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Let X, =2f _ .. W Z,_, be a discrete time moving average process based on i.i.d. symmetric random
variabies {Z,} with a common distribution function from the domain of normal atiraction of a p-stable
law (0<p <2). We derive the limit distribution of the normalized periodogram [, yx(A)=
In"/” Y . X, 7|2, —w = A = 7. This generalizes the classical result for p = 2. In contrast to the classical
case, for values 0< Ay << A, <mthe periodogram ordinates I, v (A;), i=1,..., m, are not asymptoti-
cally independent.
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moving average processes * general linear model * stable processes * stable laws = spectral estimate *
periodogram * characteristic function = spectral measure

We consider the discrete time moving average nrocess
X= Y ¢z, t=0,%1,%2,. ., (1.1)
j=—oc

where (Z,),.z is a noise sequence of independent identically distributed (i.i.d.)
symmetric random variables (r.v.’s) with common distribution function (d.f.) in the

domain of normal attraction of a p-stable d.f. for some pe(0,2) (Z,€ DNA(p)).

- . . .. . ity —d||P
Equivalently, there exists a r.v. Y, with characteristic function (ch.f.) E ¢ =¢ "
for some p<(0,2) and some d >0 such that

" d
n"'""N 72, 5 Y, nox, (1.2)
r=1
where 5 denotes convergence in distribution. This implies for the tail probabilities
nf 7 tha at PHZ1l>y)V~ry P ag ¥y >0 for came nagitive caonctant ¢ and hence 7
of Z, that P({Z|>x}~¢x 7 as x>0 for some positive constant ¢ and hence Z,
has infinite variance. For more information on p-stable d.f.’s and their domains of

attraction we refer to Ibragimov and Linnik (1971) or Petrov (1975).
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periodogram ordinates

n
Lx(W)=[n""" T X, e, —m<ism,
t =

S LS IR | e

fortim Notice that for p =2 this is the usual periodogram
~

r time series (1.1) satisfyir
which is a fundamental tool of statistical mference based on frequency domain
properties of the underlying time series. In that case the following result is well-
known and can be found e.g. in Brockwell and Davis (1987, Chapter 10). Because

of the symmetry of I, x we can restrict ourselves to frequencies in [0, w].

Theorem A. Suppose X oz Satisfies (1.1) where (Z,),.; is a sequence of i.i.d. mean
o0
zero r.v.’s with EZ}= o> 0 and Y. .\l <co. Then for A € (0, ),

(A)+op(l) St 2af (A (NT+HN3), nox,

FXN

ll/()\) _ ._2:; d’j e\i)\_i’

1, > denotes the periodogram of (Z,),cz, fx is the spectral density of (X,),cz and Ny,
N, are i.i.d. normal r.v.’s with mean zero and variance 5. Moreover, for any values

0<A,<:--<A, < the periodogram ordinates I, x (A;) are asymptotically indepen-
dent with mean 2mfy(A;) fori=1,... m. O

In classical theory Theorem A is applied to estimate the spectral density fy (A) =

|l/\\|

[p{AN 0'2/(211'). This is done via smoothing techniques where the asympiotic

d pendence of lnﬂX(A} for alnerem IrequenCles A plays a cenirai role.

In the infinite variance case the classical spectral density does not exist. For
so-called harmonizable processes Hosoya (1978) introduced a spectral density via
the ch.f’s of the finite-dimensional distributions of the process. These processes
permit a representation

X, =J e dY ()

-



w otion {Y{x 1) Thus harmonizable nrocesses are
W otion ( Y(A))_.<.<x- 1hus harmonizable processes are
nracacces having nita varianca [ Infartunataly nr
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cesses and mo v1ug average procCesses arc distinct classes
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nougn or pQL dgdll’l different normalized perlouogrdm ordinaies are not

asympioticaily independent they at least are pairwise uncorreiated and have
exponentiaily fast decreasing tails. This, as can be shown, suffices to construct
apply these results to derive a Whittle type

consistent estimators for [(1)]°. We
estimator for parameter estimation in finite ARMA models (Klippelberg and
Mikosch, 1992b).

For the present paper we have decided to investigate the mathematical properties
of I, x(A).

Our paper is 0 : sults
which generalize Theorem A to moving average processes ( ),LZ satlsfymg (1.1)
and (1.2). For instance we shall show that for any frequency A which is an irrational

multiple of 27,
L) S OPS(NI+ N2, noo,

where S, N,, N, are independent r.v.’s, S is positive (3p)-stable and N,, N, are
1.1..d. normal. In Section 3 we introduce some concepts which will be needed due
to the fact that we cannot use Hilbert space methods as in the finite variance case.

Ty 1

We shall prove our resulis in Seciion 4. Finaliy, in order to demonstrate the

Thrantohnant thic gantinn wa cancider tha maving avarass mrnooce | 3 with a
EERIVJLAZNINIUIL LILEAD OVWLALIVIL WL LULISIVILE LIfL lllUVllls avuxasb PlU\t\-bb \/‘f}IEZ ywitii a
noise sequence (Z,),. such that Z, e DNA(p) for some p € (0, 2). We also introduce
. . Y —dir
a sequence (Y,),.z of i.i.d. p-stable r.v.’s with ch.f. Ee' "' =e " for some d >0
A FGTSY +1 - o« —
According to the 3-series theorem {e.g. Petrov, 1975) the series },,__ . ¢,Z; converges
as.ifand only !fT’ I 1P < 0o, On the nﬂf\pr hand, to nrove Proposition 2.1 below
J L j=—0C ¥ T T RS VEAT RRAERE At Ty MV opor v Y e it

i ammad Al e TOX [T R S T+ T S , i
WwWC 11CCd Lat L/:' . ,| =~ FICNCC WE sndil alwdys dassume indt

oc

pat
Y |l <eo (2.1)
j=—o
Foranysequenceof rv.’s{(A), -, A, c DNA(p), pc (0, 2], we define its renormalized
J 1 Ay trie s i TAERNE S NV &gy TV e RN AR ~ v
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Fourier transform by

H .’}-\.—iil/n‘?‘ A o WA — i A
“n,A\'\I;" L, ‘3 © s T =A=17.
t=1
Then the periodogram of (A,),.z is given by
2_

LA = A0 =T A a(=2).

Again by symmeiry of i, 4 we can resirict ourselves to frequencies A € [0, 7]
The following is analogous to the finite variance case (cf. Theorem A).

Proposition 2.1. Suppose (X,),.z satisfies (1.1) with (1.2) and (2.1). Then
InX(A):I(//(A)lzln,Z(A)+Rn()‘),

where maxg<,~. P(|R,(A)|>¢&)—>0 as n—>co for every £ > 0.

Since we are interested in the asymptotic behaviour of I, x we have to investigate
the limit distribution of I, >. The next result is a first step in this direction

0<A, < - <A, <m,

(IH.Z(/\]), et In,Z(/\m)) g (In.Y(Al)+0P(1), ey In,Y(Am)_FOP(l)), n—>00.
The periodogram I, y(A) can be explicitly calculated as follows:

Loy(WM) =0y MP=n"Y" % ¥ Y,Y,cosA(t—s)

i=1s=1

n 2 n 2
=(n‘”” ¥ Y,cosAt) +<n_'/” Y Y,sinx\t)

t=1 t=1

= ai(A)+Bi(A).

By p-stability and independence of the Y|, t€ Z, we conclude that

1 n i/p
a,(A)y=n""r Z Ycos)\t—( 5y lcosAt|”) Y.,
n

i

(\=n""7 3

so that we might expect that the vector (a,(A), 8,(A)) is p-stable in R? for each
neN. This is indeed true as will be seen later; but first we recall the definition of

a p-stable random vector:



<+ - <A, <. There wiii be a cruciai difference beiween irequencies A which are

rational multiples of 7 and those which are irrational multiples of . Therefore we

write in the sequel A = 2w where w € (0, 3) for any frequency A € (0, w). Moreover,

for the vector (A, ..., A,), A, €(0,w), t=1,..., m, we rearrange the corresponding

vector (@, ..., w, ) such that the first g (0=g=m) components w,, ..., w, are

irrational and w,.,,..., @, are rational numbers. We say that the real numbers
e

{a. red \] aAr I’lnﬂnrl'w donondgdent nney LD ‘/ ne ratin ﬂi T thTC\‘ If‘fhPrP evict 7. & ﬁ
{a;, , a,,) are linearly dependent over Q (the rational numbers) if there exist g, € Q,
i=1 m cuch that 0=a.a0.+- +a. n and linearly indenendont over O
i=1,...,m, such that 0=g,a,+ gma,,, and linearly independent over @
otherwise.
Thenre: 7 4 Sunnneo { Y Y — Vi v Yio s noctornfdictinet fromionrios
Theorem 2.4, Suppose (A, ..., A,)=2w(w,,..., w,) isavectorof distinct frequencies
N . . . 1
such that w,, ..., w, are irrational and w,,, ..., w, are rational numbers in (0,3

Jor some g €[0, m]. Denote by g the least common denominator of w 1, . .., @, such
that m, = u,/ g for certain integers u, and t=g-+1__  m Then

and the vector (a(A,), B(A,)),=, . has the chf.

E exp{i T (8.a(A)+ 0,,3(;\,))} = exp{—dK, (8, 9))

t=1

where K, (8, &) is defined below.
(i) Suppose 1, w,, ..., w, are linearly independent over Q. Then

K, (8, 9)

1 &t q
==Y J' Y (8, cos(2mx,)+ &, sin(27wx,))
o,

gh=0 t=1



,\(63 {)
1 g=1 G { } q
=i oL L L | |2 (8 cos2mx,)+F sin(2mx, )
BYEC) \eZ1) h=0r=1 JY, l1=1
m / / I N\
R~ T P AP LR
+ 2 {0, COS{ 2T U |
r=g+1 \ A\ g /
(22 )
+ &, sinl 2 —u, d£9 % (x),
: ; e (x),
\ g //I
where ¥,, ..., % are the (q— v)-dimensional linear manifolds in [0, 1 )4 defined in
Section 3.3, and £!7° denotes the (q—v)-dimensional Lebesgue measure on %,
r=1, , G. Furthermore, <, , £ have the same (q —v)-dimensional Lebesgue
measure.

is not difficult to see that, after an appropriate coordinate transformation in

(@A), B v m 2 (a(A,+h), BA ARy

provided h is a rational multiple of 21 or the components of the w-vector correspond-
ing to (A, +h, ... A, +h) are also linearly independent over Q.

Now we want to derlve the limit distribution of the one-dimensional periodogram
ordinate I, x(A). Suppose A =2mnw, w € (0,3). From Theorem 2.4 we obtain

Lx() % WO’ +B7A)), n>c.

If w is irrational, then the vector (a(A), B(A)) has the ch.f.

1

E exp{i(6a(A)+3B(A))} = exp{—d J |8 cos 2mwx + & sin 2w x|” dx}.

0

lllllUUU\,lllg bpllCllbal bUUlUllldle wco Iiiay WllLC

(8, 9)=v8>+ 9%(cos ¢, sin ¢) forsome ¢ = (8, ).
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Then, using sum formulas for trigonometric functions we obtain

(1 1 “-n-

I 1S pne ey L .8 cin D2=xl? dx = /Qz €+ -QZ\”/ =1 leas xI7 dy

| 19 €05 2TX T W SIN LTX| - ] ifos Xy Cx

Jo wJo
e 4 s ! ot P ™2 PR I !
IT we denote by 3 1he unii circie in i and by / the uniform distribution on § 5
we can rewrite the above integral

[ . 1/ 8\ /y\I”

b 18 cos?2rx+ S sin2ax!? dx =1 I I Vo d-N (v, v)

{ 19 C0s amX T ¥ s AwX) OX Ul ad VL1 88UV

Jo JsTINY/ N2/

This implies that (a(A), B(A)) is an isotropic p-stable vector in R%; i.e. the distribution
of (a(A}, B(A)) is invariant under rotation. Consequently, there exist independent
r.v.’s S, N, and N, where S is positive (3p)-stable and N;, N, are i.i.d. normal r.v.’s
such that

(a(n), B(A) L(S'?N;, §'°N,

)
The vector (SY2N,, §Y2N,) is also called sub-Gaussian (Samorodnitski and Tagqu,
1991).
Next we consider w rational, say w = u/g with u, g € N relatively prime. Then the
vector (a(A), B(A)) has the ch.f.

E exp{i(da(A)+98(1))}

] cos<21-r ) + 9 sm(2 t)
g g

Al .
aiscrete uni

p}. (2.2)

——
g =0
T stoa Im spec
R~ with mass d/g at the points (cos 2wt/ g sin2wt/g), +=0,..., g —1. Moreover,
(2.2) is the ch.f. of the convolution of the independent random vectors
(Y "7 cos2nt/e, Y, '7sin Zﬂn't/g\) t=0,...,g~1, where Y, t=0,...,g—1,
are i.i.d. p-stable r.v.’s with ch.f. E ¢®Yo=¢ /",

We summarize the above facts in a theorem which should be compared with

Theorem A in Section 1 (see Remark 1 below).

-l TP, 3

Theorem 2.5. Suppose A = 27w, w € (0,

y. Then
Lx(0) S g (0)P(e’(A)+B3(A)), n—>o,

where (a(X), B(A)) is a p-stable random vector in R’
() If wis irrational then (a(A), B(A)) has a uniform spectral-measure on the unit circle

Il

In,xu)i»iw(MPS(N%N%), n >0

s

where S, N, and N, are independent r.0.’s, S is positive (1p)-stable with Laplace transform
Ee ®=c¢ "7 t>0,and N;, N> are i.i.d. N(0, 2((d/w) [ |cos x| dx)>'?) r.os
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() I wW=u/g win U, gcN reianoety prime, mnen \(lA}, PLA}) nas a discreie

uniform spectral-measure on the unit circle S'. Moreover, we can write

where Y, t=0,..., g1

Notice that Theorem 2.5. formally includes Theorem A of Section 1 in the sense
that for p =2 for irrational « the stable variable S degenerates to 1 and for rational
w the limit r.v. is exponentially distributed (see also (2.3) below).

Remark 1. Theorem A and Theorem 2.5 show very clearly the differences but also
the similarities in the limit behaviour of I"X(A) forp=2and p<Z:
In both cases the weak limit of I, x(A) can be represented as |y(A)*(a*(A)+
B*(A)). The distribution of the vector («(A), (1)) is for p =2 independent of A;

and this also holds for p <2 for every A such that @ = A/(2w) is irrational. But for
p <2 there is a countable exceptional set, the rational numbers w = A/(2m) € (0, 3),

ot
)
J"
D

g

o
o

(X\ have rhﬁﬂrpn' A‘St nti 1on nal limits

Wil Lp, X\ /) AaVYL GILCICHY U 1oUllor iImiis,

On the other hand, the process (a(A), ( No<ar<» IS continuous in A in the
following sense: Using spherical coordinates we can rewrite the exponent in (2.2),

t
1) cos<27r > +39 sm<21-r >
g g
t
cos(21r —— <p>
g

where ¢ = ¢(8, ) is the argument of (5, ). If we consider a sequence (wy);n Of
rational numbers in (0, 3), wy = u,/ gk, With u,, g, €N relatively prime, and w, > w €
(0,3) as ko0, for w irrational, then necessarily g, - © as k—c and the following
ergodic theorem holds:

18! 4
g tiL:O

p

) (2.3)

L&}
=8+ 97" = ¥

g =0

lg(‘! O Y L N B R
’cos\mr———qo I —>J |cos 2 x| ux=-—J jcos x|" dx.
8k 1= () 0 wJo
Moreover,

E exp{i(8a (2w, )+ 3B8(2mw,))} - E expli(da(2nw)+ 98 2nww))}
= exp{— (87 + 02)"/2—3 Jﬂ |cos x| dx}.

In the cas

@

p=2 the random vectors (a(A), B(A)) are for distinct frequen-
cies independent. This is not true for p<2, but for any set {w,,...,w,} of
irrational numbers, linearly independent over Q, the corresponding vector
(a(Ay), B(A)) k-1 m is exchangeable. Using Kolmogorov’s consistency theorem we



3
o
&
=
—~—
n

't
&
IS
b=
=S
n
o
¥
&
o
P
G
o
s

see immediately that this vector can be embedded in an infinite sequence of
exchangeabie r.v.’s such that the finite-dimensionai distributions are just the ones
of the vectors (a(A), B(A )y ., m=1,2 .. .. Thus for any sequence {w;} of
irrational numbers, linearly independent over Q, the corresponding sequence
(a(Ac), B(Ax))i<1-.. is infinitely exchangeable, hence conditionally independent.

Remark 2. It should be noted that the vectors («(A,), B(A,)),_1__m, m>1, are not
1sotropic p-stable vectors because they do not have a uniform spectral measure on
S$°""' but they are concentrated on lower dimensional submanifolds of §°""

Nevertheless, resuits by Schiider (1970) and Samorodnitski (1988), see also
Samorodnitski and Tagqu (1991), yield an integral representation of the stable
vector (a(A,), B(A,))—i_ .. We present it in Theorem 5.2. For illustration purpose
we restrrct ourselves to m=2. The structure is perfectly demonstrated in two

from Theorem 2.4,

Kemark 3. For ease of representation we restrict ourselves to symmetric Z,; €

TYATAS =) £ ,q

5 ITHUILS i0T 4y £

U5, afidiGgso
in the domain of attraction of a symmetric p-stable law can be proved.

Suppose Z, is in the domain of attraction of a symmetric p-stable r.v. Y,. This
implies that there exist norming constants a, >0, n €N, such that

71 n d
a,' Y Z.—Y,.
i=1
Then a, =n'"L(n) for some slowly varying function L which depends on the tail
of Z,. The appropriate normalization for the periodogram yields
2

n
7l oy
a,''y X, e

=1

In‘X(A) =

and the resuits of Section 2 remain valid also for this more general setup. This can
be seen by a careful analysis of the proofs in Section 4: Of course neither the
contraction principle of Section 3.1 nor the gauge function of Section 3.2 can be
applied. This makes the proofs of Section 4 notationally much more complicated.
But nevertheless, a consequent application of the invariance principle of Simons
and Stout (1978) (see Lemma 3.3)an Ottav1an1 s max1ma1 mequal]ty (e g Petrov 1975)

ald rh i
yield the resul

'~<

3. Auxiliary results

In this section we introduce several conceptional tools that will be needed for the
proofs in Section 4. They replace the Hilbert space methods which are basic in the
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finite iance case. For ictions J anda g sucn tnat 1im, .. J{X}/ g{X)—= 1 we snall

=3

/] n | \< I | \
PU'Z a,A,'>s)\2Pkmax |a||2 A, >£)

i=1 isi=n i=1

holds for any e >0. O

Lemma 3.2 (Ibragimov and Linnik, 1971, Theorems 2.6.1 and 2.6.3). Suppose Z,
DNAC(p) for some p < (0,2). Then there exist real constants ¢,, ¢;> 0, such that

x*P(|Z)|>x)

s 00, O
EZI(z|<x) = 7

C
P(Z|>x)~
X

(3.1)
Fr(yy>t & y> Fut).

Next we consider a sequence (U,),., of independent r.v.’s uniformly distributed on
(0, 1), then immediately by (3.1),

(F)(’T(Ul))rez g(YI)IEZ and (F;,(Ut))zez g(zt)rel- (32)

Furthermore, we conclude from Simons and Stout (1978), Theorem 3 an

u 2 il o WO CONCINAC TTOHD SIIHOHS 418 310 L9 L B S i

e
O
=}
=
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that the following weak invariance principle holds.
. and Y, satisfy (1.2). Then

TS (P (U) —FZ(Uy)=op(l), n—x [
1

i

For any r.v. A we introduce the gauge function

p
A,04)=(sup P(1AI> 1)

1=0

and denote by Lj the set of r.v.’s A on a common probability space with A,(A) < oo,
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We list some properties of A,:

Lemma 3.4. (a) For any rv. Ac L} and a R,

A (a A)=la|A,(A).

(b) If Z,e DNA(p) for some pe{0,2) then Z,e L]
{(c) Suppose (A, . are mdpnpndpnr vvmmprrm ro’sin LY and (a.). . is a sequence
AY 7 s o o8 AY l/lt u A rsi I i
of real numbers. "ﬂ-en Jor all neN there exists a constant ¢ >0 (independent of n)
crtrh that
such that

B

A;,’( y A) c max|a[” Z AP(A).
i=1 i=1

(d) Suppose (A,),.n is a sequence of r.v’s in L§. If lim,_. A,(A,)=0 then A, >0
as n -,

Proof. {(a) and (b) are easy consequences of Lemma 3.2. Rosinski {1980) proved that

=1

Aﬁ(z Ai><%c Y ANA).
i=1

We combine this with the contraction principle in Lemma 3.1 to obtain (c). To
prove (d) note that by definition of A, immediately sup,.., 1"P(|A,|> 1} > 0 as n > o0;

hence for all ¢ >0 we get P(|A,[>¢)>0. [J

3.3. Uniform distribution of sequences

The development of this theory started with a celebrated paper by Weyl (1916) and
all results we use from this theory can already be found there. We also refer to a
book on this subject by Kuipers and Niederreiter (1974). Furthermore, the one-

UllllCllblUlldl leull lldb d4iS0o DEEn LUHSIUC[CU das ain CIEUUIL LllC()lCill l)V \ U[[llClu

Fomin and Sinai (1982) and it has been applied by Hosoya (1982) in a different

context for ctable nrocesses

......................

For vectors a and b in R*, k€N, we say that a<b (a<b) if the inequality holds
componentwise. The set of points y € R such that @ < y < b will be denoted by [a, b)
and is calied an interval. The k-dimensional unit cube I is the interval [0, 1) where
0=(0,...,0)and 1=(1,...,1).

The integral part of a vector x=(x,,...,x) is [x]=([x,],...,[xc]) and the
fractional part of x is {x}=({x,},..., {x}). Now let (x;);.y be a sequence in R*.
For a subset E of I* let card{{x;}e E; i=1,..., n} denote the number of points
{x;}, i=1,..., n, that fall into E.

Definition 3.5. Let #,,..., %, be s-dimensional linear manifolds in I*, 1<s<k. &
denote the (s-dimensional) Lebesgue measure on %; and

EYB)= Y £(B %) WED)

i=1 i=1
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for every intervai B on £={J;_, &. The sequence ({x;});.n in i* is said to be

uniformly distribuied on &,,..., %, if

or avery intarval B an &
for every interval B on Z.
According to Wey! (1916} the uniform distribution of {{x;}},.y can be expressed

tim = (e = J FCES

i=1

holds for every bounded Riemann-integrable function fon £. O
We shali apply this result to prove

the irrational components w,,..., o,

from Satz 14 in Weyl (1916):

—
1

heorem 2.4. Hereby th mportam effect of
e sul

elates to tl

[

Lemma 3.7. Letw,,..., w, beirrational numbers such that 1, w,, ..., w, are indepen-
dent over Q. Furthermore, let g and h be integers with g # 0. Then the sequence

H{ewthtemb),en={wi(h+gn)}, ..., {w,(h+gn)})n
is uniformly distributed on 1. [

""""" iependent over 4. This means that

Now suppose that 1, @, ...

o
=
o
=
— T
on
-
T &
Cs.

’
there exisis a4 non-zero vecior i =(i,, ..., i,} € Z% such that

Y lw,=0 (mod 1). (3.3)
i=1
This causes the sequence ({w(h+gn)}),.n to show a certain pattern of periodicity
which prevents the sequence to be uniformly distributed on the whole of T% Instead
uniformity will occur on certain parallel submanifolds. Equation (3.3) implies in
particular that for any fixed g €N there exist non-zero vectors I € Z? such that

z Lo, = r(l)eQ. (3.4)
i=1
All points I € Z9 satisfying (3.4) constitute a lattice L in the sense that with I, ["e L
also —I'e L and I'+1"¢c L. Now there exists a basis of L which is a set of points
{,,...,1,in Z% v=g, such that each < L has a representation



and [, ..., , I, are linearly independent over . Denote by G the least common
denommator of r(l;), ..., r(l) forthe basi ints of L. This implies in particular that
~ \’i 7 N 104\ i~ N
Gg 5 lw,=0 (mod 1) (3.5)
i=1
for all Ic L, hence G is the least common denominator of all rational numbers r(I),
| =
€T £
Then for anv fixed e N the congruencies
Then for any fixed n €N the congruencies
q
g ¥ Lx;=r(n (mod1), lcl, xeRY, (3.6)

i=1

define a (g —v)-dimensional linear manifold %, in I (more precisely one should
say in R (mod 1)). Because of (3.5) there exist at most G different linear manifolds

&L, --., % in I and it is possible that some of them coincide. From Satz 18 in
Weyl (1916\ we immediately derive the following property

y e ..
I R S o WP DS A JRUI PR B S o . <t s TE P
denendent over Q: furthermore. lot ¢ and b be intevers with o 20, Then the seqguence
dependent over O, furthermore, let g and h be iniegers with g # 0. Then the sequence
({ar(h+gn)}), . is uniformly distributed on the linear manifolds ¥, ..., % of 19

defined above. []

4. Proofs of the results in Section 2

Proof of Proposition 2.1. Analogous to the finite variance case (cf. Brockwell and
Davis, 1987, p. 336), we write

Jn,X(A) =nVr > X e

=1

.
=nVr ¥ e Ml(

Jj=—oc i

S Ze Ny Un,.») = (M), 2(A)+ Y, (1),
where
n—j n

U,y = X Z e M- Y Z e,i,\,’ Y,(A)= n”'r ) > ¥ eV U,.
j=—

r=1—j =1

L) =0 O =[O0 OO+ RO =[O L 2(A)+ R (X),

where

R,(M)= ¢ (M (M) Y (=) + (=2, 2 (=) Y, (1) +] Y, (A
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According to the contraction principle of Lemma 3.1, for &€ > 0 arbitrary

{ [z i \ T oA
= Pia VPLS Z ocos Al ois b+ PUa VP Z osin Al o ie
SEn L LiCUsS Al ogE fT o n | & £iSInAL 238 ]
\ Pt=1 i 7/ AN It=1 I /
/ | n | \
—ani 7l/p|\—‘ '7'\1 i P> YA Vo R RN o PAPEPEN
=4rin | L L]~ 28 J A/~ 28), nN—=>X, (4.1)
\ lr=1 | /
gy that T i1 1g haounded in nrahahility nifarmiy far 2 70 =1 Thite it reamaing
SV Liiqatn J"’Z\I\} IS USLRIERILE 113 t}luuaulllb s UIRILOIRIL FAS 5 S N - LU’ |J B IIUAD 1L IViiialiiis
P . . .
to show that Y, (A) = 0. We prove this by a suitable decomposition of the sum Y, (1),
V(s N= s VP N o amiA - p e LAy @
In\n)—H L Wi j v L W nj 2T
l=n ljl=n
e
rurinermore

: LW Z :
1 / |jl=n =1

L " . Lo .
S,=n""" Y% nj(ie')"(—Z Z, ef‘)"\|+n"/” S e ™ Y Ze ™

|jl=n
=8+ S,
We shail prove that $,, = 0 and §,, -5 0 as n - 0o. First note that
ISul= 2 1lJaz (M),
Lil=n

By (4.1), J, (1) is bounded in probability. Furthermore, condition (2.1) implies
that Z;(%w |;] <ooand hence ¥ .., 4| 0 as n - co which implies S, K 0asn->o0
Next we turn to

x n—j —n—1 n—j
o _ _—~1/p < f —iAj ~ _—iAf -1/p ¥ . L 2.V u > _—iAl
Si=n T e Y Zie+n L e Y Ze
j=n+1 r=1—j j=— r=1-j

Now write

< = s
D1 — 1 L 44 € L W

o | o
= Sz T 22z

Lemma 3.4 ensures the existence of some ¢ > 0 such that

-1 P

Z W; cos A(t+j)

j=n+1

Aj(Re(Sy5y1))< max

1=ft=—pn

sc( ¥ |d/l\ >0, n->o0o0,

\/—n+l v
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3
i

/ 2n+1 oc \
APIRe(S . . N=en 1 Y (i—n-DglPrn T 1yl
LEPpANANAI 1212/ TR VA | SR W i AR o) B & il f
\j=n+2 j=2n+2 /
e}
B I,I,U’._)n =00
¢ ) "=0, n->x
j=n+2

Now suppose 1<p<2. W.lo.g. we assume that Z;o:_xldf,]SI by taking the

coefficients )= y;/Y . __ |4;] instead of y;, then

Aﬁ(Re(sz))S(, > ylw,-|) Y

j=—cc

n—t P

> YicosA(t+]))

j=1—1

f=—c0

< \P —n—-1 n—1

=\ 4 W/jf} S L g2y, >0,
j=—0 t=—cc j=1-1

by applying the above for the case p=1.

(il D/ CO v P o - £ — /AN ALt tT. - ot £
IS proves tndt Re(Jy7)2)— VU d5s n—> @ 0T pey, 2j. A Simlldr argument 1or

S>> 0 and, finally, S, -5 0 as n-> 0.
T snemia t
19 PIUVC |98

Im(S,5:,) concludes the proof of S,,, 5 0, and analogously, S,,, -> 0 which implies

nt alaon ag ;10 woe weita
140 di1S0O Oy, 7 v as i1 > & WO Wil

0
So=n Y g™ T ZeMon 0T e Y ze ™
J
= (=i

j=1 f=n—j+1

1 ) . ! U ] .
_n-l/p Z l!’_,‘ e M Z Zr e*l/\l+n*l/p Z (//j e"“ Z Zr e"“
j==n (=1 j=—n (=n+1

n

o
— <
a4

22

<
— <
g

23

— <
21 24

Again we prove that the moduli of these four terms tend to 0 in probability as n - o
First we consider

0 n
—1 —iA —iAj
Suy=n" Y Ze™M Y ye V.

t=1—n Jj=1—1

By Lemma 3.4 we obtain for some constant

nt ¢>0,
0 n P
ApRe(Sy))<=en”' 3 | T gcosA(j+1)
i=1-nlj=1-1
0 ( n
<en' ¥ ¥ |¢//| —>0 n - o0,

t=1—n \[—»l*l

as a Cesaro limit. A similar argument for Im(SZI) yields S,, 5 0 as n o0
To estimate S,, we fix j,> 1 and obtain

n

i() n n
-1 —inj . Y Ziaj -
Sp=n"""Y eV ¥ Ze™M+n V" Y ye™N Y Ze ™M

/i 2
=t t=n—j+1 J=jo*1 f=n—j+1

— I fad
T 2221 T 0222
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L%
a2
=]

i~ . M &= L2 — 1
Ubviousiy, S, — 0 as 1 - O, burihermore,

P

. " |
A7 (Re( Sy =scen ' Y Y s, cos A(j+1)|
LEpN WASN22277 yan ' L. ¥ RU A ,,
r=iij=yriivin—i+1) i
[ \ P
S il -
A R L1 I B
\i=in+1 /
far arhitrary o = ) nnd cntfhiciantly lnrasa Nnow o dicasanalizatinm argiimant ‘.’AIA
1 cuulucu)' C ~~ U adliul jo SUlliviviiuly 1a15p. INUW a ula,‘:',uuaubauuu aléulllclll :Y \/IUD
~ PR P A

1

co such that S,,, = 0 and 55,, > 0 as n > . One
shows analogously that S223 5 0 and S,,,-% 0 as n > co0. Combining all the relations
above we find that Y,(A)-5> 0. Following the lines of the proot it is not difficult to
see that we even have maxge, -, P(I{R,(A)|>¢e)>0as n>c for every £>0. O

{1 —
n>0and (Y, —Z,),.zisa sequenc

norm in R™ and obtain for any ¢ >

P([(Joz(A) = Juy (M), Jaz(A0) =Ty (M) |2 €)

in

Thus it suffices to show that P(JJ, z(A)—J, v(A)|> &)= 0, n—>o00, for any choice of
A €(0,mw) and & > 0. We restrict ourselves to the real part and prove that

n—1

S, cos At,+ Y (cos At;—cos At)S;
i=1

=|S,|+2 max |S]

1=j=n-—1

=<3 max [S)].

1=<j=n
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Hence
/ \
Y « DIl o0 /P oy IC_I\ln‘
‘\" i | ‘ It lllqA |A}l| - 3(‘/ ’
\ i=j=n /
and an annlication of Ottaviani’s ineguality (e.o. Petrov. 1975) vields that
and an application of Ottaviani's tnequality (e.g. Petrov, 197)5) yields that

O 7 o SsuiniLiCing

me

So it suffices to derive the asymptotic distribution of the vector (a,{(A,), B.(A,)). =

For this end we consider the joint ch.f.

EeXp{i ’zn: (5/an()\1)+'ﬂlﬁn()‘1))}

in"/?y ¥ Y (8, cos(2mw,j) + I, Sin(2'rrw,j))}

j=11=1
p}

(8, cos(2m{w,j}) + 9, sin(2m{w,j}))

=F exp{

Y (8, cosmw,j)+ 9, sin(2mw,j))

=1

d n

~ennl -3 £

o

9

2
- U, . . U, .,

+ ¥ (8, cos<2w EJ) + 1, sm(2w Ej))

t=qg+1

d n
~ennf -5 £
=

)

,g—land k=0,1,2,.... Then

= exp{—dK,.(8, 9)}.
Put h=j (mod g), then j = h+ gk where h=0, 1,.

by periodicity of the sine and cosine functions we get

Kn,A(a, 0)
S (8, cos(2m{w,(h+ gk)})+ 9, sin(2m{w, (h+ gk)}))

=1

R

& h=0 M {Kk;h+kg<n)

m 4 ANNP
+ Y (6, cos(2-rr—li'h)+1?, sin(2~n1'h))‘ .

t=g+1 g g
Under the assumptions of part (i), in view of Lemma 3.7, the sequence ({w,(h+
gk)}, ..., {w,(h+gk)}),.n is uniformly distributed in I'“. Furthermore, notice that



=)

oy

¥ (8, cos{2wx, )+ &, sin(2mx, )}

=1

q

5.
{

0

=
-3
gh

lim K, ,(8, 8)

n-=oc

=
Tt
-
@
o
=)
U,

1

(Sfr)}

G
&
r=1

=0

Z

g1

1
gh

3 (8, cos(2mx, )+ 9, sin(2wx,))

., %5 have the same {g— v)-dimensional

Then we use the property that %, ..

O

Lebesgue measure.

One of the statistical advantages of classical spectral theory is the asymptotic independence
of periodogram ordinates for ditferent frequencies. Unfortunately, this breaks down in case

&

of the characteristic function in Theorem 2.4 we devote this section to a detailed investigation

(¢) @, is irrational, w, is rational.

(d) w,, w, are rational.
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Deanncitinn & § Tho sandom nortnr (w2 Y B2 Y oildY RBIADN) has a chf as in
Prepsosition 5.1, The random vecior (ol A}, BlA ), alds), Blag)) nas a crf as
Tl vz 3 A stk frrmrting K {5 8B\ pnveoonnmding tn the fnis racee nhnne
IRICOFENT L.5% WILIL JUNLIIUTT D p\U, U ) LUNTOOPUNRRIINREG LU NRC JUKT LUOLS cwuuvvr
N K
PN /e @y _ I 9 /0 el oV 1 Q il WV A A
aj) Ky(o,U)= | | 2 (0, cos2mx, )+ U, sinlZwx, )| dx; dx;
Jro.n? =1 |
{b) Suppose k\w, + kow, = ky for ceriain iniegers k,, K, and Ky relaiively prime and
s/ ko= k/ G for relatively prime integers ki, G. Then
s Gop 14 / £\
AR i A | !;‘ RPN S JEIDUL ST P 9 PR ST m\n.l =il .',’\_"_\.
Al v)i—"—" /.1 PO COSLTIA ] + Uy SIILTTA T Oy CUSE LTy Aa vy T f
G h=0 JO I \ G/
/ AN
RN i SV A S R § R B
il B8 o.u\/. TR X — Ky G} dax
(¢) Suppose w,=u/g for relatively prime integers u, g. Then
A e of 2 a4 IoJ J o 3

+ 8, cos(21'r “ h) + 9, sin(?q-r “ h) i ' dx.
g g
(d) Suppose w, =u,/g, t =1, 2, where g is the least common denominator of w,, w,.
Then
i

181
KA(6’ 19) = Z
g h=0

=1

Z U, . U,
Y 8, cos<2w — h) + 9, sm<2¢r — h)
4 g

»,:

nnf Tha rncnc Fa) £AY A LAY Fall e i adiataly Fonm Thamram 7 Al
GG, a4

i1Iv vaoato \aj, \v; Giivi (U iU1iUyYY unuuvu.u;vn] 11U i aVUIUE

o derive K,(8, #) in the case (b).
According to Section 3.3 we have to consider the lattice L of vectors I=(l,, )7
satisfying

Thic tmnlisc

RIS ERRRpARILS

/ LA\ i

i+ r V1) s 3 PR —~
wll—L—1+il,—=r(l)eQ,

\ ky/ 2

but this relation is only possible if I; =Lk,/k,. Hence L={I=K(k,, k), KeZ}
and r{i}=Lks/k,=1Lk%/ G Now the defining congruencies for the linear manifolds
£, are

Kk x,+k,x,)=nKk, (modl) VKeZ.

K(kx,+kx;—nk;)=0 (mod1) VKeZ.

ki tiox,—nks=gq, x,,x%e[0,1) (5.1)
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for suitable mlcgcrs q \SULh inat x,, .Lz < [0, 1)) define the 1-dimensional linear
cra a2 e B, P .
manifold &£, in [0,1)". S tt f th 1

(1), we conclude that there exist exactly G different parailel mani-
fo!ds ff, Combmmg these facts with the formula for K, (8, &) in Theorem 2.4(ii)
we get the asssertion. [

forall le L={leZ? (I,,,)= K(1,—1), K € Z}. Moreover, for the basis I =(1, 1)
of L we obtain

According to (5.1) the relations

i3

define for each neN and suitably chosen g € Z a one-dimensional linear manifold
%, in [0,1)°. Here we obtain five different ones, namely

2, 1 . _4
Po={x;, x)el0, 1) x,—x;=z0r x; —x,= 21,
2 2 — 3
FLr={{x,x)el0, ) x;—x;=50r X, —x;= h
P — 2 3 —_2
Fi={{x,x)el0, ) x;—x,=50r X, — X, = 5},
£, ={(x Yel0, 1) x,—x=2aorx,—x,= -4}
4 | ACA s =V 2/ s M 2 5 1 2 58

Ls={(x,, x,) € [0, 1)% x, = x,}.
Notice that %,, ..., & are parallel (mod 1) and have the same length V2. Then

P
K,(8, 9)= (2wx,)+ 9, sin 27wx, | d&(xy, x3)

u\
&

Tt
‘A—w

t=1

where &, is the Lebesgue measure on Z,.
According to Schilder (1970) or Samorodnitski (1988), see also Samorodnitski

and Taqqu (1991), Chapter 3, any p-s

(A,,...,A,) has a ch.f.

ewofi$ 1) ol -] |

and permits the integral representation

P

dm(x)} >0

> j];(x)

ji=1

A= (J filxydM(x), ..., J fa(x) dM(x)),
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measurable space
e so-called conirol

Theorem 5.2. Suppose A, = Zmw, with w, =(0,3) for i=1,2. Set E ={0, 1) and denvie
Fn; Uﬂf FT\ tho Rnral-rr_nlu'ohrﬂ in i ﬂnlf X = ( T?

(a(Ay), BlAL), a(As), B(As))
4 (j cos(2mx;) dM(x), J sin(2Zmx,) dM(x),
E E

e dMie), | sinme) amio).
JE £ /
where M is a p-stable random measure M on (E, B(E)) with conirol measure m
corresponding to the four cases above:

(a) d " 'm is the Lebesgue-measure on E.

d -
b £
(&) T GH#) ,.L(, "
where ¥y, ..., Ly are G parailel iinear manifoids in E, £, (A)=¢(F,nA), Ae
B(E), h=0,...,G—1, and £ is the 1-dimensional Lebesgue-measure on £ = %yu
U fG—l «
dez!
() m=—-13% &,
Eh-0

where ), ={{x,, %,): 0=x, <1, x,=h/gl, h=0,..., g1, andé,,h=0,..., g1,
are defined as in part (b).

{d) misthe discrete measure with mass d / g at the poinis ({(u,/g)h (mod 1}, {ux/ g}h
(mod 1)), h=0,...,g—~1. O

The integral representation of Theorem 5.2 is of course available for any set of
frequencies. For the sake of an intuitive representation of the control measure we
restricted ourselves to the case of two frequencies.
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