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In this paper we discuss some approaches to modeling extremely
large values in multivariate time series. In particular, we discuss the
notion of multivariate regular variation as a key to modeling
multivariate heavy-tailed phenomena. The latter notion has found a
variety of applications in queuing theory, stochastic networks,
telecommunications, insurance, finance and other areas. We contrast
this approach with modeling multivariate extremes by using the
multivariate student distribution and copulas.
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1 Introduction

Over the last few years heavy-tailed phenomena have attracted a lot of attention.

These include turbulence and crashes in the financial and insurance markets, but also

strong deviations in weather and climate phenomena from the average. More

recently, the Internet and more generally the enormous increase of computer power

have led to collections of huge data sets which cannot be handled by classical

statistical methods. Among others, teletraffic data (such as on/off times of

computers, length and transfer times of files, etc.) exhibit not only a non-standard

dependence structure which cannot be described by the methods of classical time

series analysis, but these data also have clusters of unusually large data. It has been

recognized early on in hydrology and meteorology, but also in insurance practice

that the distributions of the classical statistical theory (such as the normal and the

gamma family) are of restricted use for modeling the data at hand. Describing these

data by their median, expectation, variance or by moment related quantities such as

the kurtosis and skewness has rather limited value in this context. For the actuary it

is not a priori of interest to know what the expectation and the variance of the data

*Thomas Mikosch’s research is partially supported by MaPhySto, The Danish Research
Network for Mathematical Physics and Stochastics, and DYNSTOCH, a research training
network under the programme Improving Human Potential financed by The 5th Framework
Programme of the European Commission. Financial support by the Danish Research Council
(SNF) Grant No 21-01-0546 is gratefully acknowledged by the author.
mikosch@math.ku.dk

324

Statistica Neerlandica (2005) Vol. 59, nr. 3, pp. 324–338

�VVS, 2005. Published byBlackwell Publishing, 9600GarsingtonRoad,OxfordOX42DQ,UKand350MainStreet,Malden,MA02148,USA.



are, he is mainly concerned with large claims which might arise from scenarios

similar to the WTC disaster. Such events are extremely rare and dangerous. It would

be unwise to use the (truncated) normal or the gamma distributions to capture such

an event by a mean-variance analysis. The devil sits in the tail of the distribution. It is

the tail of the distribution that costs the insurance and financial industry billions of

dollars (only the WTC disaster alone has cost the reinsurance industry about $ US 20

billion up to now; see SIGMA (2003)). It is the tail of the distributions of the file sizes

and transition times of files that causes the unpleasant behavior of our computer

networks. Although the Internet is a traffic system which, unlike the German

Autobahn, has thousands of extremely fast lanes, this system is not always able to

handle the amounts of information to be transferred and, like the German

Autobahn, it is subject to traffic jams caused by huge files representing movies,

pictures, DVDs, CDs which make the difference. They cannot be modeled by

exponential or gamma distributions, very much in contrast to classical queuing and

network theory, where the exponential distribution was recognized as adequate for

modeling human behavior in telephone or other consumer-service systems. Currently

there is general agreement that the modern teletraffic systems are well described by

distributions with tails much heavier than the exponential distribution; see e.g.

WILLINGER et al. (1995); cf. MIKOSCH et al. (2003) and STEGEMAN (2002).

Early on, distributions with power law tails have been used in applications to

model extremely large values. The Pareto distribution was introduced in order to

describe the distribution of income in a given population (PARETO, 1896/97).

Although the world has changed a lot since Pareto suggested this distribution at the

end of the 19th century, it still gives a very nice fit to the world income distribution.

The Pareto distribution is also a standard distribution for the purposes of

reinsurance, where the largest claims of a portfolio are taken care of. The Pareto

distribution in its simplest form can be written as

�F ðxÞ ¼ 1� F ðxÞ ¼ ðc=xÞa; x � c; some positive c; a:

As expected in general this distribution does not give a great fit to data in the center

of the distribution, but it often captures the large values of the data in a convincing

way. Of course, one can shift the distribution to the origin by introducing a location

parameter, but the fit in the center would not improve much in this way.

The Pareto distribution appears in a completely different theoretical context,

namely as the limit distribution of the excesses of an iid sequence X1, . . . ,Xn with

distribution F above a high threshold. To be more precise, the only limit distribution

of the excess distribution of the Xi�s is necessarily of the form (up to changes of

location and scale)

lim
u"xF ;uþx<xF

P ðX1 � u > x j X1 > uÞ ! ð1þ nxÞ�1=nþ ¼ �GnðxÞ; ð1Þ

x 2 R;

(PICKANDS, 1975; BALKEMA and DE HAAN, 1974; cf. EMBRECHTS et al., 1997,

Section 3.4), where
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xF ¼ supfx 2 R : F ðxÞ < 1g

is the right endpoint of the distribution F and n 2 R is a shape parameter. For n ¼
0 the limit has to be interpreted as the tail of the standard exponential distribution.

The so defined limit distribution Gn is called the generalized Pareto distribution

(GPD). Relation (1) holds only for a restricted class of distributions F. Indeed, (1) is

satisfied if and only if a limit relation of the following type holds for suitable con-

stants dn 2 R, cn > 0, and the partial maxima Mn ¼ max(X1, . . . ,Xn) (see

EMBRECHTS et al., 1997, Chapter 3):

P ðc�1n ðMn � dnÞ � xÞ ! exp �ð1þ nxÞ�1=nþ

n o
¼ HnðxÞ; n!1; x 2 R: ð2Þ

For n ¼ 0 the distribution has to be interpreted as the Gumbel distribution H0(x) ¼
e�e

�x
. The limit distribution is called the generalized extreme value distribution and

(up to changes of scale and location) it is the only possible non-degenerate limit

distribution for centered and normalized maxima of iid sequences. We say that the

underlying distribution F belongs to the maximum domain of attraction of the

extreme value distribution Hn (F 2 MDA(Hn)). The case n > 0 is particularly

interesting for modeling extremes with unlimited values. Then the extreme value

distribution Hn can be reparametrized and written as the so-called Fréchet distri-

bution with a ¼ n�1 (Figure 1):

UaðxÞ ¼ e�x
�a
; x > 0:

Every distribution F 2 MDA(Ua) is completely characterized by the relation

�F ðxÞ ¼ 1� F ðxÞ ¼ LðxÞ
xa

; x > 0; ð3Þ

where L is a slowly varying function, i.e., L is a positive function on (0, 1) with

property L(cx)/L(x) ! 1 as x ! 1 for every c > 0. Notice that distributional tails
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Fig. 1. Left: Plot of 9558 S&P500 daily log-returns from 2 January 1953 to 31 December 1990. The year

marks indicate the beginning of the calendar year. Right: QQ-plot of the S&P500 data against the

normal distribution whose mean and variance are estimated from the data. The data come from a

distribution which has much heavier left and right tail than the normal distribution.

326 T. Mikosch

� VVS, 2005



of type (3) are a generalization of distributions with pure power law tails such as the

Pareto distribution. It is a semiparametric description of a large class of distribu-

tions; the slowly varying functions L represent a nuisance parameter which is not

further specified. This is very much in agreement with real-life data analysis where it

is hard to believe that the data come from a pure Pareto distribution. In particular, L

is not specified in any finite interval which leaves the question about the form of the

distribution F in its center open. Several distributions with a name have regularly

varying right tail, i.e., (3) holds, e.g. the Pareto, Burr, log-gamma, Student, Cauchy,

Fréchet and infinite variance stable distributions; see EMBRECHTS et al. (1997), p. 35,

for definitions of these distributions.

The stable distributions consist of the only possible non-degenerate limit

distributions H for the partial sums Sn ¼ X1 þ � � � þ Xn of an iid sequence (Xi)

with distribution F, i.e., there exist constants cn > 0, dn 2 R, such that

lim
x!1

P ðc�1n ðSn � dnÞ � xÞ ¼ HðxÞ; x 2 R:

We say that F belongs to the domain of attraction of the stable distribution H

(F 2 DA(H)). The best known stable distribution is the normal whose domain of

attraction contains all F with slowly varying truncated second moment
R
|y|�xy

2dF(y)

(FELLER, 1971), i.e., it contains almost all distributions of interest in statistics. The

remaining stable distributions are less known; they have infinite variance and so are

the members of their domains of attraction. In particular, every infinite variance

stable distribution is characterized by a shape parameter a 2 (0, 2) which appears

as the tail parameter of these distributions Ha. Moreover, it also appears in the tails

of distributions F 2 DA(Ha):

F ð�xÞ � p
LðxÞ
xa

and �F ðxÞ � q
LðxÞ
xa

; x > 0; ð4Þ

where L is slowly varying and p, q � 0 such that p þ q ¼ 1. Relation (4) is also

referred to as tail balance condition and F is said to be regularly varying with index

a 2 (0, 2).

Regular variation also occurs in a surprising way in solutions to stochastic

recurrence equations. We consider here the simplest one-dimensional case. Assume

the stochastic recurrence equation

Yt ¼ AtYt�1 þ Bt; t 2 Z; ð5Þ

has a strictly stationary causal solution, where ((At, Bt)) constitute an iid sequence of

non-negative random variables. Causality refers to the fact that Yt is a function only

of (As, Bs), s � t. A sufficient condition for the existence of such a solution is given

by E logþA0 < 1, E logþB0 < 1 and E log A0 < 0. Equations of type (5) occur in

the context of financial time series models. For example, the celebrated (2003 Nobel

prize winning) ARCH and GARCH models of ENGLE (1982) and BOLLERSLEV

(1986) can be embedded in a stochastic recurrence equation (Figure 2). We illustrate
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this with the GARCH(1,1) model (generalized autoregressive conditionally hetero-

scedastic model of order (1,1)) which is given by the equation

Xt ¼ rtZt; r2t ¼ a0 þ a1X 2
t�1 þ b1r

2
t�1; t 2 Z:

Here (Zt) is an iid sequence with EZ1 ¼ 0 and var(Z1) ¼ 1 and a0 > 0, a1, b1 are

non-negative parameters. Obviously, Yt ¼ r2t satisfies the stochastic recurrence

equation (5) with At ¼ a1Z2
t�1 þ b1 and Bt ¼ a0. An important result by KESTEN

(1973) (see also GOLDIE, 1991) says that under general conditions on the distribution

of A0 the equation

EAj
0 ¼ 1 ð6Þ

has a unique positive solution j1 and then for some c > 0,

P ðY0 > xÞ � cx�j1 ; x!1: ð7Þ

In particular, the mentioned ARCH and GARCH models have marginal distribu-

tion with regularly varying tail of type (7). For a GARCH(1,1) model, (6) turns into

Eða1Z2
0 þ b1Þj ¼ 1;

which has a solution j1, e.g. when Z0 is normally distributed (Figure 3). Hence

Y0 ¼ r20 satisfies (7) and a standard argument on regular variation implies that

P(X0 > x) � c0x�j1/2. This is a rather surprising result which says that light-tailed

input (noise) can cause heavy-tailed output in a non-linear time series. Such a result

is impossible for linear processes (such as ARMA processes) driven by iid noise; see

e.g. EMBRECHTS et al. (1997), Appendix A3, or MIKOSCH and SAMORODNITSKY

(2000). We refer to BASRAK et al. (2002a,b) as general references on GARCH and

regular variation, to EMBRECHTS et al. (1997), Section 8.4, for an introduction to

stochastic recurrence equations and the tails of their solutions. See also MIKOSCH
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Fig. 2. 2493 Danish fire insurance claims in Danish Kroner from the period 1980–1992. The data (left)

and a QQ-plot of the data against standard exponential quantiles (right). If the data came from a

standard exponential distribution, the curve should be close to the straight line in the QQ-plot.

Since the graph curves down, one may conclude that the data have a much heavier tail than the

exponential distribution.

328 T. Mikosch

� VVS, 2005



(2003) for a survey paper on financial time series models, their extremes and regular

variation.

The conclusion of this introduction should be that one-dimensional distributions

with regularly varying tails are very natural for modeling extremal events when large

values are involved. Since there exists some theoretical background as to why these

distributions occur in different contexts, it is only consequent to fit them to real-life

data. On the other hand, distributions such as the gamma, the exponential or the

normal distributions are less appropriate for fitting extremes when large values occur.

The next section discusses multivariate regular variation as a suitable tool for

modeling multivariate extremes. We continue in Section 3 by discussing some of the

alternative approaches such as the multivariate Student distribution and copulas for

modeling multivariate data with very large values.

2 Multivariate regularly varying distributions

Over the last few years there has been some search for multivariate distributions

which might be appropriate for modeling very large values such as present in

financial or insurance portfolios. The multivariate Gaussian distribution is not an

appropriate tool in this context since there is strong evidence that heavy-tailed

marginal distributions are present. Nevertheless it has become standard in risk

management to apply the multivariate Gaussian distribution, e.g. for calculating the

Value at Risk (VaR). A major reason for the use of the normal distribution is its

��simplicity��: linear combinations of the components of a normally distributed vector

X are normal and the distribution of X is completely determined by its mean and

covariance structure.

It is the aim of this section to introduce multivariate distributions which have, in a

sense, power law tails in all directions. We will also indicate that these distributions

appear in a natural way, e.g. as domain of attraction conditions for weakly

converging partial sums and componentwise maxima of iid vectors.
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Fig. 3. A time series of measured file sizes handled by a webserver. The data (left) and a QQ-plot of the

data against standard exponential quantiles (right). The data have tail much heavier than the

exponential distribution.
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To start with, we rewrite the defining property of a one-dimensional regularly

varying distribution F (see (4)) as follows: for every t > 0,

lim
x!1

P ðx�1X1 2 ðt;1�Þ
PðjX1j > xÞ ¼ qt�a ¼ lðt;1�; ð8Þ

lim
x!1

P ðx�1X1 2 ½�1;�t�Þ
P ðjX1j > xÞ ¼ pt�a ¼ l½�1;�t�: ð9Þ

These relations are immediate from the properties of regularly varying functions; see

e.g. BINGHAM et al. (1987). Notice that the right hand expressions can be interpreted

as the l-measure of the sets (t, 1] and [�1, �t), where l is defined on the Borel sets

of �Rnf0g:

dlðxÞ ¼ a½pjxj�a�1I½�1;0ÞðxÞ þ qx�a�1Ið0;1�ðxÞ�dx:

Relations (8) and (9) can be understood as convergence of measures:

lxð�Þ ¼
P ðx�1X1 2 �Þ
PðjX1j > xÞ !

v
lð�Þ; x!1; ð10Þ

where !v refers to vague convergence on the Borel r-field of �Rnf0g. This simply

means in our context that lx(A) ! l(A) for every Borel set A � �Rnf0g which is

bounded away from zero and satisfies l(oA) ¼ 0. We refer to KALLENBERG (1983) or

RESNICK (1987) for the definition and properties of vaguely converging measures.

Relation (10) allows one to extend the notion of regular variation to Euclidean

space. Indeed, we say that the vector X with values in Rd and its distribution are

regularly varying with limiting measure l if the relation

lxð�Þ ¼
P ðx�1X 2 �Þ
PðjXj > xÞ !

v
lð�Þ; x!1; ð11Þ

holds for a non-null measure l on the Borel r-field of �Rdnf0g. Again, this relation

means nothing but lx(A) ! l(A) for any set A � �Rdnf0g which is bounded away

from zero and satisfies l(oA) ¼ 0. Regular variation of X implies regular variation of

|X| with a positive index a and therefore

lxðtAÞ ¼
P ðx�1X 2 tAÞ
P ðjXj > txÞ

P ðjXj > txÞ
P ðjXj > xÞ ! lðAÞt�a:

This means that l satisfies the homogeneity property l(tA) ¼ t�al(A), and we

therefore also say that X is regularly varying with index a.
Now define the sets

Aðt; SÞ ¼ fx : jxj > t; ~x 2 Sg;

where t > 0 and S � Sd�1, the unit sphere of Rd with respect to a given norm, and
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~x ¼ x=jxj:

The defining property of regular variation also implies that

lxðAðt; SÞÞ ¼
PðjXj > tx; ~X 2 SÞ

P ðjXj > xÞ ! lðAðt; SÞÞ ¼ t�alðAð1; SÞÞ; ð12Þ

where we assume that l(oA(1, S)) ¼ 0. Since sets of the form A(t, S) generate vague

convergence in �Rdnf0g, (11) and (12) both define regular variation of X. The family

of the values l(A(1, S)), for any Borel set S � Sd�1, defines a probability measure

P(H 2 �) on the Borel r-field of Sd�1, the so-called spectral measure of l. The
spectral measure P(H 2 �) and the index a > 0 completely determine the measure

l.
The notion of multivariate regular variation is a natural extension of one-

dimensional regular variation. Indeed, regular variation of iid Xi�s with index

a 2 (0, 2) is equivalent to the property that centered and normalized partial sums

X1 þ � � � þ Xn converge in distribution to an a-stable random vector; see Rvačeva

(1962). Moreover, the properly normalized and centered componentwise partial

maxima of the Xi�s, i.e.,

ð max
i¼1;...;n

X ð1Þi ; . . . ; max
i¼1;...;n

X ðdÞi Þ

converge in distribution to a multivariate extreme value distribution whose mar-

ginals are of the type Fréchet Ua for some a > 0 if and only if the vector of the

componentwise positive parts of X1 is regularly varying with index a; see DE HAAN

and RESNICK (1977), RESNICK (1987). Moreover, KESTEN (1973) proves that, under

general conditions, a unique strictly stationary solution to the d-dimensional

stochastic recurrence equation

Yt ¼ AtYt�1 þ Bt; t 2 Z;

exists and satisfies

P ððx;Y0Þ > xÞ � cðxÞx�j1 ; x!1; ð13Þ

for some positive c(x), j1, provided x 6¼ 0 has non-negative components. Here

((At, Bt)) is an iid sequence, where At are d � d matrices and Bt are d-dimensional

vectors, both with non-negative entries. Kesten’s result implies in particular, that the

one-dimensional marginal distribution of a GARCH process is regularly varying; see

the discussion in Section 1. Unfortunately, the definition of multivariate regular

variation of a vector Y0 in the sense of (11) or (12) and the definition via linear

combinations of the components of Y0 in the sense of (13) are in general not known

to be equivalent; see BASRAK et al. (2002a), HULT (2003).

Well known multivariate regularly varying distributions include the multivariate

Student, Cauchy and F-distributions as well as the extreme value distributions with

Fréchet marginals and the multivariate a-stable distributions with a 2 (0, 2). In the
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context of extreme value theory for multivariate data the spherical representation of

the limiting measure l (see (12)) has a nice interpretation. Indeed, we see that X is

regularly varying with index a and spectral measure P(H 2 �) if and only if for sets

S � Sd�1 with P(H 2 oS) ¼ 0 and t > 0,

lim
x!1

P ðjXj > txÞ
PðjXj > xÞ ¼ t�a and lim

x!1
Pðx�1X 2 S j jXj > xÞ ¼ P ðH 2 SÞ:

This means that the radial and the spherical parts of a regularly varying vector X

become ��independent�� for values |X| far away from the origin. For an iid sample of

multivariate regularly varying Xi�s the spectral measure tells us about the likelihood

of the directions of those Xi�s which are farthest away from zero.

The spectral measure can be estimated from data; we refer to DE HAAN and

RESNICK (1993), DE HAAN and DE RONDE (1998) and EINMAHL et al. (2001). For

two-dimensional vectors Xt we can write H ¼ (cos(U), sin(U)) and estimate the

distribution of U on [�p, p]. Assuming a density of U, one can estimate this spectral

density; see e.g. Figures 4 and 5 for some attempts. Figure 4 shows the typical shape

of a spectral measure when the components of Xt are independent. Then the spectral

measure is concentrated at the intersection of the unit sphere with the axes, i.e., the

spectral measure is discrete. This is in contrast to the case of extremal dependence

when the spectral measure is concentrated not only at the intersection with the axes.

Figure 5 gives a typical shape of a spectral density where the components of the

vectors Xt exhibit extremal dependence. The two valleys at the angles �p/4 and 3p/4
show that Xt�1 and Xt are not both extreme when they have different signs. However,

the peak at �3p/4 shows that Xt�1 and Xt are quite likely to be extreme and negative.

There is a peak at zero indicating that Xt�1 can be large and positive, whereas Xt is

��less extreme�� the next day.

The aim of this section was to explain that the notion of regularly varying

distribution is very natural in the context of extreme value theory. As the notion

of one-dimensional regular variation, it arises as a domain of attraction condition

Fig. 4. Left: Scatterplot Xt ¼ (Xt�1, Xt) of the teletraffic data from Figure 3. Right: Estimated spectral

density on [0, p/2]. The density is estimated from the values Xt with |Xt| > 80000. The density has

two clear peaks at the angles 0 and p/2, indicating that the components of Xt behave like iid

components far away from 0.
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for partial maxima and partial sums of iid vectors Xt. There exist, however,

enormous statistical problems if one wants to fit regularly varying distributions.

Among others, one needs large sample sizes (thousands of data, say) in order to

come up with reasonable statistical answers. Successful applications of multiva-

riate extreme value theory have been conducted in dimensions two and three; see

e.g. the survey paper by DE HAAN and DE RONDE (1998) for hydrological

applications. The limitations of the method are due to the fact that one has to

estimate multivariate measures.

In the one-dimensional case, the generalized extreme value distribution (see (2)) is

the only limit distribution for normalized and centered partial maxima of iid data.

This is equivalent to the weak convergence of the excesses to the generalized Pareto

distribution. Modern extreme value statistics focuses mostly on fitting the

generalized Pareto distribution (GPD) via the excesses (so-called POT – peaks over

threshold method; see EMBRECHTS et al. (1997), Chapter 6). Although desirable, in

the multivariate case a general result of BALKEMA–DE HAAN–PICKANDS type (see (1))

is not available as yet, but see TAJVIDI (1996) and BALKEMA and EMBRECHTS (2004)

for some approaches.

We mention in passing that the notion of multivariate regular variation also allows

for extensions to function spaces. DE HAAN and LIN (2002) applied regular variation

in the space D[0, 1] of càdlàg functions on [0, 1] in order to describe the extremal

behavior of continuous stochastic processes. HULT and LINDSKOG (2004) extended

these results to càdlàg jump functions with the aim of describing the extremal

behavior of, among others, Lévy processes with regularly varying Lévy measure.

3 A discussion of some alternative approaches to multivariate extremes

Various other classes of multivariate distributions have been proposed in the context

of risk management with the aim of finding a realistic ��heavy-tailed�� distribution.
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Fig. 5. Left: Scatterplot (Xt�1, Xt) of the S&P500 data from Figure 1. Right: Estimated spectral density

on [�p, p]. The vertical lines indicate multiples of p/4.
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Those include the multivariate student distribution; see e.g. GLASSERMAN (2004),

Section 9.3. As mentioned above, these distributions are regularly varying. Their

spectral measure is completely determined by their covariance structure; any Student

distribution has representation in law

X¼d 1ffiffiffiffiffiffiffiffiffiffi
v2d=d

q A~Z;

where AA0 ¼ R is a covariance matrix (for d > 2 the covariance matrix of X exists

and is given by dR/(d � 2)), v2d is v2-distributed with d degrees of freedom and Z

consists of iid standard normal random variables. Moreover, Z and v2d are inde-

pendent. This may be attractive as regards the statistical properties of such distri-

butions, but it is questionable whether the extremal dependence structure of financial

data is determined by covariances. The Student distribution has a rather limited

flexibility as regards modeling the directions of the extremes.

A second approach using copulas has been suggested. For simplicity, assume in the

sequel that the vector X ¼ ðX; YÞ¼d Xt is two-dimensional and its components have

continuous distributions FX and FY, respectively. Define for any distribution

function G its quantile function by

G ðtÞ ¼ inffx 2 R : GðxÞ � tg; t 2 ð0; 1Þ:

Then

P ðX � F X ðxÞ; Y � F Y ðyÞÞ ¼ Cðx; yÞ;

is a distribution on (0, 1)2, referred to as the copula of (X, Y). Of course, FX ðX Þ and
FY ðY Þ are uniformly distributed on (0, 1) and the dependence between X and Y sits in

the copula function C. Copulas have been used in extreme value statistics for several

decades; see e.g. the survey paper by DE HAAN and DE RONDE (1998) or the

monograph by GALAMBOS (1987). The purpose of copulas in extreme value statistics

is to transform the marginals of the vectors Xt to distributions with comparable size;

otherwise the extremal behavior of an iid sequence (Xt) would be determined only by

the extremes of one dominating component. (Another standard method is to

transform the marginals of Xt to standard Fréchet (U1) marginals.) Thus the

transformation of the data to equal marginals makes statistical sense if we cannot be

sure that the marginals have comparable tails.

It is, however, wishful thinking if one believes that copulas help one to simplify the

statistical analysis of multivariate extremes. The main problem in multivariate

extreme value statistics for data with very large values is the estimation of the

spectral measure (which gives one the likelihood of the directions of extremes) and

the index of regular variation (which gives one the likelihood of the distance from the

origin where extremes occur) or, equivalently, the estimation of the measure l. It is
an illusion to believe that one can estimate these quantities ��in a simpler way�� by
introducing copulas.
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We list here various problems which arise from the use of copulas.

1.What is a reasonable choice of copula? If one accepts that the extreme value

theory outlined above makes some sense, one should search for copulas which

correspond to multivariate extreme value distributions or multivariate regularly

varying distribution. Since copulas stand for any dependence structure between

X and Y it is not a priori clear which copulas obey this property. The choice of

some ad hoc copula such as the popular arithmetic copula is completely

arbitrary.

2. Should one use extreme value copulas? So-called extreme value copulas have been

suggested as possible candidates for copulas for modeling extremes, such as the

popular Gumbel copula. These copulas are obtained by transforming the

marginals of some very specific parametric multivariate extreme value

distribution to the unit cube, imposing some very specific parametric

dependence structure on the extremes, very much in the spirit of assuming a

multivariate student distribution as discussed above. The fit of an extreme value

copula needs to be justified by verifying that the data come from an extreme

value generating mechanism. For example, if we consider the annual maximal

heights of sea waves at different sites along the Dutch coast, it can be reasonable

to fit a multivariate extreme value distribution to these multivariate data. Then

the data are extremes themselves. In other cases it is questionable to apply

extreme value copulas.

3.How do we transform the marginals to the unit cube? Since we do not know F X
or F Y we would have to take surrogates. The empirical quantile functions are

possible candidates. However, the empirical distribution function has bounded

support: its tail is zero for arguments larger than the maximum of the data.

This means we would not be able to capture extremal behavior outside the

range of the sample. Any other approach, for example by fitting GPDs to the

marginals and inverting them to the unit cube can go wrong as well, as long as

we have not got any theoretical justification for the approach. Moreover, if we

are interested in a practical statistical problem we also have to back-transform

the marginals from the unit cube to the original problem. There we make

another error. In some cases a theoretical justification for such an approach

has been given in the context of two- or three-dimensional extreme value

statistics; see again the survey paper by DE HAAN and DE RONDE (1998). In the

latter paper it is also mentioned that the same kind of problems arises if one

wants to transform the marginals to other distributions such as the standard

Fréchet distribution.

4.Do copulas overcome the curse of dimensionality? One can fit any parametric

copula to any high-dimensional data set. As explained above, in general, one

will fit a distribution which has nothing in common with the extremal structure

of the data. But, given the copula is in agreement with the extremal dependence

structure of the data, copula fitting faces the same problems as multivariate
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extreme value statistics which so far can give honest answers for two- or three-

dimensional problems.

The discussion about which multivariate non-Gaussian distributions are reasonable

and mathematically tractable models for extremes is not finished. The aim of this

paper was to recall that there exists a probabilistic theory for multivariate extremes

that can serve as a basis for honest statistical techniques. Whether one gains by other

ad hoc methods is an open question.
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