
STOCK MARKET RISK-RETURN INFERENCE. AN UNCONDITIONAL
NON-PARAMETRIC APPROACH.

Abstract. By means of a detailed analysis of the returns of the Standard & Poors 500

(S&P 500) composite stock index over the last fifty years we show how theoretical results

and methodological recommendations from the statistical theory of non-parametric curve

inference allow one to consistently estimate expected return and volatility. In this approach

we do not postulate an a priori relationship risk-return nor do we specify the evolution of

the first two moments through covariates. Our analysis gives statistical evidence that the

expected return of the S&P 500 index as well as the market price of risk (the ratio expected

return minus risk free interest rate over volatility) vary significantly through time both in

size and sign. In particular, the periods of negative (positive) estimated expected return

and market price of risk coincide with the bear (bull) markets of the index as defined in the

literature. A complex relationship between risk and expected return emerges which is far

from the common assumption of a positive linear time-invariant relation.

Key words and phrases. Non-stationarity, expected excess return, risk free interest rate, volatility, kernel

curve estimator.
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Adequate models for the time-evolution of the distribution of returns are important for the

investor and the risk manager. While early studies of stock market returns (King [28], Blume

[3], Officer [40], Merton [33]) identified the variance as the main time-changing characteristic

of the return distribution, more recent studies, including Fama and French [13], Harvey

[24], Kandel and Stambaugh [27], Whitelaw [49], have suggested significant time variation in

expected return, but also in the risk-return relationship apparently related to the business

cycle. While changes in the volatility are relatively easy to document, changes of the expected

return are more difficult to detect. Indeed, various analyzes (e.g. Merton [33], French et al.

[15]) show that expected returns are of the same (or lower) order of magnitude as volatility.

This observation turns inference on expected return into a particularly difficult statistical

problem - a finding which is supported by the results of the present study.

In this paper we argue that the theory of statistical curve estimation offers a suitable and

convenient set-up for simultaneous consistent non-parametric inference on time-changing

expected return and volatility. To make things precise, denote by Rt = (Pt − Pt−1)/Pt−1

the net returns of a price or stock index Pt observed at equidistant instants of time. Our

analysis is conducted under the simple modeling assumption

Rt = µ(t) + σ(t) εt, t = 1, 2, . . . , n ,(1)

where the functions µ and σ are supposed to be smooth, the noise (εt) is iid with mean

zero and unit variance, without further specification of the distribution. In particular, we do

not assume the noise Gaussian. In words, returns are modeled as independent observations

with unconditional mean and variance changing slowly through time. Our assumptions on

the volatility function σ and the expected return function µ are close to those in Merton

[33]. Our approach is motivated by the findings of the non-stationary analysis performed
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in Stărică and Granger [46]. The authors argue that most of the dynamics of the S&P 500

index is explained by shifts of the unconditional variance and show that a model close to 1,

where the returns are independent and display a piece-wise constant unconditional variance,

describes the dynamics of the data better than Garch-type or long memory-type models.

The modeling setting positions our paper in that recent vein of the literature on risk-return

inference which takes distance from tight parametric estimation of the excess return-volatility

relationship insofar that it assumes the dynamics of the expected return and volatility to

be driven by exogeneous factors (Kandel and Stambaugh [27], Scruggs [44], Whitelaw [49],

[50]).

We aim at extending the literature on risk-return estimation in three important directions.

First, we refine the non-parametric approach to volatility estimation, initiated by Officer [40]

and Merton [33], in the light of recent theoretical developments in non-parametric regression.

Although early research on time-varying volatility obtained variance estimates from asset

returns without specifying a parametric model (Officer [40], Merton [33], French et al. [15]),

until recently1 the dominant approach to volatility estimation has been tightly parametric2.

1The non-parametric approach to volatility estimation introduced in Merton [33] and

French et al. [15] which uses non-overlapping samples of higher frequency (daily) data to

estimate standard deviations of lower frequency (monthly) returns, largely ignored for more

then a decade of parametric modeling, has recently been revived in the burgeoning literature

on realized volatility in the context of high-frequency data (see Andersen et al. [1] and the

references therein).
2This means that a particular parametric model for the volatility is specified a priori and

then used to extract volatility estimates from the returns. These models often belong to the

stationary conditionally heteroscedastic class (see Bollerslev et al. [5] for an overview).
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Lacking strong prior information about the functional form of the volatility, we argue that a

non-parametric approach to its inference is more appropriate. The hypothesis of stationary

volatility, which is implicitly assumed in most conditionally heteroscedastic models, is not

plausible for financial asset returns over periods of time longer than a few years (see Stărică

[45] and Herzel et al. [25] for an evaluation of the impact of the stationary assumption on

financial returns modeling). It is worth emphasizing that our methodology yields consistent

estimates of non-stationary, time-changing volatility even when the expected return varies

with time. Since our approach to volatility estimation is free of parametric assumptions

on the mean term it avoids misspecification which is likely to affect a related methodology

proposed by Rodriguez-Poo and Linton [42]3.

Second, we employ non-parametric estimation of the expected return in close relation to

volatility estimation. This technique, which differs from previous studies on expected return

and volatility, is desirable for a number of reasons. Our estimation procedure does not im-

pose an a priori functional form neither on the first moment nor on its relationship with

volatility. This is important when consistent estimates of the expected return require correct

specification of the underlying data generating process. In fact, the conflicting findings of

the literature which focuses on parametric estimation of the risk-return relationship might

3Their paper does not discuss modeling of financial data. Their covariance estimation

procedure is developed in the framework of non-parametric factor analysis and applied to a

macro model of the US economy. The authors suppose the first moment is a linear functional

of stationary exogeneous variables and the covariance structure changes slowly through time.

As the authors point out, in their set-up, correct specification of the conditional mean is

crucial for consistent variance estimation.
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also reflect various misspecification4. For example, Campbell and Hentschel [8] and French

et al. [15] find the expected excess return positively related to its variance, whereas Camp-

bell [7], Glosten et al. [19], Nelson [39] report a negative relationship between the expected

excess return and conditional volatility. Misspecification is also likely to affect the alter-

native approach to parametric risk-return inference that models the first two moments as

linear specifications of predetermined financial variables (Scruggs [44], Whitelaw [49, 50])5.

Although our modeling approach essentially assumes exogenously driven dynamics for the

first two moments, we need not worry about specifying an appropriate group of endogenous

explanatory variables (an issue faced when modeling the expected return and the volatility

as covariates). It is well known that selecting the endogenous explanatory variables from the

4Most of the papers in this literature assume a static proportional relationship between the

first two moments implied by capital asset pricing theory (Merton [33], Harvey [24], Glosten

et al. [19], Campbell [7], Campbell and Hentschel [8], Chan et al. [10]). The volatility is

also estimated parametrically by using, most often, an ARCH-type specification.
5This approach replaces the tight parametric assumptions on the direct relationship risk-

return with other parametric assumptions (most likely less rigid) on the type of relationship

(linear, time-invariant) between the moments and a group of explanatory variables. Whitelaw

[50] reports instability of the coefficient estimates in a rolling regression estimating the linear

relationship between the moments and the explanatory variables as evidence of possible

misspecification. Besides, there is no a priori reason to believe that the relation between

the first two moments and the pre-determined financial variables should be linear. In fact,

Brandt [6] for example, detects significant non-linearities within the context of a portfolio

choice problem.
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large universe of potential regressors based on their demonstrated predicting power raises

the concern about potential data snooping biases6.

Third, our approach shows the feasibility of unconditional modeling of financial returns7.

The unconditional approach described in this paper is intuitively appealing and has techni-

cal advantages8. Model (1) is an extension of the simple and elegant log-normal model of

Samuelson [43] that describes the returns Rt as iid normal. Our approach preserves the in-

dependence assumption of the log-normal model but abandons the hypothesis of identically

6See Foster et al. [14] and Lo and MacKinley [30] for a discussion of data snooping and

its implications.
7The current econometric literature on financial returns overwhelmingly uses the station-

ary conditional modeling paradigm of which the ARCH-type processes are an outstanding

example.
8In a conceptual sense, the two modeling paradigms are two alternative approaches to the

modeling of change. In the conditional approach, one usually assumes that the unconditional

distribution does not change (i.e., the returns constitute a strictly stationary sequence) and

the arrival of information is reflected in the time evolution of the conditional distribution

given the information about the past. In the unconditional approach, the time evolution

of the return distribution reflects the arrival and incorporation of information, while the

assumption of stationarity is completely dropped. Based on our statistical experience on

modeling return data and given the length of the time series under consideration, non-

stationarity is an intuitively appealing modeling feature. The two frameworks can also be

thought of as alternative approaches to modeling non-linearities present in the dynamics of

returns.
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distributed normal returns. On the technical side, the study of the probabilistic and statis-

tical properties of conditional models is notoriously difficult. For example, the probabilistic

structure (existence of a stationary solution, dependence structure, tails, extremes, etc.) and

statistical properties of parameter estimators of the popular GARCH process (Bollerslev [4],

Taylor [47]) are by no means easy to derive and not in all cases well understood (see Berkes

et al. [2], Mikosch [34], and the references therein). By contrast, the regression-type model

(1) has been studied for several decades, and therefore a solid body of theoretical results and

methodological recommendations on the estimation of the functions µ and σ is available in

the statistical literature. Moreover, these results yield rigorous measures of the estimation

error providing the frame for testing hypotheses on expected return and volatility.

Of course, besides its benefits any method has its own costs. The non-parametric estima-

tion approach (to which our methodology belongs) requires few assumptions on the nature

of the dynamics in the data. However, it can be highly data-intensive, generally not efficient

for smaller sample sizes and prone to over-fitting. The first two possible drawbacks are easily

avoided in the present set-up since long time series of returns are often available. To rule

out the third one, careful out-of-sample performance evaluations have been conducted in two

related studies. With a closely related non-parametric methodology Drees and Stărică [12]

produce out-of-sample forecasts of the conditional distribution of tomorrow’s return on the

S&P 500 composite index as well as of returns over longer time horizons. These forecasts

clearly outperform those obtained from conventional parametric GARCH-type models. In

Herzel et al. [26] a multivariate extension of model (1) is introduced. It produces significantly

better out-of-sample distributional forecasts of the trivariate distribution of the returns on



8

the foreign exchange rate Euro/Dollar, the FTSE 100 index, and the 10 year US T-bond

than the industry standard RiskMetrics.

One of the main findings of our analysis is that the point estimate of the market price

of risk, i.e., the ratio of expected excess return to volatility, is subject to changes varying

between -20% and 30% (annually) with a tendency towards positive values (see Figure IV.2).

Its sign indicates the type of market (bear/bull). Moreover, we find that expected return is

of the same (or lower) order of magnitude as volatility. This fact implies wide confidence

bands around the point estimates of expected return or market price of risk9 (see Section

IV). As a consequence, the assumption of constant expected return or constant market

price of risk cannot be rejected for periods as long as fifteen years (1985-2000 is the longest

example). On the other hand, our analysis individuates statistically significant variations of

the market price of risk. In particular, we document the existence of periods of significantly

positive/negative price of risk. Shortly, we find that the estimated expected return (market

price of risk) changes level and sign significantly over time. Our analysis uncovers an almost

perfect coincidence between the periods of negative (positive) estimated expected return and

the bear (bull) markets of the S&P 500 index as defined in Klein and Niermira [29] and Pagan

and Sossounov [41]. Moreover, our analysis also reveals a complex dynamic relationship risk-

expected return. While high volatility is typical for many bear markets, it does not seem to

characterize them (see Section III for details).

The paper is organized as follows. In Section I we discuss some results from the statistical

theory of non-parametric heteroscedastic regression which motivates our methodology. Then

9Our approach is no remedy for the low ratio signal-to-noise in the estimation procedure

for the expected return.
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we consider its implications for the simultaneous estimation of volatility and expected return,

and we also discuss models for the distribution of the noise sequence (εt). Sections II, III

and IV contain detailed statistical analyzes and their interpretation of the returns on the

S&P 500 composite stock index between January 3, 1950 and June 15, 2003. In Section V

the goodness of fit of the model (1) is checked through a careful analysis of the marginal

distribution and dependence structure of the estimated noise sequence. We conclude with

Section VI where we summarize our findings.

I. The statistical estimation procedure

In this section relevant results from the statistical theory of kernel curve estimation are

discussed. Our main reference in this context is Müller and Stadtmüller [37] on estimation

in the heteroscedastic regression model

Rk,n = µ(tk,n) + σ(tk,n) εk,n, k = 1, 2, . . . , n.(2)

We omit indices n whenever feasible and assume that the design is fixed at tk = k/n,

tk ∈ [0, 1]. The returns Rk are observations of the unknown regression function, the possibly

time-varying expected return, µ(t) : [0, 1] → R contaminated with heteroscedastic errors

σ(tk)εk. The sd of the errors is the volatility of the market, that is also possibly time-varying.

The sequence (εk) is iid with mean zero and unit variance, but not necessarily Gaussian. The

functions µ : [0, 1] → R, the expected return, and σ : [0, 1] → R+, the volatility, are assumed

smooth. The smoothness hypothesis incorporates the intuitive assumption that the time

evolution of the expected return and volatility of the data is slow due to the aggregational

nature of the index. This model is a reformulation of (1) in the standard set-up of statistical

curve estimation: the observational period (in the case of the S&P 500, fifty years of data)
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is simply rescaled to the unit interval. Notice that modeling returns over different periods

(daily, weekly, monthly, etc.) yields expected return and volatility functions depending on

the sampling frequency. The empirical investigation of Sections III and IV indicates that,

while the level of the two functions varies according to the frequency of the observations, the

overall shape does not change significantly; see Figure IV.5.

The smoothing technique employed in this paper is kernel regression. For an introduction

on smoothing estimators and, in particular, on kernel estimators, see Section 12.3 of Camp-

bell et al. [9] or Wand and Jones [48]. The following kernel estimator will be used in the

various steps on mean and variance estimation in the heteroscedastic regression model (2):

f̂(t; h) =

n∑
k=1

Wk(t)Uk ,(3)

where the random variables Uk will be specified in the corresponding sections on estimation

of µ, σ and µ/σ. The deterministic weights Wk(t) are given by

Wk(t) = Wk,n(t) =
1

h

∫ sk

sk−1

K

(
t− u

h

)
du , sk =

tk−1 + tk
2

.(4)

They depend on the bandwidth h > 0 of the kernel function K on [−1, 1]. The latter

satisfies the basic condition
∫
K(u)du = 1 and some further assumptions which are satisfied,

for example, by the celebrated Epanechnikov kernel which is used in our analysis.

I.A. Estimation of the volatility. We summarize some of the necessary theory for the

estimation of σ̂ in the heteroscedastic model (2). The kernel estimator (3) of σ(t) in the

heteroscedastic regression model (2) is defined in two steps. First, a preliminary smoothing

is conducted in order to remove the expected value function µ in (2) in some neighborhood
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of tk ∈ (0, 1). The preliminary estimator of the squared volatility tk is given by

σ̃2(tk) =

(
m2∑

j=−m1

wj Rj+k

)2

,(5)

where the weights wj satisfy the conditions
∑m2

j=−m1
wj = 0 and

∑m2

j=−m1
w2

j = 1 for some

fixed m1, m2 ≥ 0.

The initial estimates σ2(tk) of the squared volatility are viewed as measurements from the

following regression model:

σ̃2(tk) = σ2(tk) + ε̃k, 1 ≤ k ≤ n,(6)

where the errors ε̃k form an m1 + m2-dependent sequence and Eε̃k = 0.

In the second step, the estimator of the squared volatility is obtained by choosing Uk =

σ̃2(tk) in (3)

σ̂2(t) = σ̂2(t; hσ2) =

n∑
k=1

Wk(t) σ̃2(tk) ,(7)

where the weights Wk(t) are defined in (4).

The smoothness assumptions together with the statistical properties of the estimator σ̂2

are specified in the Appendix.

I.B. Estimation of the expected return. The mean estimation in (2) can be approached

in two different ways. The first is direct estimation in the heteroscedastic set-up (2) which

yields µ̂He(t; hµ), the estimator given by (3) with f := µ. The smoothness assumptions on µ

and the asymptotics of the estimator µ̂He(t; hµ) are given in Appendix.

The second is a two-step procedure where we first standardize the returns with the es-

timated volatility function σ̂ in (7) and then estimates the ratio µ/σ in the approximative
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homoscedastic regression set-up

Rk

σ̂(tk)
=
µ(tk)

σ̂(tk)
+
σ(tk)

σ̂(tk)
εk .(8)

The estimator µ̂Ho of the expected returns is obtained by multiplying the estimated ratio

µ/σ by σ̂. Note that in this step we do not distinguish between σ(tk) and its estimate σ̂(tk)10.

In particular, we identify (8) with the truly homoscedastic set-up

Rk

σ̂(tk)
=

µ(tk)

σ̂(tk)
+ εk .(9)

The ratio µ/σ is estimated in the homoscedastic regression set-up (9) using the kernel estima-

tor introduced in (3). Note that, the results for heteroscedastic regression set-up presented

in the Appendix apply also to the homoscedastic case taking σ2(t) ≡ 1.

I.C. Modeling the distribution of the noise. The residuals from the model (2) are given

by

ε̂t =
Rt − µ̂(t)

σ̂(t)
,(10)

with µ̂(t) and σ̂(t) denoting any of the estimators for the expected return and the volatility.

In order to avoid further model assumptions, one might be tempted to use the empirical

10The main reason for this identification is that developing a statistical estimation theory

in the regression model (8), with dependent noise (σ(tk)/σ̂(tk)εt) would be quite a daunting

task. Besides, a comparison between the heteroscedastic estimate µ̂He and the results of the

homoscedastic inference based on (8) shows a rather close match; see Figure IV.5, Section

IV. An identification of the volatility with its estimate does not substantially affect the

homoscedastic mean inference.
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distribution function of the residuals as an estimate of the distribution function of the inno-

vations. However, statistical evidence shows that the distribution of the innovations can be

rather heavy-tailed. Thus, using the empirical distribution would underestimate the risk of

extreme innovations and, hence, the probability of extreme returns.

A flexible and parsimonious family of distributions for the noise in model (2) was intro-

duced in Herzel et al. [26]. It allows for asymmetry between the positive and negative noise

and for heavy tails of Pareto type. Start from the Pearson type VII distribution with shape

parameter m and scale parameter c whose density is defined on the positive real line:

(11) f(x;m, c) =
2Γ(m)

cΓ(m− 1/2)π1/2

(
1 +

(x
c

)2)−m

.

Note that f is the t-density with ν = 2m − 1 degrees of freedom multiplied by the scale

parameter cν−1/2.

Judging from our experience, the density f fits the positive noise and the absolute values

of the negative noise quite nicely. Assuming that the distribution of the noise has median 0

and denoting the densities of the negative and positive standardized innovations by f−(x) =

f(x;m−, c−) and f+(x) = f(x;m+, c+), respectively, we propose the following density for the

noise εt:

fVII(x;m−, c−, m+, c+) =
1

2

(
f−(x)1(−∞,0)(x) + f+(x)1[0,∞)(x)

)
.(12)

We refer to the corresponding distribution as the asymmetric Pearson type VII distribution

and denote its distribution function by FVII. We mention that Markowitz and Usmen [31, 32]

in their attempt to find realistic distributions fitting stock returns11 suggested the Pearson

11A part of their analyzes is also based on evidence from the S&P 500 index.
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type IV distribution as most appropriate. The Pearson type IV and VII densities are close

variations on the same theme.

II. Statistical analysis of the S&P 500 index: the set-up

We perform a detailed analysis of the returns Rt = (Pt − Pt−1)/Pt−1 on the S&P 500

composite stock index between January 1950 and June 2003; Pt denotes the index at day

t. The goal is to estimate the functions µ and σ assuming the heteroscedastic regression

model (2). Moreover, we want to evaluate the goodness of fit of this model, judging from

the distribution and dependence structure of the residuals.
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Figure II.1. Sample ACFs for the three periods: 1950-1965 (left), 1965-1979 (center) and

1979-2003 (right). The linear dependence of the data indicated by a significant non-zero value

at lag 1 disappears in the last period.

II.A. Choice of sampling frequency. A glance at the sample autocorrelation function

(ACF) of the daily returns on the S&P 500 index for different time periods unveils an

evolving linear dependence. Figure II.1 displays the sample ACFs in the periods 1950-1965,

1966-1978 and 1979-2003. The first two periods are characterized by a certain degree of linear

dependence as indicated by the non-zero values of the sample autocorrelations at the first few
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lags. This dependence disappears in the period 1979-200312. Since we want to keep simple

the modeling of the whole period 1950-2003 we have chosen to conduct our investigation on

two-day returns. Figure II.2 shows that the sample of two-day returns exhibits negligible

linear dependence.13

0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

1

Figure II.2. Sample ACF of the two-day returns. A comparison with Figure II.1 shows that the

1-lag dependence present in the daily returns disappears.

II.B. Asymptotically optimal bandwidths. The issue of selecting the bandwidth h in

(3), (4) is central in the non-parametric kernel smoothing methodology. Too small (large) a

bandwidth h produces undersmoothed (over-smoothed) estimates of the function.

Equations (19) and (20) yield the asymptotic mean square error (MSE) and the asymptotic

integrated square error (MISE) of µ̂He(t), the estimator (2) of µ as defined in Section I.B. The

asymptotic bias and variance of the kernel estimator of µ/σ in the homoscedastic regression

12A possible explanation is that the CBOT started trading future contracts on the S&P 500

index in 1979. The introduction of this financial instrument might have improved the effi-

ciency of the market.
13For the period 1979-2003, due to the absence of linear dependence, one could run the

analysis based on daily returns.
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(9) are similar to those in (19) and (20) (see Gasser et al. [16]). In a unified notation, the

two errors are given by

MSE f̂ (t) = h4
f B

2(f
′′
(t))2 +

σ2(t)

nhf
V,(13)

MISE f̂ = h4
f B

2

∫
(f

′′
(u))2du +

∫
σ2(u)du

nhf
V,

where the functions to be estimated are f = µ in the case of the heteroscedastic regression

(2) and f = µ/σ for the homoscedastic regression (9). For the homoscedastic regression (9),

σ ≡ 1. Minimization of MSE (MISE) with respect to the bandwidth hf yields the locally

(globally) optimal bandwidth

h
(l)
f (t) =

(
σ2(t)V

4nB2(f ′′(t))2

)1/5

, h
(g)
f =

( ∫
σ2(u)duV

4nB2
∫

(f ′′(u))2du

)1/5

.(14)

Due to the importance of the bandwidth choice, we applied a set of different methods

of bandwidth selection both for mean and variance estimation. We obtained bandwidths

by cross-validation and a plug-in method, and we experimented with locally and globally

optimal bandwidths; see the discussion in the next sections.

II.C. Edge effects. The importance of adequately treating the boundary t ∈ [0, h) and

t ∈ (1 − h, 1] of a regression design defined on [0,1] has been repeatedly stressed in the

literature of statistical curve estimation14. A wide body of work exists on how to overcome

the boundary bias problem; see Wand and Jones [48]. In our analysis we chose to use the

simple, practical method proposed in Hall and Wehrly [20]. The method is attractive in

14There exists a discrepancy between the order of magnitude of the bias in the interior

and near the boundary. This phenomenon is usually referred to as a boundary bias problem.

This leads to an optimal bandwidth of order n1/5 in the interior of the interval [0,1], while

near the boundary the optimal bandwidth is of the order n1/3.
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that it provides a simple way of extending traditional techniques of bandwidth selection

to an entire design interval. In a nutshell, the method can be described as follows. Using

a one-sided kernel, L, estimate the values of the regression mean at the extreme left and

right ends of the design interval. Then reflect the entire data set in each of these points

to obtain a new data set three times the extent of the old one. Finally, estimate the mean

by a regular kernel estimator over the original design interval but using the new data set,

which combines the original data with the new set of pseudo-data. The method allows the

bandwidth for both the preliminary edge kernel estimators and the final kernel estimator to

be estimated automatically by the cross-validation algorithm. It is shown in Hall and Wehrly

[20] that the difference between the MISE of the estimator based on pseudo-data and that

of a hypothetical (but unobtainable) estimator based on data from a larger interval is of the
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order O(h5). This is negligible relative to the whole MISE, which, if h is chosen optimally15,

is of the size O(h4).

15The steps in the choice of the bandwidth are as follows. For a given h the choice of

bandwidth for the one-sided kernel estimation in the preliminary inference of the regression

mean at the extreme left and right ends of the design interval is ch, where c is a constant

that depends on the type of the kernel used (for the Epanechnikov kernel, c = 1.86). Using

the kernel L and the bandwidth ch, estimate the regression mean at the two ends of the

interval, f̂(0) , f̂(1), respectively, and produce the pseudo-data by reflecting the data points

interior to the design interval in each of the two points (0, f̂(0)) and (1, f̂(1)). Calculate

a version C̃V (h) of the classical leave-one-out cross-validation CV (h) (16), over the new

pseudo-data set, producing f̂i(t) in (16) by leaving out not only the observation Ui but also

those that are obtained from it through reflection. Choose h to minimize C̃V . Under a set

of usual conditions on the smoothness of the function to be estimated and the tails of the

error distribution, the authors show that, with probability 1, their version of leave-one-out

cross-validation

C̃V (h) =

n∑
i=1

(f̂(ti; h) − f(ti))
2 +

n∑
i=1

ε2
iw(ti) + o(n1/5)(15)

=

∫ 1

0

E(f̂(u; h) − f(u))2du +

n∑
i=1

ε2
i + o(n1/5)

uniformly in h ∈ H := {An1/5 ≤ h ≤ Bn1/5}, for any 0 < A < B < ∞. Hence, minimizing

C̃V (h) is asymptotically equivalent to minimizing
∫ 1

0
E(f̂(u) − f(u))2du and it produces a

bandwidth ĥ that satisfies ĥ/h
(g)
f → 1 with probability 1, where h

(g)
f is the MISE asymptot-

ically optimal bandwidth defined in (14).
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III. Statistical analysis of the S&P 500 index: volatility estimation

We start with the estimation of the squared volatility function σ2(t) as described in Sec-

tion I.A. For the preliminary estimate σ̃2 in (5) we have chosen m1 = 1 , m2 = 0 with

corresponding optimal (in the sense of Müller and Stadtmüller [37]) weights w−1 = 1/
√

2

and w0 = −1/
√

2. Other choices for m1, m2 are possible. However, the larger the window

[j −m1, j +m2] the more dependency one introduces in the data. For this reason, we prefer

a small window which leads to moving averages of two two-day returns in the definition of

σ̃2.

III.A. Bandwidth selection. Cross-validation16 was used for choosing hσ2 in estimation

of σ2(t) in (6). However, caution is required since the errors ε̃k in (6) form a 1-dependent

sequence17. One could follow the general methodology for incorporating covariance estimates

into the choice of the bandwidth proposed by Hart [22]. An easier alternative is available due

to the special dependency structure at hand. Since the sequence (ε̃k) is assumed 1-dependent,

each of the sequences (σ̃2(t2k)) and (σ̃2(t2k+1)), k = 1, . . . , [n/2] consists of independent

random variables and therefore standard cross-validation is applicable. To obtain the optimal

16Cross-validation is a method which is based on the minimization of the residual mean

squared error and it is frequently used to infer the optimal smoothing parameter. With the

notation used in (3), define

f̂i(t) =
∑
k �=i

Wk(t)Uk, CV (h) =
n∑

i=1

(f̂i(ti) − Ui)
2w(ti),(16)

where w is a weight function. The cross-validation approach chooses the bandwidth that

minimizes the function h → CV (h).
17It is well-known (see Diggle and Hutchinson [11], Hart and Wehry [23], Hart [22]) that

the traditional form of cross-validation procedure fails when data are correlated.
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global bandwidth for the original sample of size n, a correction with a factor of 21/5, motivated

by the asymptotic theory, is needed.

0 0.002 0.004 0.006 0.008 0.01 0.012
6.2

6.4

6.6

6.8

7

7.2

7.4

7.6
x 10

−5

0 0.002 0.004 0.006 0.008 0.01 0.012
6.2

6.4

6.6

6.8

7

7.2

7.4

7.6
x 10

−5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
1.02

1.025

1.03

1.035

1.04

1.045

1.05

1.055

1.06

1.065

Figure III.1. Left, center: The cross-validation graphs for the choice of the bandwidth h
(c)
σ2

for σ̂2 in (7). The bandwidths hσ2 minimizing the cross validation functions fall in the interval

[0.003, 0.005]. Right: The cross-validation graph for the choice of the bandwidth hµ/σ in the

homoscedastic regression model (9). The minimizing bandwidth h
(c)
µ/σ = 0.021 is chosen.

On the left and in the center of Figure III.1 the cross validation graphs for the two

subsamples are displayed. Other methods of bandwidth selection (plug-in, the bandwidth

choice suggested in Drees and Stărică [12]18) produced practically identical results.

18There the choice of the bandwidth is based on the sample ACF of the absolute standard-

ized noise. The sample ACF of the absolute values of the returns centered by the sample

mean displays almost constant autocorrelations even at large lags. This phenomenon can

be explained by changes in the volatility; see Mikosch and Stărică [35, 36] for a theoretical

explanation. Given the heteroscedastic regression model, the centered (by the sample mean)

and scaled (by the volatility) residuals which correspond to the optimal choice of bandwidth

should be “almost” independent. Hence the bandwidth is chosen such that the sample ACF

of the absolute values of the returns is negligible at all lags.
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III.B. Discussion of the estimation results. Figure III.2 displays the estimate σ̂2 in (7)

where the bandwidth h
(c)

σ2 = 0.0045 was used. The graph indicates that during the ’60s and

early ’70s the bear markets of the S&P 500 composite index (1961, 1966, 1968, 1971 and

1973) were periods of increasing volatility compared to the preceding and succeeding bull

markets. For the ’50s and the period after the 1973-1974 oil crisis the connection between

the type of market and volatility level is not so clear-cut. The 1983 bear market had roughly

the same level of volatility as the following bull market. The extremely low volatility in the

beginning of the long bull market that covered the second half of the ’90s was followed by

high volatility at the end of the decade. The high level attained towards the end of the bull

market continued, seemingly without further augmentation, also during the bear market of

2000. We conclude that, while high volatility is typical for many bear markets, it does not

seem to characterize them. We will see soon that the relation of the type of market (bear or

bull) to expected return is more clear-cut than that to volatility .

IV. Statistical analysis of the S&P 500 index: estimation of expected

return

We continue with the estimation of the expected return function µ(t) as described in

Section I.B.

IV.A. Bandwidth selection. Since the choice of bandwidth is crucial in our approach

we applied different methods of bandwidth selection both in the homoscedastic and the

heteroscedastic frameworks. Cross validation has already been mentioned. Another method

builds on inferring the asymptotically optimal (local or global) bandwidth (14) from the

data by replacing the residual variance and the asymptotic expression of the bias (19) by

sample estimates. Such selection rules are called ‘plug-in’ estimators. For σ2(t), in the case
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Figure III.2. The estimated volatility function σ̂(t;h(c)
σ2 ) (solid line) with 95% asymptotic confi-

dence bands of the two-day returns of the S&P 500 with bandwidth h
(c)
σ2 = 0.0045. Bear markets

are shown in a shade of grey. High volatility is typical for many bear markets, but does not seem

to characterize them.

of the heteroscedastic regression, the estimator (7) is used. The functional that quantifies

bias is approximated by the integrated squared second derivative of the regression function.

It is determined by an iterative procedure introduced in Gasser et al. [17] based on a kernel

estimator f̂ ′′(t; hf ′′ ) for the second derivative (the integrals are easily obtained from the point

estimates). Such an estimator has the form (3) with the kernel K tailored to estimate second

derivatives; see Gasser et al. [18] (we used the optimal (2,4)-kernel)19.

19The iteration procedure goes as follows. For a given k, based on asymptotic theory, the

bandwidth ĥopt
f, k yields a value for ĥopt

f ′′ , k = ĥopt
f, k n

1/10. This is the bandwidth to be used in the

estimation of f
′′
(t) with sample size n. The estimated function f̂ ′′(t; ĥopt

f ′′ , k) is then used in

(14) to produce the next bandwidth ĥopt
f, k+1 for estimation of f(t). The iterative procedure

quickly converges to the asymptotically optimal bandwidth both in theory and practice. A
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Figure IV.1. The local bandwidth h
(l)
µ/σ(t) (left) and h

(l)
µ (t) (right) obtained by using the iterative

method for automatic smoothing of Gasser et al. [17]. The dotted lines represent the median local

bandwidth of 0.020 and 0.013 respectively.

IV.B. Homoscedastic regression. . Once we estimated the volatility, the homoscedastic

regression model yields the estimate µ̂Ho of the expected return as outlined in Section I.B.

For the ratio µ/σ in (9), the cross-validation function, displayed in the right-hand graph of

Figure III.1 attains a minimum of h
(c)
µ/σ = 0.021 with a plateau covering the interval [0.012,

0.025] 20. The iterative method of Gasser et al. [17] yields an estimate of the globally optimal

bandwidth of h
(g)
µ/σ = 0.017 in (14) and a locally optimal bandwidth, h

(l)
µ/σ in (14) with median

0.020; see Figure IV.1 (left graph).

IV.C. Heteroscedastic regression. In the heteroscedastic framework the expected return

is estimated by µ̂He(t; hµ) as explained in Section I.B. The plug-in approach to global and lo-

cal bandwidth selection was implemented (no results about the cross validation are available

theoretical large sample analysis shows that the plug-in estimator is attractive in terms of

variability, with a relative rate Op(n
−1/2) for smooth functions. In contrast, cross-validation

leads to a relative rate Op(n−1/10).

20The use of penalizing methods leads to a similar choice.
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in this context). The procedure yields h
(g)
µ = 0.012 and a function h

(l)
µ (t) that is displayed

in Figure IV.1 (right graph), median value, 0.013.

As a conclusion, we see that all methods employed for bandwidth selection in the ho-

moscedastic/heteroscedastic set-ups produce comparable results. In particular, the global

optimal bandwidth for µ/σ seems to be in the range [0.017, 0.021], while that for µ seems to

belong to the interval [0.012, 0.013].

IV.D. Discussion of the estimation results. In Figure IV.2 we exhibit the estimated

market price of risk (µ̂Ho(t; h
(l)
µ/σ) − rf

t )/σ̂(t), inferred in the set-up of the homoscedastic

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

−4

−2

0

2

4

6

Figure IV.2. Kernel curve estimation of the market price of risk (solid line) of the two-

day returns of the S&P 500 index together with 95% asymptotic confidence bands. The

estimates are based on homoscedastic non-parametric regression; see Section I.B for details

on estimation. The periods of a negative market price of risk mostly coincide with those of

a bear market shown in a shade of grey. See also Section IV.



25

regression (9) (rf
t denotes the risk-free interest rate which, in the case of our analysis is

taken to be the return on the three month US Treasury bill).

In Figure IV.3 the homoscedastic expected return µ̂Ho(t; h
(l)
µ/σ) is displayed. The bandwidth

h
(l)
µ/σ is the locally optimal bandwidth displayed in Figure IV.1 (left graph).

The asymptotic confidence bands in Figures IV.2 and IV.3 were calculated by using the

asymptotic formula of the variance of the kernel estimator similar to (20); see Gasser et al.

[16]. The 95% asymptotic confidence bands for the market price of risk are (µ̂Ho−rf
t )/σ̂(t)±

1.96
√
V/(nh

(l)
µ/σ) and were obtained by assuming σ2(t) ≡ 1 in (20). The 95% asymptotic

confidence bands for the expected return are given by µ̂Ho(t) ± 1.96 σ̂(t)
√
V/(nhµ/σ). The

low signal-to-noise ratio in the estimation procedure of the expected return translates into

rather wide confidence bands both for µHo(t) and (µHo(t) − rf
t )/σ(t).

Figure IV.4 displays the kernel estimate µ̂He(t; h
(l)
µ ) of the expected return µ(t) in the

heteroscedastic regression model (2) obtained by using the estimated locally optimal band-

width h
(l)
µ (t); see Figure IV.1 (right graph)21. The confidence bands for µ̂He(t) in Fig-

ure IV.4 were calculated using the asymptotic formula for the variance of the kernel estimator

given in (20). The 95% asymptotic confidence bands for the expected return are given by

µ̂He(t) ± 1.96σ̂(t)

√
V/(nh

(l)
µ (t)).

For comparison, Figure IV.5 presents both estimators µ̂He(t; h
(l)
µ ) and µ̂Ho(t; h

(l)
µ/σ) of µ22.

Figure IV.5 shows that the two different estimation procedures for the expected returns µ(t)

lead to very similar results with the graph for µ̂He having slightly deeper troughs and higher

21The kernel estimate of µ that uses the globally optimal bandwidth h
(g)
µ = 0.014 is

practically identical.

22The specific locally optimal bandwidth was used to produce the estimates.
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Figure IV.3. Kernel estimate µ̂Ho(t;h
(l)
µ/σ) (solid line) with 95% asymptotic confidence bands of

the expected excess two-day returns of the S&P 500 index. The bandwidth h
(l)
µ/σ, the locally optimal

one from Figure IV.1 (left graph). Bear market periods are shown in a shade of grey; they coincide

with the periods of negative expected excess return.
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Figure IV.4. The kernel estimate µ̂He(t;h
(l)
µ ) (solid line) with 95% asymptotic confidence bands

of the expected excess two-day returns of the S&P 500 index. The bandwidth h
(l)
µ (t) is the estimated

locally optimal bandwidth; see Figure IV.1 (right graph). Bear market periods are shown in a shade

of grey; they coincide with the periods of negative expected returns.
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peaks than that for µ̂Ho. The impact of the 1987 market crash on the volatility estimation

is noticeable in the homoscedastic estimate µ̂Ho.
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Figure IV.5. The estimators µ̂He(t;h
(l)
µ ) (solid line) and µ̂Ho(t;h

(l)
µ/σ

) (dashed line) of the expected

returns in the S&P 500 two-day return series are rather close to each other. The estimator µ̂He has

slightly deeper troughs and higher peaks than µ̂Ho.

Although displaying slight differences, Figures IV.2, IV.3 and IV.4 give an overall similar

picture. First, they show that the point estimates of the market price of risk or the expected

return are subject to strong changes varying between -20% and 30% (annually), -40% and

40% respectively, with a tendency towards positive values. Second, they suggest that bear

market periods for the S&P 500 composite index as defined by Klein and Niermira [29] and

Pagan and Sossounov [41] are periods of negative point estimates of expected returns and

often coincide with the periods of negative point estimate for the market price of risk. Third,

we note that expected return is of the same (or lower) order of magnitude as volatility. This

implies wide confidence bands around the point estimates of expected return or market price
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Figure IV.6. The estimator µ̂He(t;h
(l)
µ ) as a function of the return period. From low to high:

two-day, weekly, two-week, monthly returns. While the level of the estimates varies according to

the frequency of the observations the overall shape remains the same.

of risk. As a consequence, the assumption of constant expected return or constant market

price of risk cannot be rejected for periods as long as ten to fifteen years, depending on

the estimate one uses. On the other hand, the graphs individuate statistically significant

variations of the market price of risk and of the expected return. In particular, all methods

document the existence of periods of significantly positive (at 95% level) price of risk. The

estimated market price of risk in Figure IV.2 as well as the heteroscedastic estimate of the

expected return in Figure IV.4 display also short periods of significantly negative (at 95%

level) estimates. Shortly, we find that both the estimated expected return and the estimated

market price of risk seem to change level and sign significantly over time.

Finally, Figure IV.6 displays the kernel estimates of expected returns for various sampling

frequencies. The bandwith used was the locally optimal one given by the iterative method
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of Gasser et al. [17]. While the level of the expected return varies according to the frequency

of the observations the overall shape remains the same.

V. Statistical analysis of the S&P 500 index: goodness of fit

In this section we are concerned with the goodness of fit of our model. Our first step

is to show that the marginal distribution of the residuals ε̂t defined in (10) is nicely fitted

by an asymmetric Pearson type VII distribution FVII; see (12). Assuming the ε̂t are iid,

maximum likelihood point estimation of its four parameters (asymptotic standard deviation

in parentheses) yields:

m̂− = 7.91 (1.42), ĉ− = 3.86 (0.42), m̂+ = 16.79 (2.68), ĉ+ = 5.39 (0.80) .(17)

The estimated values m̂− and m̂+ imply that the left tail of the underlying noise distribution

has tail index 14.82 while the right one has tail index 32.59. Hence the distribution is

asymmetric with moderately heavy tails. The asymmetry confirms the empirical observation

that extreme negative stock returns are usually larger in absolute value than the largest

positive return.

Next, we check the goodness of fit of the asymmetric Pearson type VII distribution FVII

with parameters (17) to the residuals. Assuming that ε̂t has exactly this distribution, FVII(ε̂t)

has uniform distribution on (0, 1). Hence, writing Φ for the standard normal distribution

function, Φ−1(FVII(ε̂t)) is standard normally distributed. The left-hand graph of Figure V.1

displays the normal probability plot of the transformed data Φ−1(FVII(ε̂t)). The resulting

plot is very close to a straight line providing evidence that the parametric family of distri-

butions with density (12) gives a nice fit to the noise (εt) in the heteroscedastic regression

model (2).
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Figure V.1. Left: The normal probability plot of the transformed noise Φ−1(FVII(ε̂t)) is close to

a straight line. This is a clear indication of the fact that the noise sequence in the heteroscedastic

regression model is nicely fitted by an asymmetric Pearson type VII distribution. Right: Scatter

plot of the pairs (FVII(ε̂t), FVII(ε̂t+1)) of transformed residuals. No clusters or patterns are visible

in this plot. This is an indication of independence of the residuals.

To check the appropriateness of the assumption of independence, i.e. to search for pos-

sible patterns of non-linear dependence, it is most useful to have a look at copulas of the

pair (ε̂t, ε̂t+1) . More concretely, the joint distribution of a pair of r.v. (U, V ) is uniquely

determined by the marginal distribution of the coordinates FU and FV and by their copula,

i.e. the distribution on the unit square of (FU(U), FV (V )). Hence, it is the copula that pro-

vides the complete description of the dependency structure between the marginal random

variables (see Nelsen [38]). Moreover, U and V are independent if and only if their copula

is the uniform copula. Graphically, this corresponds to an uniform filling of the unit square

by the pairs (FU(U), FV (V )). Hence, a simple but very informative way of assessing the

independence of the coordinates of a bivariate random vector is looking at realizations of
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its copula. The appearance of an uniformly covered unit square supports the assumption of

independence while the presence of patterns indicates dependency.
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Figure V.2. The sample ACFs of the transformed residuals Φ−1(FVII(ε̂t)) (left) and their absolute

values (right). The sample ACFs vanish at all lags. This is a strong indication of independence of

the noise (εt).

To obtain the copula the pair (ε̂t, ε̂t+1), we transformed first the residuals into uniforms23

and produced the scatter plot (FVII(ε̂t), F
VII(ε̂t+1)) in the right-hand graph of Figure V.1.

As mentioned, an uniform filling of the unit square is interpreted as evidence of independent

components. The graph reveals only a very slight disinclination for particularly large values

of residuals to be followed by particularly small values. This seems to indicate that the

assumption of independent innovations provides a reasonable approximation for the dynamics

of the data.

Figure V.2 displays the sample ACF of the residuals transformed into normal random

variables Φ−1(FVII(ε̂t)) and of its absolute values. The ACFs plots in Figure V.2 vanish at

23The estimated asymmetric Pearson type VII distribution FVII with parameters (17) were

used to produce two samples of uniform rv, (FVII(ε̂t), F
VII(ε̂t+1)).
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all lags indicating that there is practically no linear dependence structure left in the residuals.

The marginals being normal, the absence of correlations supports the modeling hypothesis

of independence.

All the measures of goodness of fit that we analyzed show that the assumptions of the

model 1 seem to fit the data and support the results of the non-stationary, non-parametric

analysis presented in Section III and IV.

VI. Conclusions

In this paper we have tried to argue that

• Non-parametric curve estimation is a feasible technique for simultaneous estimation

of expected return and volatility.

• A simple heteroscedastic regression (2) with iid noise is a suitable model for returns.

This claim is supported by the properties of the residuals which mimic the behavior

of an iid sample.

• In this context, the estimation of the time-varying expected return is subject to a

high level of statistical uncertainty. Nevertheless, unconditional expected return and

volatility seem to significantly change over time.

• Periods of negative point estimate of expected returns (negative market price of risk)

in the S&P 500 index can be identified with the periods of bear market as defined in

Klein and Niemira [29] and Pagan and Sossounov [41].

• Periods of high volatility in the S&P 500 do not necessarily coincide with those of

bear markets.

A major task of future research is to investigate the feasibility of improving the accuracy of

estimating expected return, i.e., the possibility of producing smaller confidence bands for µ
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24. Ongoing research focuses on the estimation of µ(t) and σ(t) based only on observations

up to time t 25 as well as on extensions to the multivariate set-up.

Appendix

VI.A. Statistical properties of the volatility estimator σ̂2(t). In the sequel, we assume

that σ2 is twice differentiable with a continuous second derivative, µ is Lipschitz continuous

of order α ≥ 0.25 and E|ε1|5+ε < ∞ for some ε > 0. Then the following statements can be

derived from Theorem 3.1 and Remark at the bottom of p. 622 in Müller and Stadtmüller

[37]:

(1) The estimated squared volatility σ̂2(t) satisfies

∣∣σ̂2(t) − σ2(t)
∣∣ ≤ c (logn/n)2/5 ,

almost surely, for some unspecified positive constant c, uniformly for t ∈ [δ, 1 − δ],

any fixed δ ∈ (0, 1), and the bandwidth is chosen as hσ2 ∼ (logn/n)1/5.

(2) The expected value Eσ̂2(t) satisfies

|Eσ̂2(t) − σ2(t)| ≤ c (h2
σ2 + n−1)

24The results obtained by using local polynomial regression or splines techniques were not

more encouraging than the ones presented which are based on the Müller and Stadtmüller

[37] results.
25Estimates based only on past observations would provide sensible indicators of the cur-

rent state of the market.
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for some unspecified positive constant c, uniformly for t ∈ [δ, 1 − δ], any fixed

δ ∈ (0, 1).

(3) The variance var(σ̂2(t)) satisfies

var(σ̂2(t)) ∼ σ4(t)

nh
V

(
2 + (Eε4

1 − 3)

m2∑
j=−m1

w4
j

)

+
2 V σ4(t)

nh

(
(Eε4

1 − 2)

m1+m2∑
i=1

∑
j,j−i∈[−m1,m2]

w2
jw

2
j−i − (m1 + m2)

∑
j∈[−m1,m2]

w4
j

+2

m1+m2∑
i=1

 ∑
j,j−i∈[−m1,m2]

wj wj−i

2 )
(18)

where V =
∫
K2(x) dx = 0.6 for the Epanechnikov kernel used in our analysis. The

derivation of the variance follows.

VI.B. The variance of the estimator σ̂2(t). Here we derive the asymptotic order of the

variance in (18) under the standard conditions n → ∞, h = hn → 0 and nh → ∞. We have

by the m1 + m2-dependence of the sequence (σ̃2(tk)),

var(σ̂2(t)) =
n∑

k=1

W 2
k (t) var(σ̃2(tk)) +

∑
1≤k �=l≤n

Wk(t)Wl(t) cov(σ̃2(tk), σ̃2(tl))

=
n∑

k=1

W 2
k (t) var(σ̃2(tk)) + 2

n∑
k=1

∑
1≤i≤min(m1+m2,n−k)

Wk(t)Wk+i(t) cov(σ̃2(tk), σ̃2(tk+i))

= I1 + I2 .

By virtue of Lemma 5.3(iii) in Müller and Stadtmüller [37], using the continuity of var(σ̂(t))

and the fact that (nh)
∑n

k=1W
2
k (t) ∼ ∫ K2(x) dx = V ,

I1 ∼ σ4(t)

nh
V

(
2 + (Eε4

1 − 3)

m2∑
j=−m1

w4
j

)
.
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Using the continuity of the function Wk(t), we obtain

I2 ∼ 2

n∑
k=1

W 2
k (t)

∑
1≤i≤min(m1+m2,n−k)

cov(σ̃2(tk), σ̃2(tk+i))

Therefore we have to evaluate the quantities cov(σ̃2(tk), σ̃2(tk+i)). First observe that

Eσ̃2(tk) = E

(
m2∑

j=−m1

wjµ(tk+j) +

m2∑
j=−m1

wjσ(tk+j)εk+j

)2

=

(
m2∑

j=−m1

wjµ(tk+j)

)2

+

m2∑
j=−m1

w2
j σ

2(tk+j)

∼ σ2(tk)

m2∑
j=−m1

w2
j = σ2(tk) .

where we used the facts that
∑m2

j=−m1
wj = 0 and

∑m2

j=m1
w2

j = 1, and the uniform continuity

of µ and σ2 on [0, 1]. Therefore, by similar calculations as for Lemma 5.3(iii) in Müller and

Stadtmüller [37], uniformly on compact intervals [δ, 1 − δ] for δ < 1,

I2 ∼ 2

n∑
k=1

W 2
k (t)

∑
1≤i≤min(m1+m2,n−k)

E(σ̃2(tk)σ̃2(tk+i)) − 2

n∑
k=1

W 2
k (t)σ4(tk) (m1 + m2)

∼ 2
n∑

k=1

W 2
k (t)

∑
1≤i≤min(m1+m2,n−k)

E(σ̃2(tk)σ̃2(tk+i)) − 2
V

nh
σ4(t) (m1 + m2) .
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Furthermore, direct calculation and similar arguments as above yield for26 1 ≤ k ≤ n,

1 ≤ k + i ≤ n,

E(σ̃2(tk), σ̃2(tk+i))

=

(
m2∑

j1=−m1

wj1µ(tk+j1)

)2( m2∑
j2=−m1

wj2µ(tk+i+j2)

)2

+

(
m2∑

j1=−m1

wj1µ(tk+j1)

)2 m2∑
j2=−m1

w2
j2
σ2(tk+i+j2)

+

(
m2∑

j2=−m1

wj2µ(tk+i+j2)

)2 m2∑
j1=−m1

w2
j1
σ2(tk+j1)

+
∑

j,j−i∈[−m1,m2]

w2
jw

2
j−iσ

4(tk+j)Eε
4
1

+
∑

j∈[−m1,m2]

w2
jσ

2(tk+j)
∑

l∈[−m1,m2]

w2
l σ

2(tk+i+l) −
∑

j∈[−m1,m2]

w4
jσ

2(tk+j)σ
2(tk+i+j)

+2
∑

j,j−i∈[−m1,m2]

∑
l,l−i∈[−m1,m2] ,j �=l

wjwlwj−iwl−iσ
2(tk+j)σ

2(tk+l)

+2

(
m2∑

j2=−m1

wj2µ(tk+i+j2)

) ∑
j,j−i∈[−m1,m2]

w2
jwj−iσ

3(tk+j)Eε
3
1

+2

(
m2∑

j1=−m1

wj1µ(tk+j1)

) ∑
j,j+i∈[−m1,m2]

w2
jwj+iσ

3(tk+i+j)Eε
3
1

+4

(
m2∑

j2=−m1

wj2µ(tk+i+j2)

)(
m2∑

j1=−m1

wj1µ(tk+j1)

) ∑
j,j−i∈[−m1,m2]

wjwj−iσ
2(tj+k+i)

∼ σ4(tk)Eε4
1

∑
j,j−i∈[−m1,m2]

w2
jw

2
j−i + σ4(tk) − σ4(tk)

∑
j∈[−m1,m2]

w4
j

+2 σ4(tk)

 ∑
j,j−i∈[−m1,m2]

wj wj−i

2

−
∑

j,j−i∈[−m1,m2]

w2
jw

2
j−i



26If one of the indices of the summands in these sums is outside the natural domain, we

interpret the summand as zero.
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= σ4(tk)

1 + (Eε4
1 − 2)

∑
j,j−i∈[−m1,m2]

w2
jw

2
j−i −

∑
j∈[−m1,m2]

w4
j + 2

 ∑
j,j−i∈[−m1,m2]

wj wj−i

2 .

Therefore we finally have

I2 ∼ 2 V σ4(t)

nh

(
(Eε4

1 − 2)

m1+m2∑
i=1

∑
j,j−i∈[−m1,m2]

w2
jw

2
j−i − (m1 + m2)

∑
j∈[−m1,m2]

w4
j

+2
m1+m2∑

i=1

 ∑
j,j−i∈[−m1,m2]

wj wj−i

2 )
.

This formula together with the one for I1 give the asymptotic expression for the variance

var(σ̂2(t)) given in (18).

VI.C. Statistical properties of the estimator of expected return µ̂He of in the het-

eroscedastic regression model. We assume that µ is twice differentiable with continuous

second derivative. Then Lemma 5.3 of Müller and Stadtmüller [37] gives the following results

for µ̂He(t) = µ̂He(t; hµ), the kernel estimator (3) of µ with specification Uk = Rk:

(1) The expected value Eµ̂He(t; hµ) satisfies, as n → ∞, hµ = hµ,n → 0, nhµ → ∞,

Eµ̂He(t) − µ(t) = µ
′′
(t)h2

µ B + o(h2
µ) + O(n−1),(19)

where B =
∫
K(u)u2du/2, and

|Eµ̂He(t) − µ(t)| ≤ c (h2
µ + n−1),

for some unspecified positive constant c, uniformly for t ∈ [δ, 1 − δ], any fixed

δ ∈ (0, 1).
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(2) The variance of µ̂He(t) satisfies for every t, as n → ∞, hµ = hµ,n → 0, nhµ → ∞,

var(µ̂He(t)) =
σ2(t)

nhµ

V (1 + o(1)) ,(20)

where V =
∫
K2(u)du = 0.6 for the Epanechnikov kernel used in our analysis.

We mention that the bandwidths hµ for the estimation of µ and hσ2 for σ2 are in general

very different.
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