 there exist positive constants C7, C8, C9 such that

P{|S′1 + · · ·+ S′n1
| > x} ≤ C7 x

−α e−C8(log x)C9
, x ≥ 1 .

Therefore and since S1 =
∑n1

i=1 S̃i it suffices for (3.12) to show that

lim
n→∞

sup
x≥bn

∣∣∣P{S1 +
∑n1

i=1 S
′
i > x}

n1P{Y > x}
− c∞

∣∣∣ = 0 .

We observe that

S1 +

n1∑
i=1

S′i =: UT1 and T1 + T2
d
= Y ,

where

U = Π1,n1 + Π2,n1 + · · ·+ Πn1,n1 ,

T1 = Bn1+1 + Πn1+1,n1+1Bn1+2 + · · ·+ Πn1+1,n2+n1−1Bn2+n1 ,

T2 = Πn1+1,n2+n1Bn2+n1+1 + Πn1+1,n2+n1+1Bn2+n1+2 + · · · .

Since U =d ηn1 and Y =d T1 + T2, in view of Lemma 3.7 we obtain

lim
n→∞

sup
x≥bn

∣∣∣P{U(T1 + T2) > x}
n1 P{Y > x}

− c∞
∣∣∣ = 0 ,

provided c+∞ > 0 or

lim
n→∞

sup
x≥bn

P{U(T1 + T2) > x}
n1 P{|Y | > x}

= 0 ,

if c+∞ = 0. Thus to prove the proposition it suffices to justify the existence of some positive constants
C10, C11, C12 such that

P{|UT2| > x} ≤ C10 x
−αe−C11 (log x)C12

, x > 1 .(3.14)

For this purpose we use the same argument as in the proof of Lemma 3.4. First we write

P{|UT2| > x} ≤
∞∑
k=0

P{U Πn1+1,n1+n2+k |Bn1+n2+k+1| > x/(log x+ k)3}.

Write δ = (log x+ k)−0.5. Then by Lemma 3.3, Markov’s inequality and since n2 = n0 +m,

P{U Πn1+1,n1+n2+k |Bn1+n2+k+1| > x/(log x+ k)3}

≤ (log x+ k)3(α−δ)x−(α−δ) EUα−δ(EAα−δ)n2+kE|B|α−δ

≤ c (log x+ k)3(α−δ)x−(α−δ) e−(n2+k)ρδ

≤ c e−(m+k)ρδ(log x+ k)3(α−δ)x−α.
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There is ζ > 0 such that (m+ k)δ ≥ (log x+ k)ζ and therefore,

P{|UT2| > x} ≤ c x−α
∞∑
k=0

e−(log x+k)ζρ(log x+ k)3(α−δ)

≤ c x−αe−(log x)ζρ/2 .

This proves (3.14) and the lemma. �

Observe that if |i− j| > 2 then Si and Sj are independent. For |i− j| ≤ 2 we have the following
bound:

Lemma 3.8. The following relation holds for some constant c > 0:

sup
i≥1,|i−j|≤2

P{|Si| > x, |Sj | > x} ≤ c n0.5
1 x−α, x > 1 .

Proof. Assume without loss of generality that i = 1 and j = 2, 3. Then we have

|S1| ≤
(
Π1,n1

+ · · ·+ Πn1,n1

)
×
(
|Bn1+1|+ Πn1+1,n1+1|Bn1+2|+ · · ·+ Πn1+1,n1+n2−1|Bn2+n1 |

)
=: U1T

′
1,

|S2| ≤
(
Πn1+1,2n1

+ · · ·+ Π2n1,2n1

)
×
(
|B2n1+1|+ Π2n1+1,2n1+1|B2n1+2|+ · · ·+ Π2n1+1,2n1+n2−1|B2n1+n2

|
)

=: U2T
′
2,

|S3| ≤
(
Π2n1+1,3n1 + · · ·+ Π3n1,3n1

)
×
(
|B3n1+1|+ Π3n1+1,3n1+1|B3n1+2|+ · · ·+ Π3n1+1,3n1+n2−1|B3n1+n2

|
)

=: U3T
′
3 .

We observe that U1
d
= ηn1 , Ui, i = 1, 2, 3, are independent, Ui is independent of T ′i for each i, and

the T ′i ’s have power law tails with index α > 0. We conclude from (3.12) that

P{|S1| > x, |S2| > x} ≤ P{T ′1 > xn
−1/(2α)
1 }+ P{T ′1 ≤ xn

−1/(2α)
1 , U1T

′
1 > x ,U2T

′
2 > x}

≤ c n0.5
1 x−α + P{n−1/(2α)

1 U1 > 1, U2T
′
2 > x}

≤ c n0.5
1 x−α + P{U1 > n

1/(2α)
1 }P{U2T

′
2 > x}

≤ c n0.5
1 x−α .

In the same way we can bound P{|S1| > t, |S3| > t}. We omit details. �

3.4. Semi-final steps in the proof of the main theorem. In the following proposition, we com-
bine the various tail bounds derived in the previous sections. For this reason, recall the definitions
of Xi, Si and Zi from (3.8) and that p1, p, p3 are the largest integers such that p1n1 ≤ n− n1 + 1,
pn1 ≤ n− n2 and p3n1 ≤ n− n3, respectively.

Proposition 3.9. Assume the conditions of Theorem 2.1. In particular, consider the following
x-regions:

Λn =

{
(n1/α(log n)M ,∞) for α ∈ (0, 2], M > 2,
(cnn

0.5 log n,∞) for α > 2, cn →∞,
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and introduce a sequence sn → ∞ such that esn ∈ Λn and sn = o(n). Then the following relations
hold:

c+∞c∞

c+∞ + c−∞
≥ lim sup

n→∞
sup
x∈Λn

P{
∑p
j=1(Sj − cj) > x}
nP{|Y | > x}

,(3.15)

0 = lim
n→∞

sup
x∈Λn,log x≤sn

∣∣∣P{∑p
j=1(Sj − cj) > x}
nP{|Y | > x}

− c+∞c∞

c+∞ + c−∞

∣∣∣ ,(3.16)

0 = lim
n→∞

sup
x∈Λn

P
{
|
∑p1
j=1(Xj − ej)| > x

}
nP{|Y | > x}

,(3.17)

0 = lim
n→∞

sup
x∈Λn

P
{
|
∑p3
j=1(Zj − zj)| > x

}
nP{|Y | > x}

,(3.18)

where cj = ej = zj = 0 for α ≤ 1 and cj = ESj, ej = EXj, zj = EZj for α > 1.

Proof. We split the proof into the different cases corresponding to α ≤ 1, α ∈ (1, 2] and α > 2.

The case 1 < α ≤ 2.

Step 1: Proof of (3.15) and (3.16). Since M > 2, we can choose ξ so small that

2 + 4ξ < M and ξ < 1/(4α) ,(3.19)

and we write y = x/(log n)2ξ. Consider the following disjoint partition of Ω:

Ω1 =

p⋂
j=1

{|Sj | ≤ y} ,

Ω2 =
⋃

1≤i<k≤p

{|Si| > y , |Sk| > y} ,

Ω3 =

p⋃
k=1

{|Sk| > y, |Si| ≤ y for all i 6= k} .

Then for A = {
∑p
j=1(Sj − cj) > x},

P{A} = P{A ∩ Ω1}+ P{A ∩ Ω2}+ P{A ∩ Ω3} =: I1 + I2 + I3 .(3.20)

Next we treat the terms Ii, i = 1, 2, 3, separately.

Step 1a: Bounds for I2. We prove

(3.21) lim
n→∞

sup
x∈Λn

(xα/n) I2 = 0 .

We have

I2 ≤
∑

1≤i<k≤p

P{|Si| > y, |Sk| > y} .

For k ≥ i+ 3, Sk and Si are independent and then, by (3.12),

P{|Si| > y, |Sk| > y} = (P{|S1| > y})2 ≤ c (n1(y))2 y−2α ,

where n1(y) is defined in the same way as n1 = n1(x) with x replaced by y. Also notice that
n1(y) ≤ n1(x). For k = i+ 1 or i+ 2, we have by Lemma 3.8

P{|Si| > y, |Sk| > y} ≤ c (n1(y))0.5 y−α.
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Summarizing the above estimates and observing that (3.19) holds, we obtain for x ∈ Λn,

I2 ≤ c [p2n2
1y
−2α + pn0.5

1 y−α]

≤ c n x−α
[
x−αn (log n)4ξα + (log n)2ξαn−0.5

1

]
≤ c n x−α

[
(log n)(4ξ−M)α + (log n)2ξα−0.5

]
.

This proves (3.21).

Step 1b: Bounds for I1. We will prove

(3.22) lim
n→∞

sup
x∈Λn

(xα/n) I1 = 0 .

For this purpose, we write Syj = Sj1{|Sj |≤y} and notice that ESj = ESyj +ESj1{|Sj |>y}. Elementary
computations show that

(3.23) |S1|α ≤ nmax(α,1)
1 (2m+ 1)max(α,1)E|B|α .

Therefore by the Hölder and Minkowski inequalities, and by (3.12)

|ESj1{|Sj |>y}| ≤ (E|Sj |α)1/α (P{|Sj | > y})1−1/α

≤ c (log x)1.5+σy−α+1 (n1(y))1−1/α

≤ c (log x)1.5+σ+2ξ(α−1)x−α+1n1 .

Let now γ > 1/α and n1/α(log n)M ≤ x ≤ nγ . Since p n1 ≤ n and (3.19) holds,

p |ESj1{|Sj |>y}| ≤ c (log x)1.5+σ+2ξ(α−1)x−α+1 n = o(x) .(3.24)

If x > nγ then

x > (log x)Mn1/α and x−α < (log x)−Mαn−1.

Hence

p |ESj1{|Sj |>y}| ≤ c x(log x)1.5+σ+2ξ(α−1)(log x)−Mα = o(x) .(3.25)

Using the bounds (3.24) and (3.25), we see that for x sufficiently large,

I1 ≤ P
{∣∣∣ p∑

j=1

(Syj − ES
y
j )
∣∣∣ > 0.5x

}
= P

{∣∣∣( ∑
1≤j≤p,j∈{1,4,7,...}

+
∑

1≤j≤p,j∈{2,5,8,...}

+
∑

1≤j≤p,j∈{3,6,9,...}

)
(Syj − ES

y
j )
∣∣∣ > 0.5x

}
≤ 3P

{∣∣∣ ∑
1≤j≤p,j∈{1,4,7,...}

(Syj − ES
y
j )
∣∣∣ > x/6

}
.(3.26)

In the last step, for the ease of presentation, we slightly abused notation since the number of
summands in the 3 partial sums differs by a bounded number of terms which, however, do not
contribute to the asymptotic tail behavior of I1. Since the summands Sy1 , S

y
4 , . . . are iid and bounded,

we may apply Prokhorov’s inequality (A.1) to the random variables Rk = Syk − ESy1 in (3.26) with

y = x/(log n)2ξ and Bp = p var(Sy1 ). Then an = x/(2y) = 0.5 (log n)2ξ and since, in view of (3.23),
var(Sy1 ) ≤ y2−αE|S1|α,

I1 ≤ c
(p var(Sy1 )

xy

)an
≤ c

(
(log n)(1.5+σ)α+2ξ(α−1)−1

)an( n
xα

)an
.

Therefore, for x ∈ Λn,

(xα/n) I1 ≤ c (log n)((1.5+σ)α+2ξ(α−1))an−Mα(an−1),
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which tends to zero if M > 2, ξ satisfies (3.19) and σ is sufficiently small.

Step 1c: Bounds for I3. Here we assume c+∞ > 0. In this case, we can bound I3 by using the
following inequalities: for every ε > 0, there is n0 such that for n ≥ n0, uniformly for x ∈ Λn and
every fixed k ≥ 1,

(3.27) (1− ε)c∞ ≤
P{A ∩ {|Sk| > y, |Si| ≤ y, i 6= k}}

n1P{Y > x}
≤ (1 + ε)c∞.

Write z = x/(log n)ξ and introduce the probabilities, for k ≥ 1,

Jk = P
{
A ∩ {|

∑
j 6=k

(Sj − cj)| > z, |Sk| > y, |Si| ≤ y, i 6= k}
}
,

Vk = P
{
A ∩ {|

∑
j 6=k

(Sj − cj)| ≤ z, |Sk| > y, |Si| ≤ y, i 6= k}
}
.(3.28)

Write S =
∑

(Sj − cj), where summation is taken over the set {j : 1 ≤ j ≤ p , j 6= k, k ± 1, k ± 2}.
For n sufficiently large Jk is dominated by

P{|S| > z − 8y, |Sk| > y, |Si| ≤ y, i 6= k} ≤ P{|Sk| > y}P{|S| > 0.5 z, |Si| ≤ y, i 6= k} .

Applying the Prokhorov inequality (A.1) in the same way as in step 1b, we see that

P{|S| > 0.5 z, |Si| ≤ y, i 6= k} ≤ c n z−α ≤ c (log n)−(M−ξ)α ,

and by Markov’s inequality,

P{|S1| > y} ≤ cn1(y)

yα
≤ c n1

yα
.

Therefore

sup
x∈Λn

(xα/n1)Jk ≤ c (log n)3αξ−Mα → 0.

Thus it remains to bound the probabilities Vk. We start with sandwich bounds for Vk:

P{Sk − ck > x+ z, |S| ≤ z − 8y, |Si| ≤ y, i 6= k} ≤ Vk(3.29)

≤ P{Sk − ck > x− z, |S| ≤ z + 8y, |Si| ≤ y, i 6= k} .(3.30)

By (3.12), for every small ε > 0, n sufficiently large and uniformly for x ∈ Λn, we have

(1− ε)c∞ ≤
P{Sk − ck > x+ z}

n1 P{Y > x}
≤ P{Sk − ck > x− z}

n1 P{Y > x}
≤ (1 + ε)c∞ ,(3.31)

where we also used that limn→∞(x+ z)/x = 1. Then the following upper bound is immediate from
(3.30):

Vk
n1 P{Y > y}

≤ P{Sk − ck > x− z}
n1 P{Y > x}

≤ (1 + ε)c∞ .

From (3.29) we have

Vk
n1 P{Y > y}

≥ P{Sk − ck > x+ z}
n1 P{Y > x}

− Lk .



LARGE DEVIATIONS 15

In view of the lower bound in (3.31), the first term on the right-hand side yields the desired lower
bound if we can show that Lk is negligible. Indeed, we have

n1P{Y > x}Lk = P{{Sk − ck > x+ z} ∩
[
{|S| > z − 8y} ∪

⋃
i6=k

{|Si| > y}
]
}

≤ P{Sk − ck > x+ z, |S| > z − 8y}+
∑
i 6=k

P{Sk − ck > x+ z, |Si| > y}

≤ P{Sk − ck > x+ z}
[
P{|S| > z − 8y}+ pP{|S1| > y}

]
+c

∑
|i−k|≤2,i6=k

P{Sk − ck > x+ z, |Si| > y}

Similar bounds as in the proofs above yield that the right-hand side is of the order o(n1/x
α), hence

Lk = o(1). We omit details. Thus we obtain (3.27).

Step 1d: Final bounds. Now we are ready for the final steps in the proof of (3.16) and (3.15).
Suppose first c+∞ > 0 and log x ≤ sn. In view of the decomposition (3.20) and steps 1a and 1b we
have as n→∞ and uniformly for x ∈ Λn,

P{
∑p
j=1(Sj − cj) > x}
nP{Y > x}

∼ I3
nP{Y > x}

∼ n1

n

∑p
k=1 P{

∑p
j=1(Sj − ESj) > x, |Sk| > y, |Sj | ≤ y, j 6= k}

n1P{Y > x}
.

In view of step 1c, in particular (3.27), the last expression is dominated from above by (p n1/n)(1 +
ε)c∞ ≤ (1 + ε)c∞ and from below by

n1p

n
(1− ε)c∞ ≥

n− n2 − n1

n
(1− ε)c∞ ≥ (1− ε)c∞

(
1− 3sn

nρ

)
.

Letting first n→∞ and then ε→ 0, (3.15) follows and (3.16) is also satisfied provided the additional
condition limn→∞ sn/n = 0 holds.

If c+∞ = 0 then I3 = o(nP{|Y | > x}). Let now x ∈ Λn and recall the definition of Vk from (3.28).
Then for every small δ and sufficiently large x

P{
∑p
j=1(Sj − cj) > x}
nP{|Y | > x}

∼ I3
nP{|Y | > x}

≤ n1

n

∑p
k=1 Vk

n1P{|Y | > x}

≤ sup
x∈Λn

P{S1 > x(1− δ)− |c1|}
n1P{|Y | > x}

and (3.15) follows from the second part of Lemma 3.7.

Step 2: Proof of (3.17) and (3.18). We restrict ourselves to (3.17) since the proof of (3.18) is
analogous. Write B = {|

∑p1
j=1(Xj − ej)| > x}. Then

P{B} ≤ P
{
B ∩

p1⋃
k=1

{|Xk| > y}
}

+ P
{
B ∩ {|Xj | ≤ y for all j ≤ p1}

}
= P1 + P2.

By Lemma 3.4,

P1 ≤ p1 P{|X1| > y} ≤ C1p1y
−αe−C2(log y)C3

= o(nx−α).

For the estimation of P2 consider the random variables Xy
j = Xj1{|Xj |≤y} and proceed as in step 1b.
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The case α > 2.

The proof is analogous to α ∈ (1, 2]. We indicate differences in the main steps.

Step 1b. First we bound the large deviation probabilities of the truncated sums (it is an analog of
step 1b of Proposition 3.9). We assume without loss of generality that cn ≤ log n. Our aim now is
to prove that for y = xc−0.5

n :

(3.32) lim
n→∞

sup
x∈Λn

xα

n
P
{∣∣∣ p∑

j=1

(Sj − ESj)
∣∣∣ > x, |Sj | ≤ y for all j ≤ p

}
= 0.

We proceed as in the proof of (3.22) with the same notation Syj = Sj1{|Sj |≤y}. As in the proof

mentioned, p |ESj1{|Sj |>y}| = o(x) and so we estimate the probability of interest by

I := 3P
{∣∣∣ ∑

1≤j≤p ,j∈{1,4,7,...}

(Syj − ESy1 )
∣∣∣ > x/6

}
(3.33)

The summands in the latter sum are independent and therefore one can apply the two-sided version
of the Fuk-Nagaev inequality (A.3) to the random variables in (3.33): with an = βx/y = c0.5n β and
p var(Sy1 ) ≤ cpn2

1 ≤ cnn1,

I ≤
(
c
p n

(1.5+σ)α
1

xyα−1

)an
+ exp

{
− (1− β)2x2

2eα cnn1

}
.(3.34)

We suppose first that x ≤ n0.75. Then the first quantity in (3.34) multiplied by xα/n is dominated
by (

c(log n)(1.5+σ)αc0.5(α−1)
n

)an
(n/xα)an−1 ≤ c−0.5an(1+α)+α

n

(c(log n)(1.5+σ)α)an

(n0.5α−1(log n)α)an−1
→ 0 .

The second quantity in (3.34) multiplied by xα/n is dominated by

xα

n
exp

{
− (1− β)2c2n(log n)2

2eαcn1

}
≤ nαγ−1n−c c

2
n → 0.

If x > n0.75 then xn−0.5 > xδ for an appropriately small δ. Then the first quantity in (3.34) is
dominated by(

c(log x)(1.5+σ)α
)an

c0.5an(α−1)
n (n/xα)an−1 ≤ c−0.5an(1+α)+α

n

(c(log x)(1.5+σ)α)an

(n0.5α−1xαδ)an−1
→ 0.

The second quantity is dominated by

xα

n
exp

{
− (1− β)2c2nx

2δ(log n)2

2eαcn1

}
≤ xαe−cx

δ

→ 0,

which finishes the proof of (3.32).

Step 1c. We prove that, for any ε ∈ (0, 1), sufficiently large n and fixed k ≥ 1, the following
relation holds uniformly for x ∈ Λn,

(3.35) (1− ε)c∞ ≤
P{
∑p
j=1(Sj − ESj) > x, |Sk| > y, |Si| ≤ y, i 6= k}

n1 P{Y > x}
≤ (1 + ε)c∞.

Let z ∈ Λn be such that x/z →∞. As for α ∈ (1, 2], one proves

xα

n1
P
{ p∑
j=1

(Sj − ESj) > x, |
∑
j 6=k

(Sj − ESj)| > z, |Sk| > y, |Sj | ≤ y, j 6= k
}
→ 0.
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Apply the Fuk-Nagaev inequality (A.3) to bound

P
{
|
∑
j 6=k

(Sj − ESj)| >
z

2
, |Sj | ≤ y, j 6= k

}
.

In the remainder of the proof one can follow the arguments of the proof in step 1c for α ∈ (1, 2].

The case α ≤ 1.

The proof is analogous to the case 1 < α ≤ 2; instead of Prokhorov’s inequality (A.1) we apply S.V.
Nagaev’s inequality (A.2). We omit further details.

�

3.5. Final steps in the proof of Theorem 2.1. We have for small ε > 0,

P{
n∑
i=1

(S̃i − ES̃i) > x(1 + 2ε)} − P{|
n∑
i=1

(X̃i − EX̃i)| > xε} − P{|
n∑
i=1

(Z̃i − EZ̃i)| > xε}

≤ P{S̃n − d̃n > x}

≤ P{
n∑
i=1

(S̃i − ES̃i) > x(1− 2ε)}+ P{
n∑
i=1

(X̃i − EX̃i) > xε}+ P{
n∑
i=1

(Z̃i − EZ̃i) > xε}.

(3.36)

Divide the last two probabilities in the first and last lines by nP{|Y | > x}. Then these ratios
converge to zero for x ∈ Λn, in view of (3.17), (3.18) and Lemmas 3.4 and 3.5. Now

P{
n∑

i=pn1+1

(S̃i − ES̃i) > x(1− 2ε)} =P{
n−n1∑

i=pn1+1

(S̃i − ES̃i) > x(1− 2ε)}

≤ P{
n−n1∑

i=pn1+1

(S̃i > x(1− 2ε)−
n−n1∑

i=pn1+1

|ES̃i|},

where S̃i = Πi,i+n1−1|Bi+n1 |+ · · ·+ Πi,i+n2−1|Bi+n2 |.
Notice that if i ≤ n− n2 then (for α > 1)

ES̃i = ES̃1

and for n− n2 < i ≤ n− n1

ES̃i = (EA)n1

(
1 + EA+ ...+ (EA)n−i−n1

)
EB.

Hence there is C such that

n−n1∑
i=pn1+1

|ES̃i| ≤ 2n1C
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and so by Proposition 3.6

P{
n−n1∑

i=pn1+1

(S̃i > x(1− 2ε)−
n−n1∑

i=pn1+1

|ES̃i|} ≤ P{
n1∑
i=1

(S̃i >
x(1− 2ε)− 2n1C

2
}

+ P{
2n1∑
i=n1

(S̃i >
x(1− 2ε)− 2n1C

2
},

≤ C1n1x
−α = o

(
nP{|Y | > x}

)
,

provided limn→∞ sn/n = 0. Taking into account (3.16) and the sandwich (3.36), we conclude that
(2.2) holds.

If the x-region is not bounded from above and n > n1(x) then the above calculations together
with Lemma 3.1 show (2.1). If n ≤ n1(x), then

P{Sn − d̃n > x} ≤ C1x
−αe−C2(log x)C3

.

and again (2.1) holds.

4. Ruin probabilities

In this section we study the ruin probability related to the centered partial sum process Tn =
Sn − ESn, n ≥ 0, i.e. for given u > 0 and µ > 0 we consider the probability

ψ(u) = P{sup
n≥1

[
Tn − µn

]
> u} .

We will work under the assumptions of Kesten’s Theorem 1.1. Therefore the random variables Yi
are regularly varying with index α > 0. Only for α > 1 the variable Y has finite expectation and
therefore we will assume this condition throughout. Notice that the random walk (Tn − nµ) has

dependent steps and negative drift. Since (Yn) is ergodic we have n−1(Tn − nµ)
a.s.→ −µ and in

particular supn≥1(Tn − nµ) <∞ a.s.
It is in general difficult to calculate ψ(u) for a given value u, and therefore most results on ruin

study the asymptotic behavior of ψ(u) when u→∞. If the sequence (Yi) is iid it is well known (see
Embrechts and Veraverbeke [7] for a special case of subexponential step distribution and Mikosch
and Samorodnitsky [19] for a general regularly varying step distribution) that

ψind(u) ∼ uP{Y > u}
µ (α− 1)

, u→∞ .(4.1)

(We write ψind to indicate that we are dealing with iid steps.) If the step distribution has exponential
moments the ruin probability ψind(u) decays to zero at an exponential rate; see for example the
celebrated Cramér-Lundberg bound in Embrechts et al. [6], Chapter 2.

It is the main aim of this section to prove the following analog of the classical ruin bound (4.1):

Theorem 4.1. Assume that the conditions of Theorem 1.1 are satisfied and additionally B ≥ 0 a.s.
and there exists ε > 0 such that EAα+ε and EBα+ε are finite, α > 1 and c+∞ > 0. The following
asymptotic result for the ruin probability holds for fixed µ > 0, as u→∞:

P
{

sup
n≥1

(Sn − ESn − nµ) > u
}
∼ c∞

µ(α− 1)
u−α+1

∼ c∞

c+∞

uP{Y > u}
µ(α− 1)

.(4.2)

Remark 4.2. We notice that the dependence in the sequence (Yt) manifests in the constant c∞/c
+
∞

in relation (4.2) which appears in contrast to the iid case; see (4.1).
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To prove our result we proceed similarly as in the proof of Theorem 2.1. First notice that in view
of (3.9),

P{sup
n≥1

(Y0ηn − E(Y0ηn)) > u} ≤ P{Y0η > u} = o(u1−α).

Thus, it is sufficient to prove

uα−1P
{

sup
n≥1

(S̃n − ES̃n − nµ) > u
}
∼ c∞
µ(α− 1)

,

for S̃n defined in (3.2). Next we change indices as indicated after (3.3). However, this time we
cannot fix n and therefore we will proceed carefully; the details will be explained below. Then we

further decompose S̃n into smaller pieces and study their asymptotic behavior.

Proof of Theorem 4.1. The following lemma shows that the centered sums (S̃n − ES̃n)n≥uM for
large M do not contribute to the asymptotic behavior of the ruin probability as u→∞.

Lemma 4.3. The following relation holds:

lim
M→∞

lim sup
u→∞

uα−1P
{

sup
n>uM

(S̃n − ES̃n − nµ) > u
}

= 0 .

Proof. Fix a large number M and define the sequence Nl = uM2l, l ≥ 0. Assume for the ease of
presentation that (Nl) constitutes a sequence of even integers; otherwise we can take Nl = [uM ]2l.
Observe that

P
{

sup
n>uM

(S̃n − ES̃n − nµ) > u
}
≤
∞∑
l=0

pl ,

where pl = P
{

maxn∈[Nl,Nl+1)(S̃n−ES̃n−nµ) > u
}
. For every fixed l, in the events above we make

the change of indices i→ j = Nl+1 − i and write, again abusing notation,

Ỹj = Bj + ΠjjBj+1 + · · ·+ Πj,Nl+1−2BNl+1−1 .

With this notation, we have

pl = P
{

max
n∈(0,Nl]

Nl+1−1∑
i=n

(Ỹi − EỸi − µ) > u
}
.

Using the decomposition (3.4) with the adjustment n4 = min(j+n3, Nl+1−1), we write Ỹj = Ũj+W̃j .
Then, by Lemma 3.2, for small δ > 0,

pl1 = P
{

max
n∈(0,Nl]

Nl+1−1∑
i=n

(W̃i − EW̃i − µ/4) > u/4
}

≤ P
{Nl+1−1∑

i=Nl

(W̃i − EW̃i) +

Nl−1∑
i=1

W̃i > u/4 +Nlµ/4
}

≤ P
{Nl+1−1∑

i=1

(W̃i − EW̃i) > u/4 +Nl(µ/4− EW̃1)
}

≤ cNl+1N
−α−δ
l ≤ c(uM2l)1−α−δ .

We conclude that for every M > 0,
∞∑
l=0

pl1 = o(u1−α) as u→∞.
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As in (3.7) we further decompose Ũi = X̃i + S̃i + Z̃i, making the definitions precise in what follows.
Let p be the smallest integer such that pn1 ≥ Nl+1 − 1 for n1 = n1(u). For i = 1, . . . , p − 1 define

Xi as in (3.8), and Xp =
∑Nl+1−1
i=(p−1)n1+1 X̃i. Now consider

pl2 = P
{

max
n∈(0,Nl]

Nl+1−1∑
i=n

(X̃i − EX̃i − µ/4) > u/4
}

≤ P
{Nl+1−1∑

i=Nl

(X̃i − EX̃i) + max
n∈(0,Nl]

Nl−1∑
i=n

(X̃i − EX̃i) > u/4 +Nlµ/4
}

≤ P
{

max
k≤p/2

p∑
i=k

(Xi − EXi) > u/8 +Nlµ/8
}

+P
{

max
k≤p/2

p∑
i=k

(Xi − EXi) ≤ u/8 +Nlµ/8 , max
k≤p/2

max
1≤j<n1

kn1∑
i=kn1−j

(X̃i − EX̃i) > u/8 +Nlµ/8
}

= pl21 + pl22 .

The second quantity is estimated by using Lemma 3.4 as follows for fixed M > 0

pl22 ≤ c pP
{ n1∑
i=1

X̃i > u/8 +Nlµ/8
}
≤ C1 pN

−α
l e−C2(logNl)

C3
= o(u1−α)2−(α−1)l ,

where Ci, i = 1, 2, 3, are some positive constants. Therefore for every fixed M ,

∞∑
l=0

pl22 = o(u1−α), as u→∞.

Next we treat pl21. We observe that Xi and Xj are independent for |i−j| > 1. Splitting summation
in pl21 into the subsets of even and odd integers, we obtain an estimate of the following type

pl21 ≤ c1P
{

max
k≤p/2

∑
k≤2i≤p

(X2i − EX2i) > c2(u+Nl)
}
,

where the summands are now independent. By the law of large numbers, for any ε ∈ (0, 1), k ≤ p/2,
large l,

P
{ ∑

2i≤k

(X2i − EX2i) > −εc2(u+Nl)
}
≥ 1/2 .

An application of the maximal inequality (A.5) in the Appendix and an adaptation of Proposition 3.9
yield

pl21 ≤ 2P
{∑

2i≤p

(X2i − EX2i) > (1− ε)c2(u+Nl)
}
≤ cN1−α

l .

Using the latter bound and summarizing the above estimates, we finally proved that

lim
M→∞

lim sup
u→∞

uα−1
∞∑
l=0

pl2 = 0 .

Similar arguments show that the sums involving the S̃i’s and Z̃i’s are negligible as well. This proves
the lemma. �
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In view of Lemma 4.3 it suffices to study the following probabilities for sufficiently large M > 0:

P
{

max
n≤Mu

(S̃n − ES̃n − nµ) > u
}
.

Write N0 = bMuc, change again indices i→ j = N0 − i+ 1 and write, abusing notation,

Ỹj = Bj + ΠjjBj+1 + · · ·+ Πj,N0−1BN0
.

Then we decompose Ỹj as in the proof of Lemma 4.3. Reasoning in the same way as above, one

proves that the probabilities related to the quantities W̃i, X̃i and Z̃i are of lower order than u1−α

as u→∞ and, thus, it remains to study the probabilities

P
{

max
n≤N0

N0∑
i=n

(S̃i − ES̃i − µ) > u
}
,(4.3)

where S̃i were defined in (3.7).

Take n1 = blogN0/ρc, p = bN0/n1c and denote by Si the sums of n1 consecutive S̃i’s as defined
in (3.8). Observe that for any n such that n1(k − 1) + 1 ≤ n ≤ kn1, k − 1 ≤ p we have

N0∑
i=n

(S̃i − ES̃i − µ) ≤ 2n1(ES̃1 + µ) +

(p+1)n1∑
i=(k−1)n1+1

(S̃i − ES̃i − µ)

≤ 2n1(ES̃1 + µ) +

p∑
i=k−1

(Si − ESi − n1µ)

and

N0∑
i=n

(S̃i − ES̃i − µ) ≥ −2n1(ES̃1 + µ) +

pn1∑
i=kn1

(S̃i − ES̃i − µ)

≥ −2n1(ES̃1 + µ) +

p−1∑
i=k

(Si − ESi − n1µ) .

Therefore and since n1 is of order log u, instead of the probabilities (4.3) it suffices to study

ψp(u) = P
{

max
n≤p

p∑
i=n

(Si − ESi − n1µ) > u
}
.

Choose q = [M/εα+1
1 ] + 1 for some small ε1 and large M . Then the random variables

Rk =

kq−3∑
i=(k−1)q

Si, k = 1, . . . , r = bp/qc ,
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are independent and we have

ψp(u) ≤ P
{

max
n≤qr

∑
n≤i≤qr

i 6=kq−2,kq−1

(Si − ESi − n1µ) > u(1− 3ε1)
}

+P
{

max
j≤r

r∑
k=j

(Skq−2 − ESkq−2 − n1µ) > ε1u
}

+P
{

max
j≤r

r∑
k=j

(Skq−1 − ESkq−1 − n1µ) > ε1u
}

+P
{

max
qr<n<p

p∑
i=n

(Si − ESi − n1µ) > ε1u
}

=:

4∑
i=1

ψ(i)
p (u) .

The quantities ψ
(i)
p (u), i = 2, 3, can be estimated in the same way; we focus on ψ

(2)
p (u). Applying

Petrov’s inequality (A.4) and Proposition 3.9, we obtain for some constant c not depending on ε1,

ψ(2)
p (u) ≤ P

{
max
j≤r

r∑
k=j

(Skq−2 − ESkq−2) > ε1 u
}

≤ cP
{ r∑
k=1

(Skq−2 − ESkq−2) > ε1u/2
}

≤ c r n1(ε1 u)−α ≤ c ε1u
−α+1.

Hence we obtain limε1↓0 lim supu→∞ uα−1ψ
(2)
p (u) = 0. By (3.15), for some constant c,

ψ(4)
p (u) ≤ c qn1

(ε1u)α
≤ c Mu

r(ε1u)α
.

Since r ≥ q > M/εα+1
1 for large u we conclude for such u that r−1 ≤ M−1εα+1

1 and therefore

ψ
(4)
p (u) ≤ cε1u

1−α and limε1↓0 lim supu→∞ uα−1ψ
(4)
p (u) = 0.

Since A and B are non-negative we have for large u with µ0 = µ (q − 2),

ψ(1)
p (u) ≤ P

{
max
j≤r

j∑
i=1

(Ri − ERi − µ0n1) > u(1− 3ε1)− qn1(ES1 + µ)
}

≤ P
{

max
j≤r

j∑
i=1

(Ri − ERi − µ0n1) > u(1− 4ε1)
}
.

Combining the bounds above we proved for large u, small ε1 and some constant c > 0 independent
of ε1 that

ψp(u) ≤ P
{

max
j≤r

j∑
i=1

(Ri − ERi − µ0n1) > u(1− 4ε1)
}

+ c ε1 u
−α+1.

Similar arguments as above show that

ψp(u) ≥ P
{

max
j≤r

j∑
i=1

(Ri − ERi − µ0n1) > u(1 + 4ε1)
}
− c ε1 u

−α+1.
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Thus we reduced the problem to study an expression consisting of independent random variables
Ri and the proof of the theorem is finished if we can show the following result. Write

Ωr =
{

max
j≤r

j∑
i=1

(Ri − ERi − n1µ0) > u
}
.

Lemma 4.4. The following relation holds

lim
M→∞

lim sup
u→∞

∣∣∣uα−1P{Ωr} −
c∞ c+∞
µ(α− 1)

∣∣∣ = 0 .

Proof. Fix some ε0 > 0 and choose some large M . Define C0 = (q − 2)c∞c
+
∞. Reasoning as in the

proof of (3.16), we obtain for any integers 0 ≤ j < k ≤ r and large u

(4.4) 1− ε0 ≤ uα
P
{∑k

i=j+1

(
Ri − ERi

)
> u

}
n1(k − j)C0

≤ 1 + ε0

Choose ε, δ > 0 small to be determined later in dependence on ε0. Eventually, both ε, δ > 0 will
become arbitrarily small when ε0 converges to zero. Define the sequence k0 = 0, kl = [δn−1

1 (1 +
ε)l−1u], l ≥ 1. Without loss of generality we will assume kl0 = Mun−1

1 for some integer number l0.
For η > ε0(2l0)−1 consider the independent events

Dl =

{
max

kl<j≤kl+1

j∑
i=kl+1

(Ri − ERi) > 2ηu

}
, l = 0, . . . , l0 − 1.

Define the disjoint sets

Wl = Ωr ∩Dl ∩
⋂
m 6=l

Dc
m , l = 0, . . . , l0 − 1 .

We will show that ∣∣∣∣P{Ωr} − l0−1∑
l=0

P{Wl}
∣∣∣∣ ≤ o(u1−α) , u→∞ .(4.5)

First we observe that Ωr ⊂
⋃l0−1
l=0 Dl. Indeed, on

⋂l0−1
l=0 Dc

l we have

max
j≤r

j∑
i=1

(Ri − ERi − n1µ0) ≤ l02ηu ≤ ε0u ,

and therefore Ωr cannot hold for small ε0. Next we prove that

P{
⋃
m6=l

(Dm ∩Dl)} = o(u1−α) , u→∞ .(4.6)

Then (4.5) will follow. First apply Petrov’s inequality (A.4) to P{Dl} with q0 arbitrarily close to
one and power p0 ∈ (1, α). Notice that E|Ri|p0 is of the order qn1, hence mp0 is of the order

δεqu ≤ cδεMε−α−1
1 u. Next apply (4.4). Then one obtains for sufficiently large u, and small ε, δ,

and some constant c′ depending on ε, δ, ε0, ε1,

P{Dl} ≤ q−1
0 P

{ kl+1∑
i=kl+1

(Ri − ERi) > ηu

}
≤ q−1

0 n1(kl+1 − kl)(1 + ε0)C0(ηu)−α ≤ c′u1−α .

Hence P{∪m6=l(Dl∩Dm)} = O(u2(1−α)) as desired for (4.6) if all the parameters ε, δ, ε0, ε1 are fixed.
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Thus we showed (4.5) and it remains to find suitable bounds for the probabilities P{Wl}. On the
set Wl we have

max
j≤kl

j∑
i=1

(Ri − ERi − µ0n1) ≤ max
j≤kl

j∑
i=1

(Ri − ERi) ≤ 2ηlu ≤ ε0u ,

max
kl+1<j≤r

j∑
i=kl+1

(Ri − ERi) ≤ 2ηl0u ≤ ε0u .

Therefore for small ε0 and large u on the event Wl,

max
j≤r

j∑
i=1

(Ri − ERi − µ0n1) = max
kl<j≤r

j∑
i=1

(Ri − ERi − µ0n1)

≤
kl∑
i=1

(Ri − ERi − µ0n1) + max
kl<j≤kl+1

j∑
i=kl+1

(Ri − ERi) + max
kl+1<j≤r

j∑
i=kl+1+1

(Ri − ERi)

≤ 2ε0u− klµ0n1 + max
kl<j≤kl+1

j∑
i=kl+1

(Ri − ERi).

Petrov’s inequality (A.4) and (4.4) imply for l ≥ 1 and large u that

P{Wl} ≤ P
{

max
kl<j≤kl+1

j∑
i=kl+1

(Ri − ERi) ≥ (1− 2ε0)u+ µ0n1kl

}

≤ q−1
0 P

{ kl+1∑
i=kl+1

(Ri − ERi) ≥ (1− 3ε0)u+ µ0n1kl

}
≤ q−1

0

(kl+1 − kl)n1(1 + ε0)C0

((1− 3ε0) + µ0δ(1 + ε)l−1)αuα

= q−1
0

δε(1 + ε)l−1(1 + ε0)C0

((1− 3ε0) + µ0δ(1 + ε)l−1)α
u1−α.

For l = 0 we use exactly the same arguments, but in this case (k1 − k0)n1 = δu and k0 = 0. Thus
we arrive at the upper bound

l0−1∑
l=0

P{Wl} ≤ q−1
0 (1 + ε0)C0

(
δ

(1− 3ε0)α
+

l0−1∑
i=1

δε(1 + ε)l−1

((1− 3ε0) + µ0δ(1 + ε)l−1)α

)
u1−α

= q−1
0 (1 + ε0)A(ε, δ, ε0, l0)u1−α.

(4.7)

To estimate P{Wl} from below first notice that on Wl, for large u,

max
j≤r

j∑
i=1

(Ri − ERi − µ0n1) ≥
kl+1∑
i=1

(Ri − ERi − µ0n1)

≥
kl+1∑
i=kl+1

(Ri − ERi)− kl+1µ0n1 − klER1

≥
kl+1∑
i=kl+1

(Ri − ERi)− kl+1µ0n1 − ε0u .
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By (4.6) and (4.4), we have for l ≥ 1 and as u→∞,

P{Wl} ≥ P
{{ kl+1∑

i=kl+1

(Ri − ERi) > (1 + ε0)u+ µ0n1kl+1

}
∩Dl ∩

⋂
m 6=l

Dc
m

}

≥ P
{ kl+1−1∑

i=kl

(Ri − ERi) > (1 + ε0)u+ µ0n1kl+1

}
− P

{
Dl ∩

⋃
m 6=l

Dm

}

≥ (kl+1 − kl)n1(1− ε0)C0

((1 + ε0)u+ µ0kl+1n1)α
− o(u1−α) ≥ (1− 2ε0)C0δ(1 + ε)l−1ε

((1 + ε0) + µ0δ(1 + ε)l)α
u1−α .

Hence

l0−1∑
l=0

P{Wl} ≥ (1− 2ε0)C0

(
δ

(1 + ε0 + µ0δ)α
+

l0−1∑
l=1

δ(1 + ε)l−1ε

((1 + ε0) + µ0δ(1 + ε)l)α

)
u1−α

= (1− 2ε0)C0B(ε, δ, ε0, l0)u1−α .

Thus we proved that

(1− 2ε0)B(ε, δ, ε0, l0) ≤ lim inf
u→∞

C−1
0 uα−1

l0−1∑
l=0

P{Wl}

≤ lim sup
u→∞

C−1
0 uα−1

l0−1∑
l=0

P{Wl} ≤ q−1
0 (1 + ε0)A(ε, δ, ε0, l0) .(4.8)

Finally, we will justify that the upper and lower bounds are close for small ε, δ, ε0, large M and q0

close to 1. For a real number s which is small in absolute value define the functions

fs(x) = (1 + s+ µ0x)−α and Fs(x) = (1 + s+ µ0x) fs(x) on [δ,M ] .

Let xl = δ(1 + ε)l−1, l = 1, . . . , l0. Since xl+1 − xl = δε(1 + ε)l−1 are uniformly bounded by εM
and fs is Riemann integrable on [0,∞), choosing ε small, we have

A(ε, δ, ε0, l0) =

l0−1∑
l=1

f−3ε0(xl)(xl+1 − xl)

≤
∫ M

δ

f−3ε0(x) dx =
F−3ε0(δ)− F−3ε0(M) + ε0

µ0(α− 1)
.

Thus we obtain the bound

lim
q0↑1

lim
ε0↓0

lim
M→∞

lim
δ↓0

q−1
0 (1 + ε0)A(ε, δ, ε0, l0) = (µ0(α− 1))−1 .(4.9)

Proceeding in a similar way,

B(ε, δ, ε0, l0) ≥
∫ M

δ

fε0(x)dx =
Fε0(δ)− Fε0(M)− ε0

µ0(α− 1)
.

The right-hand side converges to (µ0(α − 1))−1 by letting δ ↓ 0, M → ∞ and ε0 ↓ 0. The latter
limit relation in combination with (4.8) and (4.9) proves the lemma. �
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Appendix A. Inequalities for sums of independent random variables

In this section, we consider a sequence (Xn) of independent random variables and their partial
sums Rn = X1 + · · ·+Xn. We always write Bn = var(Rn) and mp =

∑n
j=1 E|Xj |p for p > 0. First,

we collect some of the classical tail estimates for Rn.

Lemma A.1. The following inequalities hold.
Prokhorov’s inequality; cf. Petrov [23], p. 77: Assume that the Xn’s are centered, |Xn| ≤ y for
all n ≥ 1 and some y > 0. Then

P{Rn ≥ x} ≤ exp
{
− x

2 y
arsinh

( xy

2Bn

)}
, x > 0 .(A.1)

S. V. Nagaev’s inequality; see [22]: Assume mp <∞ for some p > 0. Then

P{Rn > x} ≤
n∑
j=1

P{Xj > y}+
( emp

xyp−1

)x/y
, x, y > 0 .(A.2)

Fuk-Nagaev inequality; cf. Petrov [23], p. 78: Assume that the Xn’s are centered, p > 2,
β = p/(p+ 2) and mp <∞. Then

P{Rn > x} ≤
n∑
j=1

P{Xj > y}+
( mp

βxyp−1

)βx/y
+ exp

{
− (1− β)2x2

2epBn

}
, x, y > 0 .(A.3)

Petrov’s inequality; cf. Petrov [23], p. 81: Assume that the Xn’s are centered and mp < ∞ for
some p ∈ (1, 2]. Then for every q0 < 1, with L = 1 for p = 2 and L = 2 for p ∈ (1, 2),

P{max
i≤n

Ri > x} ≤ q−1
0 P{Rn > x− [(L/(1− q0))−1mp]

1/p} , x ∈ R .(A.4)

Lévy-Ottaviani-Skorokhod inequality; cf. Petrov [23], Theorem 2.3 on p. 51. If P{Rn−Rk ≥
−c)} ≥ q, k = 1, . . . , n− 1, for some constants c ≥ 0 and q > 0, then

P{max
i≤n

Ri > x} ≤ q−1P{Rn > x− c} , x ∈ R .(A.5)

Appendix B. Proof of Lemma 3.7

Assume first c+∞ > 0. We have by independence of Y and ηk, for any k ≥ 1, x > 0 and r > 0,

P{ηkY > x}
k P{Y > x}

=
(∫

(0,x/r]

+

∫
[x/r,∞)

)P{Y > x/z}
k P{Y > x}

dP(ηk ≤ z) = I1 + I2 .

For every ε ∈ (0, 1) there is r > 0 such that for x ≥ r and z ≤ x/r,
P{Y > x/z}
P{Y > x}

∈ zα[1− ε, 1 + ε] and P{Y > x}xα ≥ c+∞ − ε .

Hence for sufficiently large x,

I1 ∈ k−1Eηαk 1{ηk≤x/r}[1− ε, 1 + ε] and I2 ≤ c k−1xαP{ηk > x/r} ≤ c k−1 Eηαk 1{ηk>x/r} .

We have
I1 ∈ (k−1Eηαk − k−1Eηαk 1{ηk>x/r})[1− ε, 1 + ε]

and by virtue of Bartkiewicz et al. [1], limk→∞ k−1Eηαk = c∞ . Therefore it is enough to prove that

lim
n→∞

sup
rn≤k≤n1,bn≤x

k−1Eηαk 1{ηk>x} = 0.(B.1)

By the Hölder and Markov inequalities we have for ε > 0,

Eηαk 1{ηk>x} ≤ (Eηα+ε
k )α/(α+ε)

(
P{ηk > x}

)ε/(α+ε) ≤ x−ε Eηα+ε
k .(B.2)
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Next we study the order of magnitude of Eηα+ε
k . By definition of ηk,

Eηα+ε
k = EAα+εE(1 + ηk−1)α+ε

= EAα+ε
(
E(1 + ηk−1)α+ε − E(ηα+ε

k−1)
)

+ EAα+εEηα+ε
k−1 .

Thus we get the recursive relation

Eηα+ε
k =

k∑
i=1

(EAα+ε)k−i+1
(
E(1 + ηi−1)α+ε − E(ηα+ε

i−1 )
)

≤ c

k∑
i=1

(EAα+ε)k−i+1 ≤ c (EAα+ε)k

EAα+ε − 1
.(B.3)

Indeed, we will prove that if ε < 1 then there is a constant c such that for i ≥ 1,

E(1 + ηi)
α+ε − Eηα+ε

i ≤ c .
If α + ε ≤ 1 then this follows from the concavity of the function f(x) = xα+ε, x > 0. If α + ε > 1
we use the mean value theorem to obtain

E(1 + ηi)
α+ε − Eηα+ε

i ≤ (α+ ε)E(1 + ηi)
α+ε−1 ≤ (α+ ε)Eηα+ε−1

∞ <∞.
Now we choose ε = k−0.5. Then by (B.2), (B.3) and Lemma 3.3,

Eηαk 1{ηk>x} ≤ c
(EAα+ε)k

EAα+ε − 1
x−ε ≤ c e

ρn1/
√
k−log x/

√
k

EAα+ε − 1
≤ c e−ρm/

√
k

EAα+ε − 1
.

In the last step we used that k ≤ n1 = n0 − m, where n0 = [ρ−1 log x]. Moreover, since m =

[(log x)0.5+σ], m/
√
k ≥ 2 c1(log x)σ for some c1 > 0. On the other hand, setting γ = ε = k−0.5 in

(3.11), we obtain EAα+ε − 1 ≥ ρk−0.5/2. Combining the bounds above, we finally arrive at

sup
rn≤k≤n1,bn≤x

k−1Eηαk 1{ηk>x} ≤ c e
−c1 (log x)σ

for constants c, c1 > 0. This estimate yields the desired relation (B.1) and thus completes the proof
of the first part of the lemma when c+∞ > 0.

If c+∞ = 0 we proceed in the same way, observing that for any δ, z > 0 and sufficiently large x,

P{Y > x/z}
P{|Y | > x}

< δzα

and hence I1 converges to 0 as n goes to infinity. This proves the lemma.
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