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Abstract. We propose an exact simulation method for Brown-Resnick random fields, building
on new representations for these stationary max-stable fields. The main idea is to apply suitable
changes of measure.

1. Introduction

Max-stable random fields are fundamental building blocks for spatial extremes. These models
have been coined by de Haan [8], and have recently found applications to extreme meteorological
events such as rainfall modeling and extreme temperatures (Buishand et al. [2], de Haan and Zhou
[9], Dombry et al. [5], Davis et al. [3], Huser and Davison [10]). These processes are considered the
analogs of Gaussian processes in the world of extremes. There are three different kinds of max-
stable processes, with Gumbel, Fréchet, and Weibull marginals, respectively. In what follows, we
restrict ourselves to max-stable processes with Gumbel marginals; corresponding results for Fréchet
and Weibull marginals can be obtained by a monotone transformation of the Gumbel case.

This paper studies a particular class of max-stable random fields known as Brown-Resnick random
fields. Simulation of these and related processes is complicated, and an extensive literature has been
devoted to approximate simulation; see for example Schlather [17], Oesting et al. [14], Engelke et
al. [7], Oesting and Schlather [15], Dombry et al. [5].

This paper is the first to devise an exact simulation method for Brown-Resnick random fields.
The key ingredient is a new representation for Brown-Resnick random fields, which is of independent
interest. In fact, we show that there is an uncountable family of representations. At the heart of
our derivation of these representations lies a change of measure argument.

We now describe the results in this paper in more detail. For some index set T ⊂ Rd, the process
(Y (t))t∈T of non-negative random variables is max-stable (with Gumbel marginals) if for a sequence
of iid copies (Y (i)(t))t∈T , i = 1, 2, . . ., of (Y (t))t∈T the following relation holds(

max
i=1,...,n

Y (i)(t)− log n
)
t∈T

d= (Y (t))t∈T , n ≥ 1 ,

where this relation is interpreted in the sense of equality of the finite-dimensional distributions.
Then, in particular, all one-dimensional marginals of the process (Y (t))t∈T are Gumbel distributed,
i.e., Y (t) has distribution function Λ(x−c(t)) = exp(−e−(x−c(t))), x ∈ R, for some function c(t) ∈ R,
t ∈ T . Throughout this paper, we work with T = Rd.

In this paper, we consider a class of max-stable processes with representation

η(t) = sup
i≥1

(
Vi +Wi(t)− σ2(t)/2

)
, t ∈ Rd ,(1.1)

where σ2(t) = Var(W1(t)), t ∈ Rd, (Wi) is a sequence of iid centered Gaussian processes with
stationary increments on Rd, and (Vi) are the points of a Poisson process on R with intensity
measure e−x dx. In the case of a Brownian motion, the process (1.1) was considered by Brown and
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Resnick [1] and shown to be stationary. It is common to refer to the more general model (1.1) as
Brown-Resnick random field as well.

The representation (1.1) is not particularly suitable for exact sampling. Although (Vi) and (Wi)
are easily simulated, it turns out that the naive simulation approach of replacing supi≥1 by supi≤N
for some large N , may fail. For example, assume that Wi is standard Brownian motion on R.
Then, in view of the law of the iterated logarithm, each of the processes Wi(t) drifts to −∞ a.s.
as t → ∞. In turn, the process supi≤N

(
Vi + Wi(t) − σ2(t)/2

)
drifts to −∞ as t → ∞ as well. In

particular, the simulation of η requires an increasing number N if one aims at a sample path of the
process on a larger interval. More importantly, it is unclear how N should be chosen.

Using our new representations, we obtain an exact sampling method for η at the points t1, . . . , tn ∈
Rd, meaning that the output of the method has the same distribution as (η(t1), . . . , η(tn)). In our
method, it is no longer problematic that the processes Zi(t) drift away to −∞.

Several properties of Brown-Resnick processes readily follow from our representations, although
they are not straightforward to see from (1.1). For instance, the process η is stationary in the sense
that η has the same distribution as η(·+ c) for any choice of c ∈ Rd. Moreover, the process η also
has Gumbel Λ marginals. In deriving our representations from (1.1), σ2 drops out and we recover
the known fact that the law of η only depends on the variogram

γ(t) =
1
2

E(W (t)−W (0))2 , t ∈ Rd.

These properties were proved in Kabluchko et al. [11] with arguably more elaborate techniques.
Given an exact simulation method for the Brown-Resnick process with Gumbel marginals, we also

have an exact simulation method for this process with Fréchet or Weibull marginals. For example,
the processes e η and −e−η have Fréchet Φ1(x) = e−x

−1
, x > 0, and Weibull Ψ1(x) = e−|x|, x < 0,

marginals, respectively.

Notation. We use the symbols W1,W2, . . . for iid centered Gaussian random fields with stationary
increments, variance function σ2, and variogram γ. We use the symbols Z1, Z2, . . . for iid Gaussian
random fields with stationary increments, mean function −γ, variance function 2γ, and variogram
γ. A generic copy of these fields is denoted by W and Z, respectively.

2. Representations

In this section we provide new representations for the Brown-Resnick random field η given in
(1.1). These representations arise from a change of measure. We make the same assumptions on
the stationary Brown-Resnick process as in the previous section. All proofs for this section are in
Section 5. We fix the functions σ2 and γ throughout this section.

The following theorem is the main result of this section.

Theorem 2.1. Suppose we are given an arbitrary probability measure µ on Rd. Consider

ζ(t) = sup
i≥1

(
Vi + Zi(t− Ti)− log

( ∫
Rd

exp
(
Zi(s− Ti)

)
µ(ds)

))
, t ∈ Rd ,

where
(
(Vi, Ti)

)
i≥1

are the points of a Poisson process on R× Rd with intensity measure e−xdx×
µ(ds). Then the random fields (η(t))t∈Rd and (ζ(t))t∈Rd have the same distribution.

Remark 2.2. There is a continuum of random fields with the same distribution as η, one for each
measure µ.

Remark 2.3. Oesting et al. [14] provided various alternative point process representations of the
Brown-Resnick process. In particular, they proposed to introduce random time shifts of the pro-
cesses Wi and used this idea to derive approximate sampling methods for η. Their representations
are different from ours.
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Remark 2.4. If σ2/2 = γ, then (Wi(t − Ti)) has the same distribution as (Wi(t) −Wi(Ti)). The
term Wi(Ti) drops out of the expression for ζ, so in that case the random field

sup
i≥1

(
Vi +Wi(t)− γ(t− Ti)− log

( ∫
Rd

exp
(
Wi(s)− γ(s− Ti)

)
µ(ds)

))
, t ∈ Rd ,

also has the same distribution as (η(t))t∈Rd .

Theorem 2.1 leads to the following three well known facts proved in Kabluchko et al. [11].

Corollary 2.5. The field η is stationary.

Proof. Let µ be a Dirac point mass at some arbitrary t∗ ∈ Rd. Theorem 2.1 implies that the
random field (supi≥1(Vi + Zi(t − t∗)))t∈Rd has the same distribution as (η(t))t∈Rd . In particular,
the distribution does not depend on t∗. �

Corollary 2.6. The one-dimensional marginals of (η(t))t∈Rd have the Gumbel distribution.

Proof. If we let µ be a point mass as in the proof of the preceding corollary, then we find that η(t)
has the same distribution as supi≥1 Vi for every t ∈ Rd. �

Corollary 2.7. The distribution of (η(t))t∈Rd only depends on the variogram γ.

Proof. Since the processes Zi are completely determined by γ, the law of (ζ(t))t∈Rd depends only
on γ. Theorem 2.1 therefore immediately yields the claim. �

There are some interesting connections between Brown-Resnick random fields and familiar quan-
tities in extreme value theory, which simply follow from the known finite-dimensional distribution
functions of such fields. Details on this distribution function can be found in Section 5 (specifically
Lemma 5.1); for now, we note that if η is stochastically continuous we have, for any N > 0,

P
(

sup
t∈[0,N ]d

η(t) ≤ x
)

= exp
(
− e−x E exp

(
sup

t∈[0,N ]d
Z(t)

))
, x ∈ R ,

and therefore

P
(

sup
t∈[0,N ]d

η(t)− d logN ≤ x
)

= exp
(
− e−xN−d E exp

(
sup

t∈[0,N ]d
Z(t)

))
, x ∈ R .

Dieker and Yakir [4, Cor. 1], show that the set function

f(A) = E exp
(

sup
t∈A

Z(t)
)
, A ⊂ Rd

is translation invariant: f(A) = f(t+A) for t ∈ Rd. (They only write out the one-dimensional case,
but the multidimensional case follows from exactly the same arguments; it is based on Lemma 5.2
below.) Moreover, f is subadditive in the sense that f(A1 ∪ A2) ≤ f(A1) + f(A2) for disjoint
subsets A1, A2 ⊂ Rd. A basic fact about such functions (e.g., Xanh [18]) is that f(A) grows like
the Lebesgue measure of A for large sets A. In particular, this result implies that the limit

lim
N→∞

N−d E exp
(

sup
t∈[0,N ]d

Z(t)
)

exists. This quantity is known as Pickands’s constant. The numerical determination of this constant
and the simulation of the Brown-Resnick process η suffer from the same problems mentioned in the
Introduction. Dieker and Yakir [4] proposed a Monte Carlo method for determining the Pickands
constant.

The discrete analogs of Pickands’s constant are connected to extremal indices of the Brown-
Resnick processes. Assume d = 1 and consider a Brown-Resnick process (η(t))t∈R. Its restriction
to the integers yields a strictly stationary time series (η(i))i∈Z. For x ∈ R we have

P
(

max
i=1,...,n

η(i)− log n ≤ x
)

= exp
(
− e−xn−1E

[
max
i=1,...,n

e Z(i)
])
.
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This leads to the limit relation

lim
n→∞

P
(

max
i=1,...,n

η(i)− log n ≤ x
)

= Λθ(x) , x ∈ R ,

where the limit

θ = lim
n→∞

n−1E
[

max
i=1,...,n

e Z(t)
]

exists by subadditivity and translation invariance as in the continuous case. It is well known (see
Leadbetter et al. [13], cf. Section 8.1 in Embrechts et al. [6]) that θ is a number in [0, 1]. The quantity
θ is the extremal index of the stationary sequence (η(i))i∈Z. The reciprocal of this quantity is often
interpreted as the expected value of the cluster size of high-level exceedances of the sequence (Xi);
see for example [13]; cf. Section 8.1 in [6]. The constant θ appears in Dieker and Yakir [4] as a
special case of the constants ηHηα; see Proposition 3 in [4] for a characterization alternative to the
extremal index. Although we do not have a proof that θ is smaller than Pickands’s constant in the
continuous-time case, simulation evidence indicates that this fact is true.

3. A simulation algorithm

This section presents a simulation algorithm for Brown-Resnick random fields on a discrete set
of points t1, . . . , tn ∈ Rd. We may assume that σ2/2 = γ in this section. Since Theorem 2.1 gives
a different representation for each choice of µ, it would be interesting to know which choice leads
to the fastest algorithm. Here we simply let µ be uniform on {t1, . . . , tn}.

Remark 2.4 shows that the vector (N(t1), . . . , N(tn)) with, for j = 1, . . . , n,

N(tj) = sup
i≥1

(
Vi +Wi(tj)− γ(tj − Ti)− log

(
n−1

n∑
`=1

exp(Wi(t`)− γ(t` − Ti))
))

has the same distribution as (η(t1), . . . , η(tn)), where
(
(Vi, Ti)

)
i≥1

belong to a Poisson process on
R× {t1, . . . , tn} with intensity measure e−xdx×

(
n−1

∑n
i=1 δti(dy)

)
. We slightly rewrite the above

display as

N(tj) = sup
i≥1

(
Vi + log n+Wi(tj)− γ(tj − Ti)− log

( n∑
`=1

exp(Wi(t`)− γ(t` − Ti))
))

.

This is the representation we use for our simulation algorithm.
A point Vi on R gives rise to a ‘cluster’ of points {Ci(tj) : j = 1, . . . , n} with

Ci(tj) = (Vi + log n) +Wi(tj)− γ(tj − tTi)− log
( n∑
`=1

exp(Wi(t`)− γ(t` − tTi))
)
.

These cluster points can be visualized by interpreting them as belonging to different levels depending
on the value of j; see Figure 1. The variable N(tj) = supi≥1Ci(tj) is then the maximum of all
cluster points on the j-th level. The crucial insight is that only a finite number of points/cluster pairs
(Vi, Ci) need to be generated, since Ci(tj) ≤ Vi + log n and we seek supi≥1Ci(tj) for j = 1, . . . , n.
The algorithm generates points/cluster pairs (V +log n,C) in decreasing order of (V +log n)-value,
until the next (V + log n)-value is smaller than the current maximum over the cluster points on
each level. For instance, in Figure 1, after V3 + log 4 has been generated, none of the remaining
cluster points can change the values of (N(t1), . . . , N(t4)), which have been given a different color.

We remark that this algorithm is suitable for parallelization. Indeed, several points of the V -
process can be generated simultaneously instead of one at the time, with corresponding clusters
being computed on different processors.

To get a sense of how many points of V will be generated, let us consider the (degenerate) case
where t1 = · · · = tn = t. We then have Ci(tj) = Vi for j = 1, . . . , n, so the algorithm terminates
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Figure 1. Illustration of our algorithm for n = 4. The points Vi + log 4 are
generated in decreasing order. Each ‘level’ below the axis represents a value of j,
and each (Vi + log 4)-point is connected to its cluster points Ci(tj). The cluster
points Ci(tj) always lie to the left of Vi + log 4.
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Figure 2. Sample of a Brown-Resnick random field on [0, 5]2 with variogram γ(t) =
|t|α/2 for α = 1/2, α = 1, α = 3/2 from left to right, respectively. The grid mesh is
0.1.

after generating inf{M : VM + log n < V1} points of V . For large n, this implies that the number
of points is of order n.

4. Numerical experiments

This section reports on several simulation experiments we have carried out in order to validate our
algorithm and to test its performance in terms of speed. Throughout, we work with Brown-Resnick
random fields with variogram γ(t) = |t|α/2 for some α ∈ (0, 2].

Smoothness. We have implemented the algorithm in R (see [16]) in order to leverage the existing
toolkit to generate the Gaussian random fields that are needed in our algorithm. We use the R
package RandomFields by Schlather et al., which is available through R’s package manager. Three
representative samples of Brown-Resnick random fields are given in Figure 2, with various levels
of a smoothing parameter α. We see that the paths become rougher as α decreases, as it should
be. The random field is the maximum of random ‘mountains’ (given by quadratic forms) if α = 2,
and our replication for α = 3/2 exhibits similar behavior in the sense that two mountains can be
distinguished.
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Figure 3. Representative samples of a Brown-Resnick process on [0, 1] with vari-
ogram γ(t) = |t|/2.
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Figure 4. A representative Q–Q plot illustrating the equality of the marginal distributions.

Marginal distributions. The experiments in the rest of this section are for the one-dimensional
case d = 1 for computational ease. We generate the Gaussian processes with the recent Matlab
implementation by Kroese and Botev [12]. Appendix A has the details.

Figure 3 depicts some representative samples for α = 1. Note that it indeed appears that these
are realizations of a stationarity process even though our algorithm does not require truncating the
number of Gaussian random field samples if one aims at a sample path of the process on a larger
interval.

We have generated 1000 iid replications of the vector (η(0), η(1/1024), . . . , η(1 − 1/1024)) for
α = 1. Figure 4 compares the empirical quantiles of η(0) and η(1 − 1/1024). Note that the
distribution of both these variables is the standard Gumbel distribution, and the Q–Q plot supports
that the simulated distributions are indeed equal.

Max-stability. The max-stable property of η implies that (η1)t∈Rd and (max(η2, η3)− log(2))t∈Rd

have the same distribution. Interpreting η as a vector, we verify the equality of the distribution of
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Figure 5. Q–Q plot illustrating the max-stable property of our simulation output.
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Figure 6. Box plot showing the dependence of α on the algorithm’s running time
(in seconds). The edges of the box are the 25th and 75th percentiles.

‖η1‖ and ‖max(η2, η3)−log(2)‖, where η1, η2, η3 are iid and the maximum is taken component-wise.
Using our 1000 replications, we get a total of 333 samples from ‖η1‖ and 333 from ‖max(η2, η3)−
log(2)‖. The resulting Q–Q plot is given in Figure 5.

Speed. An interesting question is the relationship between the smoothness parameter α and the
speed of the computer code. The computational effort needed to generate a sample from the
underlying Gaussian process is independent of α in our implementation. However, the dependency
structure may influence the number of points Vi that need to be generated for a single replication
of the Brown-Resnick process, thereby impacting the speed of our algorithm.

To investigate the influence of α on the algorithm speed, we generated 1000 replications of
(η(0), η(1/1024), . . . , η(1−1/1024)) on a single core of a 2.7 GHz Intel Core i7 processor for various
values of α. A sample is generated in the order of seconds regardless the value of α. The running
time depends linearly on the number of points Vi that are generated by the algorithm, which is
different for different samples. The results are summarized in the box plot in Figure 6. The data
gives evidence that rougher paths are harder to simulate, which suggests that the order n bound
derived in Section 3 is in fact a lower bound on the number of Vi points that need to be generated.
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In the code used for Figure 6, we preprocess some of the computations required for sampling the Wi.
This results in significant savings. We have not included this code in Appendix A for expository
reasons.

5. Proofs

This section presents the proof of Theorem 2.1 We fix the functions σ2 and γ throughout this
section. Contrary to the preceding two sections, we do not assume that γ = σ2/2 but we shall see
that the function σ2 vanishes from our calculations.

We start with an auxiliary lemma. The proof uses standard arguments, but we include it for
completeness; see also de Haan [8] and Kabluchko et al. [11].

Lemma 5.1. Let (Xi) be iid copies of some random field X on Rd and (Vi) the points of a Poisson
process on R with intensity measure e−x dx. If we write

ξ(t) = sup
i≥1

(Vi +Xi(t)) , t ∈ Rd ,

then we have for yj ∈ R , tj ∈ Rd , i = 1, . . . , n,

P(ξ(t1) ≤ y1, . . . , ξ(tn) ≤ yn) = exp
(
− E exp

(
max

j=1,...,n
(X(tj)− yj)

))
.

Proof. We observe that

P(ξ(t1) ≤ y1, . . . , ξ(tn) ≤ yn) = P
(

max
j=1,...,n

sup
i≥1

Γ−1
i exp

(
Xi(tj)− yj

)
≤ 1
)
,

where 0 < Γ1 < Γ2 < · · · are the ordered points of a unit rate Poisson process on (0,∞) independent
of (Xi). We write N(t) = #{i ≥ 1 : Γi ≤ t}, t > 0. Then an application of the order statistics
property of N implies that

P(ξ(t1) ≤ y1, . . . , ξ(tn) ≤ yn)

= lim
t→∞

E
[
P
(

max
j=1,...,n

sup
i≤N(t)

Γ−1
i exp

(
Xi(tj)− yj

)
≤ 1 | N(t)

)]
= lim

t→∞
E
[
P
(

sup
i≤N(t)

(tβi)−1 max
j=1,...,n

exp
(
Xi(tj)− yj

)
≤ 1 | N(t)

)]
= lim

t→∞
E
[(

P
(

(tβ1)−1 max
j=1,...,n

exp
(
Xi(tj)− yj

)
≤ 1
))N(t)]

,

where (βi) is an iid sequence of uniform random variables on (0, 1) independent of (Xi) and N .
Now direct calculation shows that the right-hand side equals

lim
t→∞

exp
(
−
∫ t

0
P
(

max
j=1,...,n

exp
(
Xi(tj)− yj

)
> z
)
dz
)

= exp
(
−
∫ ∞

0
P
(

max
j=1,...,n

exp
(
Xi(tj)− yj

)
> z
)
dz
)
,

as claimed. �

The following change of measure lemma plays a key role in our argument, and shows why the
variance function σ2 vanishes from the calculations. It is a variant of Lemma 1 in Dieker and
Yakir [4]. We only sketch the key idea of the proof insofar as it highlights the differences with [4],
since the lemma follows from the same arguments as given there.

Lemma 5.2. Fix t ∈ Rd. For a measurable functional F on (Rd)R that is invariant under addition
of a constant function, we have

EeW (t)−σ2(t)/2F (W − σ2/2) = EF (θtZ),
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where the shift θt is defined through (θtZ)(s) = Z(s− t).

Proof sketch. Set Q(A) = E[eW (t)−σ2(t)/21A], and write EQ for the expectation operator with respect
to Q. In this sketch, we first show that W (s) − σ2(s)/2 under Q has the same distribution as
W (s)−γ(s−t)+σ2(t)/2 under P. The full proof requires doing this calculation for finite-dimensional
distributions to conclude that (W (s)−σ2(s)/2)s∈Rd under Q has the same distribution as (W (s)−
γ(s − t) + σ2(t)/2)s∈Rd under P, but doesn’t require additional insights. We compare generating
functions: for any β ∈ R,

log EQ exp
(
β(W (s)− σ2(s)/2)

)
= −1

2
σ2(t)− β

2
σ2(s) +

1
2

Var [W (t) + βW (s)]

= −β
2
σ2(s) + βCov(W (t),W (s)) +

1
2

Var [βW (s)]

= β

[
1
2
σ2(t)− γ(s− t)

]
+

1
2

Var [βW (s)]

= βE
[
W (s)− γ(s− t) +

1
2
σ2(t)

]
+
β2

2
Var

[
W (s)− γ(s− t) +

1
2
σ2(t)

]
.

Since F is translation invariant, the F -value of (W (s)−γ(s− t)+σ2(t)/2)s∈Rd must be the same as
the F -value of (W (s)−W (t)−γ(s− t))s∈Rd . The latter has the same distribution as (Z(s− t))s∈Rd ,
which yields the claim. �

Proof of Theorem 2.1. Let ti ∈ Rd , i = 1, . . . , n and yi ∈ R , i = 1, . . . , n be arbitrary. From
Lemma 5.1 with Xi = Wi − σ2/2 we deduce that

P(η(t1) ≤ y1, . . . , η(tn) ≤ yn) = exp
(
− E exp

(
max

j=1,...,n
(W (tj)− σ2(tj)/2− yj)

))
.

Suppose that µ is an arbitrary probability measure on Rd. Applying Lemma 5.2 with

F (x) =
maxj=1...n exp(x(tj)− yj)∫

Rd exp(x(s))µ(ds)
,

we find that

E exp
(

max
j=1,...,n

(W (tj)− σ2(tj)/2− yj)
)

=
∫

Rd

E
[

exp(W (t)− σ2(t)/2)
exp

(
maxj=1,...,n(W (tj)− σ2(tj)/2− yj)

)
∫

Rd exp(W (s)− σ2(s)/2)µ(ds)

]
µ(dt)

=
∫

Rd

E
[exp

(
maxj=1,...,n(Z(tj − t)− yj)

)∫
Rd exp(Z(s− t))µ(ds)

]
µ(dt)

= E
[exp

(
maxj=1,...,n(Z(tj − T )− yj)

)∫
Rd exp(Z(s− T ))µ(ds)

]
,

where T has distribution µ and is independent of Z. Applying Lemma 5.1 with

Xi(t) = Zi(t− Ti)− log
(∫

Rd

exp(Zi(s− Ti))µ(ds)
)

shows that
P(η(t1) ≤ y1, . . . , η(tn) ≤ yn) = P(ζ(t1) ≤ y1, . . . , ζ(tn) ≤ yn).

This yields the claim of Theorem 2.1. �
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Appendix A. Computer code

This Matlab code is for 1-dimensional parameter spaces, but it is almost immediately adaptable
for use with random fields due to Matlab’s capabilities to work with multidimensional arrays. We
present the Matlab code here since it can be read as pseudo-code, while reading the R code requires
some knowledge of R objects designed for spatial data.

function res = generate cluster(n,V)

T = floor(n*rand());

W = generateWwithdriftandcenter(T);

res = V + W - log(sum(exp(W)));

end

function supremum = maxstable(n)

supremum = -Inf(n,1);

expminusV = -log(rand())/n;

C = generate cluster(n,-log(expminusV));

while ( min(max(supremum, C)) < -log(expminusV) )

supremum = max(supremum, C);

expminusV = expminusV - log(rand())/n;

C = generate cluster(n,-log(expminusV));

end

supremum = max(supremum, C);

end
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