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ESTIMATION OF THE TAIL INDEX FOR LATTICE-VALUED SEQUENCES
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Abstract. If one applies the Hill, Pickands or Dekkers-Einmahl-de Haan estimators of the tail

index of a distribution to data which are rounded off one often observes that these estimators oscil-
late strongly as a function of the number k of order statistics involved. We study this phenomenon
in the case of a Pareto distribution. We provide formulas for the expected value and variance of

the Hill estimator and give bounds on k when the central limit theorem is still applicable. We
illustrate the theory by using simulated and real-life data.
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1. Introduction

Numerous real-life data (Xn) have power-like tails in the sense that for some α > 0 and large x,

P (Xn > x) ≈ x−α .

One finds such data sets in insurance (e.g. claim sizes for fire, storm, motor insurance; see Embrechts
et al. [4]), telecommunications (e.g. file sizes, throughput rates, transmission durations; see Resnick
[14]), finance (e.g. log-returns of speculative prices; see [4] and Mikosch [12]), seismological studies
(e.g. magnitudes of earthquake aftershocks; see Kagan and Vere-Jones [10]). Power law tails are
also observed in the context of Zipf’s law which is empirically observed for the distributional tail of
the sizes of large city populations in a given country, the distribution of words in a given national
literature, and in other demographic, linguistic, financial and economic applications; see e.g. Gabaix
and Ioannides [6]. Power law tails are also the basis for defining the notion of integral dimension
of the attractor of a dynamical system; see Falconer [5] for its definition and Takens [15] for its
estimation; the latter estimator is closely related to the Hill estimator used in extreme value theory.

A convenient way of describing power law behavior is the notion of regular variation. Recall that
the distribution function F of a positive random variable X has a regularly varying tail if it can be
written in the form

F (x) = P (X > x) =
L(x)

xα
, x > 0 ,(1.1)

where α ≥ 0 is the tail index and L is a slowly varying function, i.e., for every c > 0,
limx→∞ L(cx)/L(x) = 1. The theory of regularly varying functions is well studied; see e.g. the
encyclopedic treatment in Bingham et al. [1]. The function L is an infinite-dimensional nuisance
parameter which makes the statistical estimation of the parameter α a very difficult task. The
appearance of a slowly varying function L in the tail F (x) is due to limit theory for sums and
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partial maxima of iid random variables. Then (1.1) is a necessary domain of attraction property;
see e.g. Embrechts et al. [4], Chapters 3 and 4.

For real-life data, the tail index α has to be estimated. There exists a well developed statistical
theory for this purpose; see de Haan and Ferreira [8] for a complete theory in the case of iid data,
see also the discussion in Chapter 6 of [4]. The estimation of α for stationary sequences is even
more challenging due to clusters of exceedances of high thresholds; see e.g. Drees and Rootzén [3].
There exists a multitude of estimators of α; see the literature mentioned above. Our main focus is
on the most popular Hill estimator; see Hill [9]. Writing

X(1) ≤ · · · ≤ X(n)

for the order statistics of the observations X1, . . . , Xn, the Hill estimator of α−1 is given by

α̂−1
k =

1

k − 1

k−1∑
i=1

log
X(n−i+1)

X(n−k+1)
.

In order to achieve desirable statistical properties such as consistency and asymptotic normality
one needs the conditions k = kn → ∞ and kn/n → 0, i.e. one needs to consider a whole family of
estimators (k, α̂−1

k ), k = 2, 3, . . . , n − 1, defining the so-called Hill plot. The rationale of the Hill
estimator is easily explained when assuming a Pareto tail:

F (x) = uαx−α , x > u ,(1.2)

for some positive value u. For a given data set, the slowly varying function L in (1.1) is in general
unknown. The introduction of the model (1.2) is based on the belief that the model (1.1) can be
approximated in some sense by (1.2) if the threshold u is “sufficiently high”. A theoretical basis for
this belief is the Pickands-Balkema-de Haan theorem (cf. Theorem 3.4.5 in [4]) which states that
the generalized Pareto distribution (GPD) appears as limit distribution of the normalized sample
excesses above high thresholds. In heavy-tail situations, the GPD and the Pareto distribution with
parameter α > 0 belong to the same location-scale family. The Hill estimator α̂k can be derived
as the maximum likelihood estimator of α based on the k largest order statistics in an iid sample
with tail (1.2). If kn → ∞ and kn/n → 0, the Hill estimator is consistent under the more general

condition (1.1) for some α > 0, i.e. α̂k
P→ α. If one assumes the exact Pareto tail (1.2) one also has

asymptotic normality
√
k (α̂k − α)

d→ Z for a normal N(0, α2) random variable Z for any kn → ∞,
in particular for kn = n. This is simply due to the fact that

α̂−1
k =

1

k − 1

k−1∑
i=1

log
X(n−i+1)

X(n−k+1)

d
= α−1 Γk−1

k − 1
, 2 ≤ n , 3 ≤ k ≤ n− 1 ,(1.3)

where Γi = E1 + · · · + Ei, i ≥ 1, for an iid standard exponential sequence (Ei); see the second

display on p. 192 in [4]. Then
√
k(α̂−1

k −α−1)
d→ Y for a normal N(0, α−2) random variable Y , and

the relation
√
k (α̂k −α)

d→ Z for a normal N(0, α2) random variable Z follows by an application of
the ∆-method for any sequence kn → ∞ such that kn ≤ n.

Real-life data are always discrete, i.e. for any practical purposes one would only collect data
which are concentrated on a lattice with equidistant grid size. Any data saved on computers or other
electronic devices are of this kind and therefore the number of digits is limited. More importantly,
various data sets are rather imprecise due to the lack of information or measurement error. A typical
example are seismological data: the 3-dimensional coordinates (latitude, longitude and depth) of the
epicenter of an earthquake can often only be determined up to tens or even hundreds of kilometers.
Another example are the longest life spans of humans: due to the rareness of the event that a
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person survives the age of 100 years such extreme life spans are usually registered in mortality or
demographic tables only as belonging to certain intervals, e.g. (101, 110] or (101, 120].

It is the aim of this note to discuss the influence of discretization effects (such as round-off,
imprecise data) on the estimation of α−1. We focus on the Hill estimator but we also touch on
the Pickands and Dekkers-Einmahl-de Haan estimators and show simulation evidence that these
estimators may suffer from the discreteness of the data. To illustrate the effect of discreteness of
data on the Hill estimator we consider a data set of word counts from the English language. The
data are available at www.wordfrequency.inf, where one also finds a description how the data were
cleaned. This data set is often used to support the evidence on Zipf’s law as regards the distribution
of words in a given language. The data have Pareto-like tails with an estimated index close to 1;
see Figure 1, top left. The data consists of the 10 000 largest counts between 3 000 and 23 million.
In the remaining 3 graphs in Figure 1 we show the Hill plots of the same data when the last one,
two or three digits in the count data are replaced by zeros. This means that the counting units are
tens, hundreds, thousands, respectively. While the effect for units of tens is hardly visible, we see
significant changes in the Hill plot for units of hundreds and thousands. We do not show the plots
for counting units of ten thousands. Then about 60% of the data turns into zero and the Hill plot
oscillates even more wildly than for smaller counting units.

We do not aim at a general distribution with regularly varying tail but we choose a Pareto
distribution as a toy model. Throughout we consider a Pareto distributed iid sequence with repre-
sentation

Xi = U
−1/α
i , i ∈ N ,(1.4)

for an iid U(0, 1) sequence (Ui) and some positive α. It is easy to see that

F (x) = P (U
−1/α
i > x) = x−α , x ≥ 1 ,(1.5)

and hence the order statistics satisfy the relation X(i) = U
−1/α
(n−i+1) for i ≤ n.

In Figure 2, top left, we show a Hill plot based on a sample of size 10 000 with α = 1. The plot
nicely shows the trade-off between bias and variance depending on the chosen values k: too small
values of k lead to a large variance while too large k lead to a larger bias. In the remaining graphs

of Figure 2 we show the Hill plots for the iid sample 10−l[10lU
−1/α
i ] for l = 0, 1, 2, where [x] denotes

the integer part of any real number x. (Due to the scale invariance of the Hill estimator, these Hill

plots coincide with those based on ([10lU
−1/α
i ]).) This transformation of U

−1/α
i turns all digits but

the first l ones behind the comma into zeros. In this sense, we obtain a discretization of the random

variables U
−1/α
i by rounding off. The tail of the transformed random variable is given by

F (x) = 1− P ([10lU
−1/α
i ] ≤ [10lx])(1.6)

= 1− P (10lU
−1/α
i < [10lx] + 1)

=
(10l)α

([10lx] + 1)α
.

Since [y] ∈ (y − 1, y] for y ∈ R one immediately concludes that

P (10−l[10lU
−1/α
i ] > x) ∼ P (U

−1/α
i > x) = x−α , x → ∞ .

Therefore the standard theory (see Mason [11] or Theorem 3.2.2 in de Haan and Ferreira [8]) yields
that the Hill estimator is consistent:

α̂k
P→ α , if k → ∞ and k/n → 0

and even strongly consistent (i.e. α̂k
a.s.→ α) if k/n → 0 and k/ log log n → ∞; see Deheuvels et

al. [2].
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Figure 1. Hill plot (k, α̂−1
k ), k = 2, . . . , n− 1, based on the counts of 10 000 words

which are used most frequently in the English language. Notice that the Hill plot
yields a reliable estimator only for small k, up to 1000 say. Top left. The estimated
tail index of the count data is close to one. Top right. The last digit in the counts
is replaced by zero. Bottom left. The last two digits are replaced by zeros. Bottom
right. The last three digits are replaced by zeros.

Standard results about asymptotic normality of the Hill estimator are not available in this case
since such a theory requires that a second order condition on F must be satisfied. According to de
Haan and Ferreira [8], Theorem 3.2.5, asymptotic normality of α̂k can be achieved if the following
second order condition holds as x → ∞ for t > 0

F (tx)

F (x)
− t−α ∼ b(t)a(x) ,
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Figure 2. Hill plot (k, α̂−1
k ), k = 2, . . . , n−1, for a sample of size n = 10 000. Top

left. The data have a Pareto distribution (1.5) with α = 1. In the other figures
all digits but the first l behind the comma are set equal to zero. Top right. l = 2.
Bottom left. l = 1. Bottom right. l = 0. The vertical line at k = n2/3 is an upper
limit for those k for which the central limit theorem is still valid; see Corollary 2.4.

where |a(x)| is regularly varying with a non-positive index and b(t) is a positive function of t. We
observe that ({x} denotes the fractional part of x)

F (tx)

F (x)
− t−α =

([10lx] + 1)α

([10ltx] + 1)α
− t−α(1.7)

∼ t−α(10lx)−1α
(
− {10lx}+ (1− t−1) + t−1{10ltx}

)
.

The right-hand side exhibits very erratic behavior. For irrational 10lt, the sequence ({10ltx})x=1,2,...

is uniformly distributed in the number theoretical sense; see Weyl [16]. In particular, it visits any
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interval (a, b) ⊂ (0, 1) infinitely often. Then the sequence

−{10lx}+ (1− t−1) + t−1{10ltx} = 1 + t−1(−1 + {10ltx}) , x = 1, 2, . . . ,

is uniformly distributed on (1− t−1, 1). If x assumes the integers 1, 2, . . . and 10lt is an integer, the
right-hand side in (1.7) vanishes. Hence |F (tx)/F (x) − t−α| is not a regularly varying function as
required. However, asymptotic normality of α̂−1

k can still be derived from the corresponding results

for (U
−1/α
i ) if kn = o(n2/(2+α)); see Lemma 2.4 below. We show a similar result for the Pickands and

Dekkers-Einmahl-de Haan estimators. We have simulation evidence showing that these estimators
fail for kn of a magnitude larger than n2/(2+α).

Our paper is organized as follows. In Section 2 we give some theoretical explanation for the erratic
behavior of the mentioned tail index estimators in the presence of discretized data. We calculate
the expectation and variance of the Hill estimator α̂−1

k for discretized Pareto random variables and
provide bounds for the deviation of this estimator from the pure Pareto case.

2. Basic properties of the Hill estimator for an integer-valued sequence

Throughout we assume that the iid sequence (Xi) is given by (1.4). Recall that for an iid uniform
U(0, 1) distributed sequence (Ui), the ith order statistic U(i) has a β(i, n − i + 1) density (see e.g.
[4], Proposition 4.1.2) given by

β(i, n− i+ 1)(x) =
n!

(n− i)!(i− 1)!
xi−1(1− x)(n−i+1)−1 , x ∈ (0, 1) .(2.1)

From (1.3) it follows that the Hill estimator α̂−1
k is an unbiased estimator of α−1. The situation

changes in the case of round-off effects:

Lemma 2.1. Consider the sequence X
(l)
i = 10−l[10lU

−1/α
i ], i = 1, 2, . . ., for a fixed integer l ≥ 0.

Then the following relation holds for the Hill estimator α̂−1
k,l based on X

(l)
1 , . . . , X

(l)
n , n ≥ 3, 2 ≤ k ≤

n− 1:

Eα̂−1
k,l

=
∞∑

s=10l+1

log
s

s− 1

1

k − 1

k−1∑
i=1

∫ (10l/s)α

0

(
β(i, n− i+ 1)(x)− β(k, n− k + 1)(x)

)
dx ,(2.2)

=
n

k − 1

∞∑
s=10l+1

log
s

s− 1
(10l/s)α

∫ 1

(10l/s)α
β(k − 1, n− k + 1)(x) dx .(2.3)

Proof of (2.2). By the scale invariance of the Hill estimator,

Eα̂−1
k,l =

1

k − 1

k−1∑
i=1

E log[10lU
−1/α
(i) ]− E log[10lU

−1/α
(k) ] ,

where

E log[10lU
−1/α
(i) ] =

∞∑
s=10l

log sP ((10l/(s+ 1))α ≤ U(i) ≤ ((10l/s)α)

=
∞∑

s=10l

log s

∫ (10l/s)α

(10l/(s+1))α
β(i, n− i+ 1)(x) dx

=
∞∑

s=10l+1

log(s/(s− 1))

∫ (10l/s)α

0

β(i, n− i+ 1)(x) dx+ log 10l .(2.4)
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In the last step we used Abel’s formula. Then (2.2) follows. 2

Proof of (2.3). For an iid standard exponential sequence (Ei) write Γi = E1 + · · ·+Ei, i ≥ 1. Then

it is well known (e.g. p. 189 in [4]) that (U(i))i=1,...,k
d
= Γ−1

n+1(Γi)i=1,...,k. If we now condition on
Γk/Γn+1 = u on the right-hand side we see that

((U(1), . . . , U(k−1)) | U(k) = u)
d
= uΓ−1

k (Γ1, . . . ,Γk−1) .

Hence the left-hand side has the same distribution as u (U
(k)
(1) , . . . , U

(k)
(k−1)), where U

(k)
(1) ≤ · · · ≤ U

(k)
(k−1)

are the order statistics of an iid U(0, 1) sample U
(k)
1 , . . . , U

(k)
k−1. Thus, for almost every u ∈ (0, 1),

E(α̂−1
k,l | U(k) = u) + log([10lu−1/α])

=
1

k − 1

k−1∑
i=1

E(log([10lU
−1/α
(i) ]) | U(k) = u)

=
1

k − 1

k−1∑
i=1

E
(
log([10l(uUi)

−1/α])
)

= E
(
log([10l(uU1)

−1/α])
)
.

The right-hand side can be written as follows
∞∑

s+1>10lu−1/α

log s P ((10l/(s+ 1))α ≤ uU1 ≤ (10l/s)α)

=
∞∑

s=10l

log s I{s+1>10lu−1/α}

(
10lαu−1(s−α − (s+ 1)−α)I{(10l/s)α≤u}

+
(
1− (10l/(s+ 1))αu−1

)
I{(10l/(s+1))α<u≤(10l/s)α}

)
=

∞∑
s=10l

log s
(
10lαu−1(s−α − (s+ 1)−α)I{u≥(10l/s)α}

+
(
1− (10l/(s+ 1))αu−1

)
I{(10l/(s+1))α<u≤(10l/s)α}

)
=

∞∑
s=10l

log s
(
10lαu−1s−αI{u≥(10l/s)α} + I{u≤(10l/s)α}

−10lαu−1(s+ 1)−αI{u>(10l/(s+1))α} − I{u≤(10l/(s+1))α}

)
.

Take expectations with respect to the distribution of U(k) and recall (2.4) to obtain

Eα̂−1
k,l =

∞∑
s=10l+1

log
s

s− 1

(
10lαs−αEU−1

(k)I{U(k)≥(10l/s)α} + P (U(k) ≤ (10l/s)α)
)
+ log 10l

−E log[10lU
−1/α
(k) ]

=
∞∑

s=10l+1

log
s

s− 1
10lαs−α

∫ 1

(10l/s)α
u−1β(k, n− k + 1)(u) du .

2

Figure 3 exhibits Eα̂−1
k,l as a function of k for α = 1, l = 0, 1, 2, and sample size n = 10 000.

Evidently, the erratic behavior of the Hill estimators α̂−1
k,l is also inherited by its mean value function.
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It shows significant deviations from the value α−1, in particular for large k. This fact is a clear
warning against using the maximum likelihood estimator α̂n of α. Figures 2 and 3 give some
convincing evidence that the Hill estimator based on a relatively small number k of upper order
statistics (in agreement with the conditions k = kn → ∞ and kn/n → 0) provides some reasonable
approximations of α−1. On the other hand, the estimator α̂−1

n yields the best results (see the top left
graph in Figure 2) only if Xi has an exact Pareto distribution and α̂−1

n,l is extremely unreliable for

the discretized Pareto random variables X
(l)
i . The variance of the Hill estimator α̂−1

k,l for round-off
data is different from the pure Pareto case and very complicated; see Appendix A. Based on the
latter result, in Figure 4 we show the graphs of the variance as a function of l and k. As expected,
the variance of the Hill estimator oscillates as a function of k. The size of the oscillations decreases
as the round-off error becomes smaller and the frequency is high for large l. In the case l = 2, the
oscillations are rather tiny. In this case, the numerical calculations take an enormous time, and we
decided to restrict ourselves to k ∈ [9 000, 10 000]; for k ≤ 9 000 one rarely observes an oscillation.

In the next result we measure the deviation of Eα̂−1
k,l from Eα̂−1

k = α−1.

Proposition 2.2. Under the conditions of Lemma 2.1, for 2 ≤ k ≤ n− 1, n ≥ 3, l ≥ 0,

−10−lE
(
U

1/α
(k)

)
≤ Eα̂−1

k,l − α−1 ≤ 10−l(1 + 10−l)E
(
U

1/α
(k)

)
.(2.5)

Moreover, writing D
(1)
k = α̂−1

k − α̂−1
k,l , we have for any p > 0,

E|D(1)
k |p ≤ 10−lp(1 + 10−l)pE

(
U

p/α
(k)

)
.(2.6)

The left and right hand sides in (2.5) and (2.6) converge to zero as n → ∞ if k = kn → ∞ and
k/n → 0 or k is fixed and l → ∞.

Proof. We will exploit the fact that

D
(1)
k

d
= D̃

(1)
k =

1

k − 1

k−1∑
i=1

log
U

−1/α
(i)

U
−1/α
(k)

− 1

k − 1

k−1∑
i=1

log
[10lU

−1/α
(i) ]

[10lU
−1/α
(k) ]

.

We will frequently use the inequality for i ≤ k:

0 ≤ log
10lU

−1/α
(i)

[10lU
−1/α
(i) ]

≤ log
(
1 +

1

[10lU
−1/α
(i) ]

)
≤ 1

[10lU
−1/α
(i) ]

≤
10lU

−1/α
(i)

[10lU
−1/α
(i) ]

10−lU
1/α
(i) ≤ (1 + 10−l)10−lU

1/α
(i) .(2.7)

Then straightforward calculation yields

Eα̂−1
k,l − α−1 ≤ E

(
log

10lU
−1/α
(k)

[10lU
−1/α
(k) ]

)
≤ 10−l(1 + 10−l)E

(
U

1/α
(k)

)
→ 0 , n → ∞ ,
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Figure 3. The mean value function of the Hill estimator α̂−1
k,l for a sample of size

n = 10 000 of discretized Pareto distributed random variables X
(l)
1 , . . . , X

(l)
n with

parameter α = 1. Top left: l = 0. Top right: l = 1. Bottom: l = 2.

using dominated convergence and U(k)
a.s.→ 0 as k = kn → ∞ and k/n → 0. Similarly,

Eα̂−1
k,l − α−1 ≥ E

( 1

k − 1

k−1∑
i=1

log
[10lU

−1/α
(i) ]

10lU
−1/α
(i)

)

≥ − 1

k − 1

k−1∑
i=1

E
(U1/α

(i)

10l

)
≥ −10−lE

(
U

1/α
(k)

)
→ 0 , n → ∞ .
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Figure 4. The variance function of the Hill estimator α̂−1
k,l for a sample of size

n = 10 000 of discretized Pareto distributed random variables X
(l)
1 , . . . , X

(l)
n with

parameter α = 1. Top left: l = 0. Top right: l = 1. Bottom: l = 2 and for
9 000 ≤ k ≤ 10 000.

This proves (2.5).
Next we observe that

− log
10lU

−1/α
(k)

[10lU
−1/α
(k) ]

≤ D̃
(1)
k =

1

k − 1

k−1∑
i=1

log
10lU

−1/α
(i)

[10lU
−1/α
(i) ]

− log
10lU

−1/α
(k)

[10lU
−1/α
(k) ]

≤ 1

k − 1

k−1∑
i=1

log
10lU

−1/α
(i)

[10lU
−1/α
(i) ]
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and apply (2.7). We conclude that (2.6) holds for any p > 0. �

Before we proceed further we recall the following benchmark result. Its proof is an immediate
consequence of the representation (1.3).

Lemma 2.3. Let (Xi) be an iid sequence with common Pareto distribution defined in (1.5). Assume
that k = kn → ∞ and kn ≤ n. Then

√
k (α̂−1

k − α−1)
d→ Y and

√
k (α̂k − α)

d→ Z,

where Y and Z are normally distributed with mean zero and variances α−2 and α2, respectively.

A combination of Proposition 2.2 and Lemma 2.3 yields the following result.

Corollary 2.4. Assume the conditions of Lemma 2.1 and that k = kn → ∞ and k = o(n2/(α+2)).
Then for a normal N(0, α−2) distributed random variable Y ,

√
k (α̂−1

k,l − α−1)
d→ Y ,

E
(∣∣√k (α̂−1

k,l − α−1)
∣∣p) → E

(
|Y |p

)
.

Proof. Recall the representation (1.3) in law of the Hill estimator α̂−1
k . Then the central limit

theorem
√
k(α̂−1

k − α−1)
d→ Y and the relation E

(∣∣√k(α̂−1
k − α−1)

∣∣p) → E
(
|Y |p

)
follow for any

p > 0; see Theorem 4.2 in Gut [7]. In view of (2.6) the desired results follow if E|
√
kD

(1)
k |p = o(1).

Recalling the density (2.1), an application of Stirling’s formula yields

E
(
U

p/α
(k)

)
=

Γ(n+ 1)

Γ((p/α) + n+ 1)

Γ((p/α) + k)

Γ(k)
∼ (k/n)p/α .

Thus E|
√
kD

(1)
k |p = o(1) holds if k = o(n2/(α+2)). �

We could not prove whether Corollary 2.4 is optimal in the sense that it does not hold for
k ≥ cn2/(α+2). However, simulations indicate that the Hill estimator α̂−1

k,l is very unreliable for such
k-values. In the next section, we make an excursion to two other classical estimators of the extreme
value index. Also in these cases, k = n2/(α+2) appears as a borderline case for central limit behavior
of the corresponding estimators.

3. An excursion to the moment and Pickands estimators

There exists a wide range of estimators of the tail index of a distribution with regularly varying
tail and, more generally, of the extreme value index of a distribution; cf. de Haan and Ferreira
[8], Embrechts et al. [4]. We consider two classical estimators, the moment estimator (or Dekkers-
Einmahl-de Haan (DEdH) estimator) and the Pickands estimator. In what follows, we again assume

that (Xi) is an iid Pareto sequence with representation (1.4) and X
(l)
i = 10−l[10lU

−1/α
i ], l ≥ 0.

3.1. Asymptotic normality for the DEdH estimator for discretized Pareto variables.
The DEdH estimator of α−1 is given by the relation

α̂−1
k = M

(1)
k + 1− 1

2

(
1−

(M
(1)
k )2

M
(2)
k

)−1

,

where

M
(j)
k =

1

k − 1

k−1∑
i=1

(
log

X(n−i+1)

X(n−k+1)

)j

, j = 1, 2.
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If we replace (Xi) by (X
(l)
i ) we adapt the notation correspondingly by adding the subscript l, e.g.

α̂−1
k,l , M

(j)
k,l .

Lemma 3.1. Assume that k = kn → ∞ and k ≤ n. Then
√
k
(
α̂−1
k − α−1

) d→ Y(3.1)

for a normal N(0, α−2 + 1) distributed random variable Y .

The fact that the DEdH estimator is asymptotically normal is well known under second order
assumptions on the tail and resulting restrictions on k; cf. de Haan and Ferreira [8], Theorem 3.5.4.
The latter result is not directly applicable since the Pareto case is a degenerate one. We give a short
proof of (3.1).

Proof. We have

∆k =
√
k (α̂−1

k − α−1) =
√
k (M

(1)
k − α−1) +

√
k

M
(2)
k − 2(M

(1)
k )2

2(M
(2)
k − (M

(1)
k )2)

.

The same argument as on pp. 191-192 in [4] and the law of large numbers show that

(M
(1)
k ,M

(2)
k )

d
=

1

k − 1

(
α−1

k−1∑
i=1

Ei, α
−2

k−1∑
i=1

E2
i

)
P→ (α−1, 2α−2) ,(3.2)

where (Ei) is iid standard exponential. In what follows, we will use the representation (3.2) of

(M
(1)
k ,M

(2)
k ) via the exponential random variables. Then

∆k −
[
k−1/2α−1

k∑
i=1

(Ei − 1) + oP (1)
]

= k1/20.5(1 + oP (1))
( 1

k − 1

k−1∑
i=1

(E2
i − 2) + 2(1−

( 1

k − 1

k−1∑
i=1

Ei

)2
)
)

= k1/20.5(1 + oP (1))
( 1

k − 1

k−1∑
i=1

(E2
i − 2) + 2

1

k − 1

k−1∑
i=1

(1− Ei)
1

k − 1

k−1∑
i=1

(1 + Ei)
)

= k−1/20.5(1 + oP (1))
k−1∑
i=1

(E2
i − 4Ei + 2) .

By the central limit theorem,

∆k
d→ N(0, var((α−1 − 2)Ei + 0.5E2

i )) .

Straightforward calculation yields var((α−1−2)Ei+0.5E2
i ) = α−2+1. This concludes the proof. �

Corollary 3.2. Assume the conditions of Lemma 2.1 and that k = kn → ∞ and k = o(n2/(α+2)).
Then for a normal N(0, α−2 + 1) distributed random variable Y ,

√
k(α̂−1

k,l − α−1)
d→ Y .(3.3)

It is again not obvious whether (3.3) is valid for k ≥ n2/(α+2). Due to the presence of ratios of
random variables in the definition of the DEdH estimator it seems difficult to get explicit bound for
the moments E

(
|
√
k(α̂−1

k,l − α−1)|p
)
, p > 0. This is in contrast to the Hill estimator of α−1.
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Figure 5. DEdH plot (k, α̂−1
k ), k = 2, . . . , n − 1, for a sample of size n = 10 000.

Top left. The data have a Pareto distribution (1.5) with α = 1. In the other figures
all digits but the first l behind the comma are set equal to zero. Top right. l = 2.
Bottom left. l = 1. Bottom right. l = 0. The vertical line shows the value k = n2/3

which is an upper bound for those k for which the central limit theorem is still
valid; see Corollary 3.2.

In Figure 5 we show the DEdH estimator for the same sample as in Figure 2 and the corresponding
plots for the discretized data. The vertical line shows the value k = n2/(α+2) which is an upper
bound for those k for which the central limit theorem is still valid.
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Proof. Observe that

D
(2)
k = M

(2)
k −M

(2)
k,l

d
=

1

k − 1

k−1∑
i=1

{(
log

10lU
−1/α
(i)

10lU
−1/α
(k)

)2

−
(
log

[10lU
−1/α
(i) ]

[10lU
−1/α
(k) ]

)2}
= D̃

(2)
k .

Therefore, using (2.7),

|D̃(2)
k | =

1

k − 1

∣∣∣ k−1∑
i=1

(
log

10lU
−1/α
(i)

10lU
−1/α
(k)

+ log
[10lU

−1/α
(i) ]

[10lU
−1/α
(k) ]

)(
log

10lU
−1/α
(i)

[10lU
−1/α
(i) ]

− log
10lU

−1/α
(k)

[10lU
−1/α
(k) ]

)∣∣∣
≤ 10−l(1 + 10−l)U

1/α
(k)

(
M

(1)
l +M

(1)
k,l

)
.

The Hill estimators M
(1)
l , M

(1)
k,l are consistent estimators of α−1. Hence

√
kD

(2)
k

P→ 0 if k =

o(n2/(α+2)). Under the latter condition, we also know from Proposition 2.2 that
√
kD

(1)
k

P→ 0. Then

an application of the ∆-method and Lemma 3.1 imply that M
(i)
k can be replaced by M

(i)
k,l for i = 1, 2

in the definition of α̂−1
k , leading to the central limit theorem (3.3). �

3.2. Asymptotic normality of Pickands’s estimator for discretized Pareto variables. The
Pickands estimator of the extreme value index α−1 is defined as

α̂−1
k =

1

log 2
log

X(n−k+1) −X(n−2k+1)

X(n−2k+1) −X(n−4k+1)
, k ≥ 1 .

If we replace (Xi) by (X
(l)
i ) we write α̂−1

k,l , l ≥ 0. We will give the asymptotic results analogous to

the DEdH estimator and start with the asymptotic normality for α̂−1
k .

Lemma 3.3. Assume that k = kn → ∞ and k/n → 0. Then

√
k
(
α̂−1
k − α−1

) d→ Y(3.4)

for a normal N
(
0, α−2(21+2/α + 1)/(4(log 2)2(21/α − 1)2)

)
distributed random variable Y .

The fact that the Pickands estimator is asymptotically normal is well known under second order
assumptions on the tail and resulting restrictions on k; cf. de Haan and Ferreira [8], Theorem 3.3.5.
The latter is not directly applicable since the Pareto case is a degenerate one. The proof of (3.4)
can be given by direct calculation, using

α̂−1
k

d
=

1

log 2
log

U
−1/α
(k) − U

−1/α
(2k)

U
−1/α
(2k) − U

−1/α
(4k)

,

a result of Smirnov [13] (see Lemma 3.3.2 of de Haan and Ferreira [8]): if k = kn → ∞, k/n → 0,
then

√
k
(√2U(2k)

2U(k)
−
√
2,

U(4k)

U(2k)
− 2

)
d→ Y ,

for a bivariate standard normal vector Y, and applying the ∆-method. We omit further details and
refer to the argument in Theorem 3.3.5 of [8] which simplifies in the Pareto setting. A consequence
is the following result.
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Figure 6. Pickands plot (k, α̂−1
k ), k = 2, . . . , n − 1, for a sample of size n =

4 ∗ 10 000. Top left. The data have a Pareto distribution (1.5) with α = 1. In the
other figures all digits but the first l behind the comma are set equal to zero. Top
right. l = 2. Bottom left. l = 1. Bottom right. l = 0. The vertical line shows
the value k = n2/3 which is an upper bound for those k for which the central limit
theorem is still valid; see Corollary 3.4.

Corollary 3.4. Assume the conditions of Lemma 2.1 and that k = kn → ∞ and k = o(n2/(α+2)).
Then for a normal N

(
0, α−2(21+2/α + 1)/(4(log 2)2(21/α − 1)2)

)
distributed random variable Y ,

√
k (α̂−1

k,l − α−1)
d→ Y .

In Figure 6 we illustrate the behavior of the Pickands estimator for the same sample as in Figure 2
and for the corresponding discretized data.
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Proof. We observe that

D
(3)
k = log 2

(
α̂−1
k − α̂−1

k,l

)
d
= log

10lU
−1/α
(k) − 10lU

−1/α
(2k)

[10lU
−1/α
(k) ]− [10lU

−1/α
(2k) ]

− log
10lU

−1/α
(2k) − 10lU

−1/α
(4k)

[10lU
−1/α
(2k) ]− [10lU

−1/α
(4k) ]

= I1 + I2 .

By virtue of (2.7) we have

I1 = log
10lU

−1/α
(k)

[10lU
−1/α
(k) ]

+ log
1− 10lU

−1/α
(2k) /10lU

−1/α
(k)

1− [10lU
−1/α
(2k) ]/[10lU

−1/α
(k) ]

≤ (1 + 10−l)10−lU
1/α
(k) + log

1− 10lU
−1/α
(2k) /10lU

−1/α
(k)

1− [10lU
−1/α
(2k) ]/[10lU

−1/α
(k) ]

= I11 + I12 .

We analyze I12 by using the inequality x/(1 + x) ≤ log(1 + x) ≤ x, |x| < 1. Observing that

U
1/α
(k) /U

1/α
(2k)

P→ 2−1/α, we have for large n with probability 1,

|I12| ≤ OP

(∣∣∣ [10lU−1/α
(2k) ]

[10lU
−1/α
(k) ]

−
10lU

−1/α
(2k)

10lU
−1/α
(k)

∣∣∣)
= OP

(
U

2/α
(k)

(
10lU

−1/α
(2k) 10lU

−1/α
(k) − [10lU

−1/α
(2k) ] [10lU

−1/α
(k) ]

))
= OP

(
U

2/α
(k)

(
10lU

−1/α
(2k) (10lU

−1/α
(k) − [10lU

−1/α
(k) ]) + [10lU

−1/α
(k) ](10lU

−1/α
(2k) − [10lU

−1/α
(2k) ])

))
= OP

(
U

2/α
(k)

(
U

−1/α
(2k) + U

−1/α
(k)

))
= OP (U

1/α
(k) ) .

Using these bounds and kn = o(n2/(α+2)), we have
√
kIi

P→ 0, i = 1, 2, hence
√
kD

(3)
k

P→ 0. Finally,
an application of Lemma 3.3 yields the result. �

4. Concluding remarks

The estimation of the tail index α is a complicated statistical problem. The results and graphs
above show that the estimation also depends on round-off effects which often are neglected, e.g. by
assuming that the data have a Lebesgue density.

There exist numerous applied papers where power law behavior of the tails of the data has been
postulated (e.g. in the literature on Zipf’s law or on fractal dimensions of real-life data). The tail
index α is often estimated by ordinary least squares (OLS) based on a plot of − logFn(x) (Fn is
the empirical distribution function) against log x, where x is chosen from the whole range of the
data or from a “far-out” x-region where the plot is “roughly linear” . The round-off effect leads to
undesirable oscillations of the log-log plot and, in turn, yields unreliable estimates of α.

For the Hill estimator α−1
k,l of Pareto variables one can calculate the expectation and variance

explicitly; numerical calculations and simulations show that these moments and the estimator itself
may oscillate strongly, depending on the size of the round-off error. The results of this paper indicate
that the region of k-values where the Hill and related estimators are asymptotically normal is rather
small and strongly depends on the size of the round-off error described by the parameter l. On the
positive side, even under round-off effects the classical estimators are reliable (i.e. satisfy the usual
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asymptotic properties) in these k-regions and, in contrast to the estimation of α based on OLS, a
body of standard theory is applicable.

A referee of this paper pointed out that rounding of data could be considered as a special case
of interval censoring which can be handled in the framework of maximum likelihood. For example,
if we assume that the data come from a particular distribution (the generalized Pareto distribution
would be a natural candidate in the extreme value context) an interval censored likelihood approach
would be possible. We did not explore this method.

Acknowledgment. We would like to thank both referees for careful reading of the manuscript and
for their constructive comments.

Appendix A. Expression for second moment

Direct calculation of the second moment of the Hill estimator α̂−1
k,l is complicated, involving infinite

series of incomplete beta functions. As in Lemma 2.1, we chose a proof based on a conditioning
argument. The result is rather complex, but involves only two incomplete beta functions in each
term of the infinite series below. This formula can be evaluated numerically.

Lemma A.1. Let X
(l)
i = 10−l[10lU

−1/α
i ], i = 1, 2, . . . , for a fixed integer l ≥ 0. Then the second

moment for the Hill estimator α̂−1
k,l from the sample (X

(l)
i )i, n ≥ 3, 2 ≤ k ≤ n− 1 :

E(α̂−1
k,l )

2

=
∞∑

s=10l

[
n

(k − 1)2
{(log(s+ 1))2 − (log s)2}(10l/(s+ 1))α(1− J1)

− 2n

k − 1

(
log

s+ 1

s

∞∑
t=s

log
t+ 1

t
(10l/(t+ 1))α − log(s+ 1) log

s+ 1

s
(10l/(s+ 1))α

)
J1

+
2n(k − 2)

(k − 1)2

(
log

s+ 1

s

∞∑
t=s+1

log
t+ 1

t
(10l/(t+ 1))α − log s log(s+ 1)(10l/(s+ 1))α

+(log(s+ 1))2(10l/(s+ 2))α
)
J1

−2n(k − 2)

(k − 1)2

{
(log(s+ 1))2(10l/(s+ 2))α − (log s)2(10l/(s+ 1))α

}
J1

]

+
∞∑

s=10l

[
2n(n− 1)

(k − 1)2

{
log

s+ 1

s

∞∑
t=s+1

log
t+ 1

t
(10l/(t+ 1))α − log s log(s+ 1)(10l/(s+ 1))α

+(log(s+ 1))2(10l/(s+ 2))α
}
(10l/(s+ 1))α(1− J2)

+
n(n− 1)

(k − 1)2
(log(s+ 1))2

{
(10l/(s+ 1))α − (10l/(s+ 2))α

}2
(1− J2)

+
n(n− 1)

(k − 1)2

{
(log(s+ 1))2(10l/(s+ 2))2α − (log s)2(10l/(s+ 1))2α

}
J2

]

− 2n

k − 1
log 10l

∞∑
s=10l

log
s+ 1

s
(10l/(s+ 1))α

+
2n(k − 2)

(k − 1)2
log 10l

( ∞∑
s=10l+1

log
s+ 1

s
(10l/(s+ 1))α + log(10l + 1)(10l/(10l + 1))α

)
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−2n(k − 2)

(k − 1)2
(log 10l)2(10l/(10l + 1))α +

n(n− 1)

(k − 1)2
(log 10l)2(10l/(10l + 1))2α,

where the quantities Ji are given by

Ji :=

∫ (10/(s+1))α

0

β(k − i, n− k + 1)(u)du, i = 1, 2.

Proof. The conditional second moment of α−1
k,l given {U(k) = u} is calculated as

E[(α̂−1
k,l )

2 | U(k) = u] = E

[( 1

k − 1

k−1∑
j=1

log[10lV
−1/α
j ]− log[10lu−1/α]

)2
]

= E

[
1

(k − 1)2

k−1∑
i=1

k−1∑
j=1

log[10lV
−1/α
j ] log[10lV

−1/α
i ]

− 2

k − 1

k−1∑
j=1

log[10lV
−1/α
j ] log[10u−1/α] + (log[10lu−1/α])2

]

=
1

k − 1
E
[
(log[10lV

−1/α
1 ])2

]
+

k − 2

k − 1

(
E
[
log[10lV

−1/α
1 ]

])2
− 2E

[
log[10lV

−1/α
1 ]

]
log[10lu−1/α] + (log[10lu−1/α])2

=:
1

k − 1
IA +

k − 2

k − 1
IB − 2IC + ID,(A.1)

where Vi, i = 1, . . . , k− 1, are iid U(0, u) distributed random variables. We start by observing that

E(IA) = E
[ ∞∑
s=10l

(log s)2P ((10l/(s+ 1))α ≤ V1 ≤ (10l/s)α)
]

= E
[ ∞∑
s=10l

∫ (10l/s)α

(10l/(s+1))α

I{0≤x≤U(k)}

U(k)
dx

]
=

∞∑
s=10l

(log s)2
n

k − 1

∫ 1

0

duβ(k − 1, n− k + 1)(u)
[{

(10l/s)α − (10l/(s+ 1))α
}
I{(10l/s)α≤u}

+ {u− (10/(s+ 1))α}I{(10l/(s+1))α≤u≤(10l/s)α)}

]
=

∞∑
s=10l

(log s)2
[ n

k − 1

{
(10l/s)α

∫ 1

(10l/s)α
β(k − 1, n− k + 1)(u)du

− (10l/(s+ 1))α
∫ 1

(10l/(s+1))α
β(k − 1, n− k + 1)(u)du

}
+

∫ (10l/s)α

0

β(k, n− k + 1)(u)du−
∫ (10l/(s+1))α

0

β(k, n− k + 1)(u)du
]

=
∞∑

s=10l

{
(log(s+ 1))2 − (log s)2

}{ n

k − 1
(10l/(s+ 1))α

∫ 1

(10l/(s+1))α
β(k − 1, n− k + 1)(u)du

+

∫ (10l/(s+1))α

0

β(k, n− k + 1)(u)du
}
+ (log 10l)2.
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Similar to the calculation of E(IA), we have

E(ID) =
∞∑

s=10l

{(log(s+ 1))2 − (log s)2}
∫ (10l/(s+1))α

0

β(k, n− k + 1)(u)du+ (log 10l)2.

As for the expression IC , we need more calculations. First, we see that

E(IC) = E

[ ∞∑
s=10l

log s

∫ (10/s)α

(10l/(s+1))α
dx

I{0≤x≤U(k)}

U(k)
log[10lU

−1/α
(k) ]

]

=

∞∑
s=10l

log s
n

k − 1

∫ 1

0

du log[10lu−1/α]β(k − 1, n− k + 1)(u)
{
(10l/s)αI{u≥(10l/s)α}

=
∞∑

s=10l

log
s+ 1

s
(10l/(s+ 1))α

n

k − 1

∫ 1

(10l/(s+1))α
log[10lu−1/α]β(k − 1, n− k + 1)(u)du

+

∞∑
s=10l

{(log(s+ 1))2 − (log s)2}
∫ (10l/(s+1))α

0

β(k, n− k + 1)(u)du+ (log 10l)2.

The first integral is further calculated as

∞∑
s=10l

log
s+ 1

s
(10l/(s+ 1))α

n

k − 1

s∑
t=10l

log t

∫ (10l/t)α

(10l/(t+1))α
β(k − 1, n− k + 1)(u)du

=

∞∑
t=10l

log t

∞∑
s=t

log
s+ 1

s
(10l/(s+ 1))α

n

k − 1

∫ (10l/t)α

(10l/(t+1))α
β(k − 1, n− k + 1)(u)du

=
∞∑

t=10l

{
log(t+ 1)

∞∑
s=t+1

log
s+ 1

s
(10l/(s+ 1))α − log t

∞∑
s=t

log
s+ 1

s
(10l/(s+ 1))α

}
× n

k − 1

∫ (10l/(t+1))α

0

β(k − 1, n− k + 1)(u)du+
n

k − 1
log 10l

∞∑
s=10l

log
s+ 1

s
(10l/(s+ 1))α

=
∞∑

t=10l

{
log

t+ 1

t

∞∑
s=t

log
s+ 1

s
(10l/(s+ 1))α − log(t+ 1) log

t+ 1

t
(10l/(t+ 1))α

}
× n

k − 1

∫ (10l/(t+1))α

0

β(k − 1, n− k + 1)(u)du+
n

k − 1
log 10l

∞∑
s=10l

log
s+ 1

s
(10l/(s+ 1))α

where in the last step, we change the summation and related arguments. Hence, we obtain

E(IC) =
∞∑

t=10l

{
log

t+ 1

t

∞∑
s=t

log
s+ 1

s
(10l/(s+ 1))α − log(t+ 1) log

t+ 1

t
(10l/(t+ 1))α

}
× n

k − 1

∫ (10l/(t+1))α

0

β(k − 1, n− k + 1)(u)du+
n

k − 1
log 10l

∞∑
s=10l

log
s+ 1

s
(10l/(s+ 1))α

+

∞∑
s=10l

{
(log(s+ 1))2 − (log s)2

}∫ (10l/(s+1))α

0

β(k, n− k + 1)(u)du+ (log 10l)2.



20 M. MATSUI, T. MIKOSCH, AND L. TAFAKORI

As for IB , by symmetry, we write

E(IB) =
(
2
∑
s<t

+
∑
s=t

)
log s log t E

[ ∫ (10l/(t+1))α

(10l/t)α

I{0≤x≤U(k)}

U(k)
dx

∫ (10l/(s+1))α

(10l/s)α

I{0≤y≤U(k)}

U(k)
dy

]
=: 2IB1 + IB2.

An analytical expression of IB1 is derived as

E(IB1) =
∞∑

s=10l+1

log s{(10l/s)α − (10l/(s+ 1))α}
s−1∑
t=10l

log tE

∫ (10l/t)α

(10l/(t+1))α

I{0≤x≤U(k)}

U2
(k)

dx

=

∞∑
s=10l+1

log s{(10l/s)α − (10l/(s+ 1))α}
s−1∑
t=10l

log t
n(n− 1)

(k − 1)(k − 2)

×
∫ 1

0

duβ(k − 2, n− k + 1)(u)
{
(10l/t)αI{(10/t)α≤u}

−(10l/(t+ 1))αI{(10/(t+1))α≤u} + uI{(10l/(t+1))α≤u≤(10l/t)α)}
}

=
∞∑

t=10l

log t
∞∑

s=t+1

log s
{
(10l/s)α − (10l/(s+ 1))α

}
×

[
n(n− 1)

(k − 1)(k − 2)

{
(10l/t)α

∫ 1

(10l/t)α
β(k − 2, n− k + 1)(u)du

−(10l/(t+ 1))α
∫ 1

(10l/(t+1))α
β(k − 2, n− k + 1)(u)du

}
+

n

k − 1

{∫ (10l/t)α

0

β(k − 1, n− k + 1)(u)du

−
∫ (10l/(t+1))α

0

β(k − 1, n− k + 1)(u)du
}]

=
∞∑

t=10l

[
log(t+ 1)

∞∑
s=t+1

log s{(10l/s)α − (10l/(s+ 1))α}

− log t
∞∑

s=t+1

log s{(10l/s)α − (10l/(s+ 1))α}
]

×

{
n(n− 1)

(k − 1)(k − 2)
(10l/(t+ 1))α

∫ 1

(10l/(t+1))α
β(k − 2, n− k + 1)(u)du

+
n

k − 1

∫ (10l/(t+1))α

0

β(k − 1, n− k + 1)(u)du

}

+
n

k − 1
log 10l

{ ∞∑
s=10l+1

log
s+ 1

s
(10l/(s+ 1))α + log(10l + 1)(10l/(10l + 1))α

}
=

∞∑
t=10l

{
log

t+ 1

t

∞∑
s=t+1

log
s+ 1

s
(10l/(s+ 1))α + (log(t+ 1))2(10l/(t+ 2))α

− log t log(t+ 1)(10l/(t+ 1))α
}
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×

{
n(n− 1)

(k − 1)(k − 2)
(10l/(t+ 1))α

∫ 1

(10l/(t+1))α
β(k − 2, n− k + 1)(u)du

+
n

k − 1

∫ (10l/(t+1))α

0

β(k − 1, n− k + 1)(u)du

}

+
n

k − 1
log 10l

{ ∞∑
s=10l+1

log
s+ 1

s
(10l/(s+ 1))α + log(10l + 1)(10l/(10l + 1))α

}
.

We consider the expression for E(IB2),

E(IB2) =

∞∑
s=10l

(log s)2E

∫ (10l/s)α

(10/(s+1))α
dx

∫ (10l/s)α

(10/(s+1))α
dy

I{0≤x≤U(k)}I{0≤y≤U(k)}

(U(k))2

=
∞∑

s=10l

(log s)2
n(n− 1)

(k − 1)(k − 2)

∫ 1

0

duβ(k − 2, n− k + 1)(u)

×
({

(10l/s)α − (10/(s+ 1))α
}
I{(10l/s)α≤u}

+
{
u− (10/(s+ 1))α

}
I{(10l/(s+1))α≤u≤(10l/s)α)}

)2

=
∞∑

s=10l

(log s)2
n(n− 1)

(k − 1)(k − 2)

∫ 1

0

duβ(k − 2, n− k + 1)(u)

×
({

(10l/s)α − (10/(s+ 1))α
}2

I{(10l/s)α≤u}

+
{
u− (10/(s+ 1))α

}2
I{(10l/(s+1))α≤u≤(10l/s)α)}

)
=

∞∑
s=10l

(log s)2
n(n− 1)

(k − 1)(k − 2)

{
(10l/s)α − (10/(s+ 1))α

}2

×
∫ 1

(10l/s)α
β(k − 2, n− k + 1)(u)du

+

∞∑
s=10l

(log s)2
n(n− 1)

(k − 1)(k − 2)

∫ 1

0

β(k − 2, n− k + 1)(u)du

×
{
u2 − 2u(10l/(s+ 1))α + (10l/(s+ 1))2α

}(
1{u≤(10l/s)α} − 1{u≤(10l/(s+1))α}

)
=

∞∑
s=10l

(log s)2
n(n− 1)

(k − 1)(k − 2)

{
(10l/s)α − (10/(s+ 1))α

}2

×
(
1−

∫ (10l/s)α

0

β(k − 2, n− k + 1)(u)du
)

+
∞∑

s=10l

(log s)2
∫ (10l/s)α

(10l/(s+1))2α
β(k, n− k + 1)(u)du

−2

∞∑
s=10l

(log s)2(10l/(s+ 1))α
n

k − 1

∫ (10l/s)α

(10l/(s+1))2α
β(k − 1, n− k + 1)(u)du
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+
∞∑

s=10l

(log s)2(10l/(s+ 1))2α
n(n− 1)

(k − 1)(k − 2)

∫ (10l/s)α

(10l/(s+1))α
β(k − 2, n− k + 1)(u)du

=

∞∑
s=10l

(log(s+ 1))2
n(n− 1)

(k − 1)(k − 2)

{
(10l/(s+ 1))α − (10/(s+ 2))α

}2

×
(
1−

∫ (10l/(s+1))α

0

β(k − 2, n− k + 1)(u)du
)

+
∞∑

s=10l

{
(log(s+ 1))2 − (log s)2

}∫ (10l/(s+1))α

0

β(k, n− k + 1)(u)du+ (log 10l)2

−2

∞∑
s=10l

{
(log(s+ 1))2(10l/(s+ 2))α − (log s)2(10l/(s+ 1))α

}
× n

k − 1

∫ (10l/(s+1))α

0

β(k − 1, n− k + 1)(u)du

+

∞∑
s=10l

{
(log(s+ 1))2(10l/(s+ 2))2α − (log s)2(10l/(s+ 1))2α

}
× n(n− 1)

(k − 1)(k − 2)

∫ (10l/(s+1))α

0

β(k − 2, n− k + 1)(u)du

−2(log 10l)2(10l/(10l + 1))α
n

k − 1
+ (log 10l)2(10l/(10l + 1))2α

n(n− 1)

(k − 1)(k − 2)
.

Substituting these integrals into (A.1) and putting together the coefficients of the two kinds of
incomplete beta functions, we obtain the desired result. �
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