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TAIL BEHAVIOR OF RANDOM PRODUCTS AND STOCHASTIC

EXPONENTIALS

SERGE COHEN AND THOMAS MIKOSCH

Abstract. In this paper we study the distributional tail behavior of the solution to a linear
stochastic differential equation driven by infinite variance α-stable Lévy motion. We show that
the solution is regularly varying with index α. An important step in the proof is the study
of a Poisson number of products of independent random variables with regularly varying tail.
The study of these products deserves its own interest because it involves interesting saddle-point
approximation techniques.

1. Introduction

In this paper we study the distributional tail behavior of the unique strong solution to the
linear Itô stochastic differential equation

dηt = 1 + ηt− dξt , t ∈ [0, 1] ,(1.1)

where the driving process (ξt)t∈[0,1] is α-stable Lévy motion on [0, 1] for some given α ∈ (0, 2),
see Samorodnitsky and Taqqu [15] as a general reference to stable distributions and processes.

α-stable Lévy motion is a pure jump process; jumps occur on a dense set in every interval.
This can be seen from the following series representation ([15], p. 151). Let (Γn)n=1,2,... be the
sequence of increasing points of a unit rate Poisson process on (0,∞), (γn)n=1,2,... an iid sequence
of Bernoulli random variables with distribution

p = P (γi = 1) = 1 − P (γi = −1) = 1 − q =
1 + β

2
(1.2)

for some number β ∈ [−1, 1], the skewness parameter of the stable distribution, and (Un)n=1,2,...

be an iid sequence of uniform U(0, 1) random variables. Moreover, the sequences (Un), (γn) and
(Γn) are supposed to be independent.1 A series representation of a standardized version of ξ is
then given by

ξt =



















∑∞
i=1 γiΓ

−1/α
i I{Ui≤t} , α ∈ (0, 1) ,

∑∞
i=1

(

γiΓ
−1/α
i I{Ui≤t} − β t b

(1)
i

)

+ β t log
(

2
π

)

, α = 1 ,

∑∞
i=1

(

γiΓ
−1/α
i I{Ui≤t} − β t b

(α)
i

)

, α ∈ (1, 2) .

(1.3)

Here b
(α)
i are certain constants; see [15] for details. The convergence of the series on the right

sides is uniform for t ∈ [0, 1] with probability 1. We always assume that ξ has representation
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(1.3). Then ξ is automatically right-continuous and has limits from the left at every point. In
what follows, we always assume that either α < 1 or α ∈ [1, 2) and β = 0. The case β = 0
corresponds to symmetric α-stable Lévy motion, in particular, p = q = 0.5 in (1.2). In both
cases, α < 1 and β = 0, centering is not needed in the series representation (1.2).

The stochastic differential equation (1.1) and its solution have attracted a lot of attention in the
case when ξ is 2-stable Lévy motion or, in other words, ξ is Brownian motion. Then the solution
to (1.1) is often taken as generating model for speculative prices in financial mathematics. It is a
well known fact from Itô calculus that the unique strong solution to (1.1) is given by the so-called
Dooleans-Dade exponential:

ηt = eξt
∏

0≤s≤t

(1 + ∆ξs) e−∆ξs , t ∈ [0, 1] ,

where ∆ξs = ξs − ξs−, see Protter [12], Theorem 36. In the proof of the latter result it is shown
that the infinite product converges absolutely with probability 1.

With this convention, notice that for δ > 0,

∏

0≤s≤1,|∆ξs|>δ

(1 + ∆ξs) = eξ1





∏

0≤s≤1,|∆ξs|>δ

(1 + ∆ξs) e−∆ξs



 exp







∑

0≤s≤1,|∆ξs|>δ

∆ξs − ξ1







.

This identity is justified by the fact that the Lévy process ξ has only finitely many jump sizes
|∆ξs| > δ in [0, 1], see Sato [16], cf. the series representation (1.3). Letting δ ↓ 0, the right side
product converges absolutely a.s. and the right side sum converges a.s. to ξ1 because of the
Lévy-Itô representation of a Lévy process. Therefore the left-hand side converges a.s. as δ ↓ 0 as
well and the limits on both sides represent η1. By virtue of the series representation (1.3) and

the additional assumptions α < 1 or β = 0 the jump sizes ∆ξs are of the form γiΓ
−1/α
i . Hence

η1 = lim
δ↓0

∏

i≥1:Γ
−1/α
i >δ

(1 + γi Γ
−1/α
i ) =

∞
∏

i=1

(

1 + γiΓ
−1/α
i

)

a.s.(1.4)

The right hand infinite product will always be interpreted as the limit of the left hand expressions
as δ ↓ 0.

It is the aim of this paper to study the asymptotic behavior of the tails P (η1 > x) and
P (η1 ≤ −x) as x → ∞. In the case of a driving standard Brownian motion ξ (corresponding to
the case α = 2) with µ = 0 and σ = 1 the solution of the stochastic differential equation (1.1) is
geometric Brownian motion ηt = exp{−(t/2)+ ξt}, 0 ≤ t ≤ 1. The distributional properties of η1

and ξ1 are, of course, very different. In particular, ξ1 has finite moment generating function on
the entire real line, whereas the (lognormal) distribution of η1 is subexponential, hence a moment
generating function does not exist, see Embrechts et al. [6].

In the cases α < 2 it turns out that the tail behaviors of ξ1 and η1 are quite similar. Recall
that for an α-stable distribution P (|ξ1| > x) ∼ cα x−α as x → ∞, for some positive constant cα,
see Zolotarev [17]. The results of this paper indicate that |η1| is regularly varying with the same
index α as ξ1.

2 Thus, up to a slowly varying multiple, the asymptotic behaviors of the tails of

2We say that a random variable A is regularly varying with index δ ≥ 0 if there exist constants c± ≥ 0 and a
slowly varying function L such that as x → ∞,

P (A > x) = c+ x
−δ

L(x) and P (A ≤ −x) ∼ c− x
−δ

L(x) .

For the notion of regularly varying function and distribution and their properties we refer to Bingham et al. [1].
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|η1| and |ξ1| are the same. Although the process η is the “stochastic exponential” of the stable
process ξ this does not imply that η1 is “log-stable” in the straightforward meaning of the word.

The tail behavior of η1 can be understood by a closer inspection of the infinite product in (1.4).
By its definition, we can decompose it into two parts:

∞
∏

i=1

(

1 + γiΓ
−1/α
i

)

=
∏

i≥1:Γi≤1

(

1 + γiΓ
−1/α
i

)

∏

i≥1:Γi>1

(

1 + γiΓ
−1/α
i

)

= P≤1 P>1 .(1.5)

The points (Γi, γi) constitute a Poisson random measure on the state space (0,∞) × {1,−1}
with mean measure Leb × Fγ , where Leb denotes Lebesgue measure on (0,∞) and Fγ is the
distribution of γ, see Resnick [13] for an introduction to Poisson random measures. Since the
Poisson points in P≤1 and P>1 come from disjoint sets, the random variables P≤1 and P>1 are
independent. Moreover, we will show that P>1 has moments of order α + ǫ for some ǫ > 0 and
that P≤1 is regularly varying with index α. Then a result of Breiman [3] is applicable: if A and
B are independent non-negative random variables with EAα+ǫ < ∞ and B is regularly varying
with index α, then the product AB is regularly varying with the same index. In particular,

P (AB > x) ∼ EAα P (B > x) , x → ∞ .(1.6)

Hence we conclude, for example, that

P (|η1| > x) ∼ E(Pα
>1)P (|P≤1| > x) .(1.7)

The tail behavior of stochastic integrals driven by Lévy processes with a regularly varying
Lévy measure has recently attracted some attention. If ξ is a Lévy process on [0, 1] whose Lévy
measure is regularly varying with index δ > 03 Hult and Lindskog [9] prove that the stochastic

integrals (
∫ t
0 Vs−dξs)0≤t≤1 are regularly varying with index δ in a functional sense, provided the

predictable process V has moment δ + ǫ for some ǫ > 0. The notion of regular variation for a
stochastic process is defined similarly to weak convergence of stochastic processes via its finite-
dimensional distributions and a tightness condition, see Hult and Lindskog [8, 10]. The result in
[9] can be understood as a stochastic integral analog of Breiman’s one-dimensional result. The
result is not applicable in our situation: it will be shown in Theorem 2.1 that the integrand η in
the linear stochastic differential equation (1.1) does not have a moment of order α + ǫ.

The proof of the regular variation of P≤1 crucially depends on a representation as a random
product

P≤1
d
=

N1
∏

i=1

(1 + γi U
−1/α
i ) ,(1.8)

where (Nt)t≥0 denotes the unit rate Poisson process of the points Γi, (Ui) is an iid sequence
of uniform U(0, 1) random variables, and N , (Ui) and (γi) are mutually independent. It is not

difficult to see that 1 + γ U−1/α is regularly varying with index α. Then it is a well known fact

that the product of iid factors
∏n

i=1 |1 + γi U
−1/α
i | is regularly varying with index α for every

n ≥ 1, see Embrechts and Goldie [5]. The slowly varying function in the tail of such products
is in general unknown. Moreover, the random index N1 of the product does not make one’s life
easier. We will apply a saddle-point approximation in order to get the precise tail asymptotics of
the random product on the right side of (1.8). This approximation will show the exact deviation
of the tails of η1 from those of ξ1.

3This means that the tail of the Lévy measure of ξ1 is regularly varying with index −δ.
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The paper is organized as follows. In Section 2 we study the decomposition of η1 into the
factors P≤1 and P>1. We will give the main results of this paper (Theorem 2.1 and 2.5) on the
asymptotic tail behavior of the solution η of the stochastic differential equation (1.1). Since the
result crucially depends on the understanding of random products of iid regularly varying factors
we devote Section 3 to the study of those objects.

2. Main result

In this section we formulate the main results of this paper on the regular variation of the
solution η to the stochastic differential equation (1.1). We will use the notation of Section 1
without recalling it.

Theorem 2.1. Let ξ be α-stable Lévy motion on [0, 1] and assume that α < 1 or α ∈ [1, 2) and

ξ1 is symmetric, i.e., p = q = 0.5 in (1.2). Then the solution η to the stochastic differential

equation (1.1) has the product representation (1.4) and |η1| is regularly varying with index α. In

particular,

P (|η1| > x) ∼ C>1 C≤1 x−α e2
√

α log x (log x)−3/4 , x → ∞ .(2.1)

with the constants

C>1 = exp

{∫ 1

0
u−2

(

p (1 + u1/α)α + q (1 − u1/α)α − 1
)

dy

}

,

C≤1 =
eK(α)−1

α3/4

1

2
√

π
,

K(α) = p

∫ 1

0
u−1

(

(1 + u1/α)α − 1
)

du + q

∫ 1

0
u−1

(

(1 − u1/α)α − 1
)

du .

Remark 2.2. The restrictions α < 1 and α ∈ [0, 1), p = q = 0.5 are needed to ensure that the
integral in C>1 is well defined. In contrast, the integrals in the definition of K(α) exist for any
α > 0 and p, q ≥ 0.

Remark 2.3. It is interesting to observe (see Lemmas 3.1 and 2.4) that, up to a constant

multiple, the tails of |η1| and
∏N1

i=1 Γ
−1/α
i

d
=
∏N1

i=1 U
−1/α
i are the same, where (Ui) is an iid

sequence of uniform random variables on (0, 1) independent of N .

Proof. Recall the decomposition η1 = P≤1P>1 from (1.5) and that the factors are independent.
We first show that

E(P l
>1) < ∞ for every l > 0.(2.2)

Using the order statistics property and the homogeneity of the Poisson process N , we see that
for any T > 0,

CT (l) = E





NT+1
∏

i=N1+1

(1 + γiΓ
−1/α
i )l



 = E

[

NT
∏

i=1

(1 + γi(1 + TUi)
−1/α)l

]

.
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where (Ui) is an iid sequence of uniform random variables on (0, 1), independent of (γi) and N .
Straightforward calculation of the right hand expectation yields

CT (l) = exp

{

−
∫ T

0

[

1 − p|1 + (1 + y)−1/α|l − q|1 − (1 + y)−1/α|l
]

dy

}

.

A Taylor series argument shows that under the assumptions α < 1 or α ∈ [1, 2) and symmetry of
γi, i.e., p = q = 0.5, the integral in the exponent converges as T → ∞ to a finite limit. Then, by

Fatou’s lemma, (2.2) holds. Moreover, for every l > 0, the family
∏NT+1

i=N1+1(1 + γiΓ
−1/α
i )l, T > 0,

is uniformly integrable. Hence we also have CT (l) → E(P l
>1) for every l > 0, in particular for

l = α.
Set C>1 = E(Pα

>1). It follows from Lemma 2.4 below that

P (|P≤1| > x) ∼ C≤1 x−α e2
√

α log x (log x)−3/4 .

Then relation (2.1) is an immediate consequence of Breiman’s [3] result, see (1.6) and (1.7). �

Here we provide the auxiliary result mentioned in the proof. Notice that the proof holds for
general α > 0 and p, q ≥ 0 with p + q = 1.

Lemma 2.4. Consider the product P≤1 in (1.8) for any α > 0. Then

P (|P≤1| > x) ∼ eK(α) P (Π1 > x) , x → ∞ ,(2.3)

where the asymptotic behavior of P (Π1 > x) is given in (3.4), the function

K(θ) = E(|1 + γ U−1/α|θ) − α

α − θ
(2.4)

is continuous on (0, α] with

K(α) = lim
θ↑α

K(θ) = p

∫ 1

0
u−1

(

(1 + u1/α)α − 1
)

du + q

∫ 1

0
u−1

(

(1 − u1/α)α − 1
)

du .

Proof. We have with y = log x and Yi = log |1 + γiU
−1/α
i |

P (|P≤1| > x) = P

(

N1
∑

i=1

Yi > y

)

.

It is easily seen that the density of Y is gamma-like in the sense of (4.1), that
∫

R
f s

Y (x)dx < ∞
for s ∈ (1, 2). Proposition 4.1 with the corresponding notation can be applied. Calculation yields
for θ < α,

φY (θ) = p E(1 + U−1/α)θ + q E(U−1/α − 1)θ

= E(U−θ/α) + K(θ) =
α

α − θ
+ K(θ) .

The function K is twice continuously differentiable on [0, α]. Moreover,

φ′
Y (θ) = α−1(1 − θ/α)−2 + K ′(θ) ,

The saddle-point equation φ′
Y (θ) = y takes on the form

α−1(1 − θ/α)−2 = y − K ′(α)(1 + o(1))
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as θ ↑ α or, equivalently, y ↑ ∞. Similar arguments yield

θ σS(θ) = θ
√

φ′′
Y (θ) ∼ (α y)3/4

√
2 .(2.5)

and

θ = α −
√

α/y
[

1 + 0.5K ′(α) y−1 + o(y−1)
]

.(2.6)

Then, as y → ∞,

e−θyφS(θ) = e−θye−(1−φY (θ))

∼ e−α y+
√

αye−(1−K(α)−√
α y)

= e−αy+2
√

αye−1+K(α)) .

Now we combine the latter relation with (2.5) and plug them into Proposition 4.1. Also recall
that y = log x. Then we obtain from Proposition 4.1

P (|P≤1| > x) ∼ eK(α) e−1 1

2
√

π
x−α e2

√
α log x (α log x)−3/4 .

By Lemma 3.1 we may conclude that we finally arrived at the desired relation (2.3). �

It is immediate from the proof of Theorem 2.1 that the tail behavior of η1 is determined by
the tails of P≤1. In what follows, we study the tails of P≤1 more in detail. We observe that

P≤1 =
∏

i≥1:Γi≤1 ,γi>0

(1 + Γ
−1/α
i )

∏

i≥1:Γi≤1 ,γi<0

(1 − Γ
−1/α
i ) = P+P− .

Since P+ and P− are constructed from disjoint sets of the points (Γi, γi) of a Poisson random mea-
sure, P+ and P− are independent, and one can represent them because of independent thinning
as

P±
d
=

N±
∏

i=1

(1 ± U
−1/α
i ) ,

where N+ and N− are Poisson with mean p and q, respectively, and both are independent of the
iid sequence (Ui) of uniform random variables on (0, 1). To get the exact asymptotic behavior
of P (P≤1 > x) one can again use the saddlepoint approximation for the sum log P+ + log P− of
two independent random variables log P±. Results in this spirit can be found in the literature,
see e.g. Feigin and Yashchin [7], Davis and Resnick [4] or Breidt and Davis [2], or one can follow
the lines of the saddlepoint approximation for compound Poisson sums advocated in Jensen [11].
Although log max(0, P−) is not compound Poisson, its structure is only slightly different.

Theorem 2.5. Assume the conditions of Theorem 2.1 hold and that q > 0. Then, with the

notation of Theorem 2.1,

P (η1 > x) ∼ 0.5P (|η1| > x) ∼ C>1e
K(α)e−1 1

4
√

π
x−αe2

√
α log x (α log x)−3/4 .

Remark 2.6. If q = 0 then η1 > 0 a.s. If q > 0,

P (η1 > x) ∼ P (η1 ≤ −x) ∼ 0.5P (|η1| > x) ,(2.7)

Thus, for q > 0, large values of η1 may occur symmetrically in the asymptotic sense described in
(2.7) even though η1 is not symmetric.
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Proof. As in the proof of Theorem 2.1 it follows from Breiman’s result and regular variation of
P≤1 that

P (η1 > x) ∼ C>1 P (P≤1 > x) = C>1 P (P+P− > x) = P (log P+ + log(P−I{P−>0}) > log x) .

Corollary 1 in [7], p. 39, yields the following approximation:

P (P≤1 > x) ∼ e−θ y φ(θ)

θσ(θ)

1√
2π

,

if the so-called Condition B in [7] is fulfilled. Here

φ(θ) = Eeθ(log P++log(P−I{P−>0})) = E(P θ
−I{P−>0})E(P θ

+) ,

θ solves the equation (log φ(θ))′ = y = log x and σ2(θ) = (log φ(θ))′′. In our case Condition B
can be rewritten

(2.8) ∃h such that
σ(θ + ǫ/σ(θ)

σ(θ)
→ 1 for |ǫ| < h, when θ ↑ α.

It will be a consequence of asymptotic behavior of log φ(θ) and its two first derivatives when
θ ↑ α.

We observe that

φ(θ) = e−p [1−E((1+U−1/α)θ)]
∞
∑

k=1

P (N− = 2k) [E((U−1/α − 1)θ)]2k

= e−p [1−E((1+U−1/α)θ)] e−q
∞
∑

k=1

q2k

(2k)!
[E((U−1/α − 1)θ)]2k

= e−p [1−E((1+U−1/α)θ)]−q [1−E((U−1/α−1)θ)] 1

2

[

1 + e−2 q E((U−1/α−1)θ)
]

.

Then for θ < α, with K(θ) defined in (2.4),

log φ(θ) = −1 +
α

α − θ
+ K(θ) − log 2 + log(1 + e−2 q E((U−1/α−1)θ

) .

Notice that E((U−1/α − 1)θ) → ∞ as θ ↑ α and therefore, if q > 0,

log φ(θ) = −1 − log 2 +
α

α − θ
+ K(α)(1 + o(1)) .

By similar arguments, the saddlepoint equation is then given by

(log φ(θ))′ = α−1(1 − θ/α)−2 + K ′(α)(1 + o(1)) = y.

The same arguments as in the proof of Lemma 2.4 lead to θ given in (2.6) and to the approximation

P (P≤1 > x) ∼ eK(α)e−1 1

4
√

π
x−αe2

√
α log x (α log x)−3/4 .

Together with Theorem 2.1 this proves the theorem. �

Remark 2.7. Actually one can also prove with the same technique that

P (P− > x) ∼ eq (K−(α)−1) (q /α3)1/4 x−α(log x)−3/4e2
√

q α log x ,

P (P+ > x) ∼ ep (K+(α)−1) (p /α3)1/4 x−α(log x)−3/4e2
√

p α log x
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where

K±(α) =

∫ 1

0
u−1

(

(1 ± u1/α)α − 1
)

du .

3. Random products of independent regularly varying random variables

In this section we study the tail behavior of the random product

Πν =
M
∏

i=1

Xi ,(3.1)

where (Xi) is an iid sequence of non-negative regularly varying random variables independent of
the Poisson random variable M with mean ν.4 We start with the case when the Xi’s have a pure
Pareto distribution:

P (X > x) = x−α , x ≥ 1 .(3.2)

Notice that

X
d
= U−1/α d

= eY ,(3.3)

where U is uniform on (0, 1) and Y is exponential with mean 1/α.

Lemma 3.1. Assume that X has the Pareto distribution (3.2) with parameter α > 0 and that

M is Poisson distributed with mean ν > 0. Then the product Πν in (3.1) has tail

P (Πν > x) ∼ e−ν (ν/α3)1/4 (2
√

π)−1 x−α e2
√

α ν log x (log x)−3/4 , x → ∞ .(3.4)

Proof. First observe that by virtue of (3.3) for x > 1,

P (Πν > x) = P

(

M
∑

i=1

log Xi > log x

)

= P (α−1ΓM > log x) ,(3.5)

where M is independent of the sequence (Γi). Thus we will study the tail of a compound Poisson
sum ΓM with iid exponential summands Yi with mean α−1. It will be convenient to use the
saddle-point approximation given in Proposition 4.1 of the Appendix with y = log x. Under the
conditions of the lemma, the density fY is gamma-like in the sense of (4.1) and f s is integrable
in R for s ∈ (1, 2). Moreover,

φY (θ) = (1 − α−1θ)−1 .

Hence the saddle-point equation νφ′
Y (θ) = y is given by να−1(1 − θ/α)−2 = y and has solution

θ = θ(y) = α(1 − (yα/ν)−1/2) .

Calculation with the notation of Proposition 4.1 yields

φS(θ) = e−ν(1−(yα/ν)1/2) , σ2
S(θ) = 2(y3/(να))1/2 .

4Note that the distribution of the random variable Πν has an atom at zero: P (Πν = 0) = P (M = 0) = e−ν .
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Proposition 4.1 now yields the desired approximation as y = log x → ∞

P (Πν > x) ∼ e−α y (1−(yα/ν)−1/2) e−ν(1−(yα/ν)1/2)

α(1 − (yα/ν)−1/2)
√

2(y3/(να))1/2

1√
2π

∼ e−ν
( ν

α3

)1/4 1

2
√

π
e−α y+2

√
α ν y y−3/4 .

This concludes the proof of the lemma. �

4. Appendix

4.1. Saddle-point approximation to compound Poisson sums. We have frequently made
use of a saddle-point approximation result which follows from Jensen [11], Chapter 7, in particular,
Formula (7.1.10) on p. 188 and the calculations in Section 7.2, in particular, Theorem 7.2.4.

Consider the compound Poisson sum S =
∑M

i=1 Yi, where (Yi) is an iid sequence of random
variables, independent of the Poisson random variable M with mean ν > 0. Write

φY (h) = EehY , φS(h) = EehS = e−ν(1−φY (h)) , σ2
S(h) = ν φ′′

Y (h) .

We assume that Y has a gamma-like density: if Y has a Lebesgue density fY with the property
that there exist positive constants x0, α, β and a slowly varying function ℓ such that

fY (y) = xβ−1 ℓ(x) e−α x , x ≥ x0 .(4.1)

Proposition 4.1. Consider the compound Poisson sum S. Assume the distribution of Y has a

gamma-like Lebesgue density fY with
∫

R
f s(x)dx < ∞ for some s ∈ (1, 2) and that E(Y eαY ) = ∞.

Then the equation νφ′
Y (θ) = y has a unique solution θ = θ(y) for sufficiently large y > 0 and

P (S > y) ∼ e−θy φS(θ)

θσS(θ)

1√
2π

, y → ∞ ,(4.2)

Proof. Theorem 7.2.4 in Jensen [11] states that (4.2) holds as θ ↑ α = sup{h > 0 : φY (h) < ∞}
provided that Y has a gamma-like density with

∫∞
0 f s

Y (x)dx < ∞ for some s ∈ (1, 2). Notice that

φ′
Y (h) = E(Y ehY ) is a continuous function increasing to ∞ for h ↑ α. Therefore the saddle point

equation νφ′
Y (θ) = y has a solution for large y > 0. In particular, if y ↑ ∞ then θ(y) ↑ α. �

4.2. An auxiliary tail bound. In view of (3.5) we may wonder which values k of the Poisson
random variable M with intensity ν are preponderant in the asymptotic. The answer to this
natural question is given in the following lemma.

Lemma 4.2. Let M be a Poisson random variable with mean ν independent of the sequence of

the points (Γk) of a unit rate Poisson process. For any positive c the relation

Sc(x) =
∑

|k−√
νx|≤c(νx)1/4

P (M = k)P (Γk > x)

∼ e−νν1/4(2
√

π)−1x−3/4e−xe2
√

νx

∫ c
√

2

−c
√

2
ϕ(y) dy .

holds as x → ∞, where ϕ is the standard normal density.
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Proof. Here we only sketch the proof since the main results do not rely on this lemma. The clas-
sical saddlepoint approximation for sums of iid random variables yields as x → ∞ and uniformly
for k ∈ K = {|k −√

νx| ≤ c(νx)1/4} (see Jensen [11], Section 2.2)

P (Γk > x) ∼ 1

(k − 1)!
e−x xk−1 .

Hence, using Stirling’s formula,

Sc(x) ∼ e−νe−x x−1
∑

k∈K

νk

(k!)2
k xk

∼ e−ν(2π)−1e−x x−1
∑

k∈K

(

νe2x

k2

)k

∼ e−ν(2π)−1e−x x−1

∫

√
νx+c(νx)1/4

√
νx−c(νx)1/4

(

νe2x

y2

)y

dy

= e−ν(2π)−1e−x x−1e2
√

νx

∫ c(νx)1/4

−c(νx)1/4

exp
{

2 z − 2 (
√

νx + z) log(1 + z/
√

νx)
}

dz .

A Taylor expansion argument yields

Sc(x) ∼ e−ν(2π)−1e−x x−1e2
√

νx

∫ c(νx)1/4

−c(νx)1/4

exp

{

2 z − 2 (
√

νx + z)(
z√
νx

− 0.5
z2

νx
)

}

dz

∼ e−ν(2π)−1e−x x−1e2
√

νx

∫ c(νx)1/4

−c(νx)1/4

e−z2/
√

νx dz

= e−ν(2
√

π)−1ν1/4e−x x−3/4e2
√

νx

∫ c
√

2

−c
√

2
ϕ(v) dv .

�

4.3. More general driving Lévy processes. The decomposition η1 = P≤1P>1 corresponds to
the decomposition of the stable driving process ξ into large and small jumps. From the proofs in
Section 2 it is immediate that the asymptotic behavior of the tails of η1 is determined by P≤1,
i.e., by the large jumps, as long as one can ensure that E(Pα+ǫ

>1 ) < ∞ for some ǫ > 0.
It is feasible to replace ξ by a more general Lévy process with a regularly varying Lévy measure

on R with index α > 0. This means that the left and right tails of the measure are regularly
varying with index −α satisfying a tail balance condition. An additional condition on the Lévy
measure at zero ensures that E(Pα+ǫ

>1 ) < ∞, e.g. if ξ is compound Poisson. Here P≤1 and P>1 are
the factors in the stochastic exponential η1 corresponding to the jumps of absolute size smaller or
larger than 1, respectively. Regular variation of the Lévy measure implies that the large jumps are

of the form γiΓ
−1/α
i L(Γ

−1/α
i ) for a slowly varying function L and sign variables γ1, see Rosiński

[14]. Then results generalizing Lemma 2.4 may ensure that P≤1, hence η1, is regularly varying
with index α. It is still a major problem to determine the slowly varying function in the tails of
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η1. In this paper we have employed the rather subtle tool of saddlepoint approximation which
depends on rather strong assumptions such as gamma-like densities.
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Lévy processes. Ann. Probab. To appear.
[10] Hult, H. and Lindskog, F. (2006) Regular variation for measures on metric spaces. Publications de l’Institut

Mathmatique (NS) 80(94), 121–140.
[11] Jensen, J. (1995) Saddlepoint Approximations. Oxford University Press, Oxford.
[12] Protter, P. (1990) Stochastic Integration and Differential Equations. Springer, Berlin.
[13] Resnick, S.I. (1992) Adventures in Stochastic Processes. Birkhäuser, Boston.
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