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In this paper, we study the weak convergence of the integrated periodogram indexed by classes of functions
for linear processes with symmetric α-stable innovations. Under suitable summability conditions on the
series of the Fourier coefficients of the index functions, we show that the weak limits constitute α-stable
processes which have representations as infinite Fourier series with i.i.d. α-stable coefficients. The cases
α ∈ (0,1) and α ∈ [1,2) are dealt with by rather different methods and under different assumptions on
the classes of functions. For example, in contrast to the case α ∈ (0,1), entropy conditions are needed for
α ∈ [1,2) to ensure the tightness of the sequence of integrated periodograms indexed by functions. The
results of this paper are of additional interest since they provide limit results for infinite mean random
quadratic forms with particular Toeplitz coefficient matrices.
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1. Introduction

Over the last decades, efforts have been made to get a better understanding of non-Gaussian time
series in the time and frequency domains. In particular, time series whose marginal distributions
exhibit power law behavior have attracted a lot of attention. The need for such models arises
from applications in areas as diverse as insurance, geophysics, finance and telecommunications.
Infinite fourth moments are not untypical for series of daily log-returns from exchange rates,
stock indices, and other speculative prices, whereas infinite second moments can be observed
in time series from insurance such as for windstorm, industrial fire and earthquake insurance
[10,11,13,26]. Infinite first moments are typical for the marginal distribution of the magnitudes
of earthquakes [17]. Infinite variances are observed for the sizes of teletraffic data in the World
Wide Web [6,7,14,24,38]; see also the recent books [1,33].

Classical time series analysis deals with the second (or higher) order moment structure of a
stationary sequence. Heavy-tailed modeling requires, in addition, that one takes into account the
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interplay between the dependence structure and the tails of the series. An important task is to un-
derstand the classical statistical estimators and test procedures when big shocks to the underlying
system are present. When the marginal distributions have infinite variance, the notions of autoco-
variance, autocorrelation and spectral distribution lose their meaning. However, various studies
over the last twenty years have shown that the analysis of linear processes Xt = ∑∞

j=−∞ ψjεt−j ,
t ∈ Z, with heavy-tailed i.i.d. innovations (εj )j∈Z and constant coefficients (ψj )j∈Z is very sim-
ilar to classical (finite variance) time series analysis, where notions such as autocovariances and
spectral density are defined only in terms of the ψj ’s and the innovation variance σ 2

ε . Most es-
timators and test statistics from classical time series analysis can be modified insofar that one
considers self-normalized (or studentized) versions of them and for these versions, an asymp-
totic theory exists which parallels the classical theory with Gaussian limit processes. In contrast
to the latter theory, the limits involve infinite variance stable distributions and processes [13,21,
25].

One of the main goals of classical (finite variance) time series analysis is to study the spectral
properties of the linear process (Xt ). In this context, the periodogram

In,X(λ) =
∣∣∣∣∣ 1√

n

n∑
t=1

e−iλtXt

∣∣∣∣∣
2

, λ ∈ [0,π],

plays a prominent role as an estimator of the spectral density. Numerous estimation and
test procedures are based on this statistic and integrated versions of the form Jn,X(f ) =∫ π

0 In,X(λ)f (λ)dλ for appropriate classes of real-valued functions f ∈ F on [0,π]. In applica-
tions, the class FI = {I[0,x]: x ∈ [0,π]} is most important. The resulting integrated periodogram
is a process indexed by x ∈ [0,π]. Under general conditions, Jn,X(I[0,·]) converges uniformly
with probability 1 to the function σ 2

ε

∫ ·
0 |ψ(e−iλ)|2 dλ, where

ψ(e−iλ) =
∞∑

j=−∞
ψj e−iλj , λ ∈ [0,π],

and |ψ(e−iλ)|2 is the corresponding power transfer function. The latter is one of the essential
building blocks of the spectral density of the stationary process (Xt ):

fX(λ) = σ 2
ε

2π
|ψ(e−iλ)|2 = 1

2π

∞∑
h=−∞

e−ihλγX(h), λ ∈ [0,π].

This is the Fourier series based on the autocovariance function

γX(h) = cov(X0,Xh) = σ 2
ε

∞∑
j=−∞

ψjψj+|h|, h ∈ Z.

Since Jn,X(I[0,·]) estimates the spectral distribution function of the stationary process (Xt ), it has
been used for a long time as the empirical spectral distribution function, both as an estimator and
a basic tool for constructing goodness-of-fit tests for the underlying spectral distribution function
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[4,16,32]. Since the limit process of the properly centered and normalized process Jn,X(I[0,·])
depends on the (in general unknown) spectral density fX , Bartlett [2] proposed to consider the
integrated periodogram based on FB = {I[0,x]/fX(x): x ∈ [0,π]}. Under general conditions, this
process converges uniformly, with probability 1, to the function f (x) ≡ x and the limit process
can be shown to be independent of the coefficients of the linear process, but depends on the
fourth moment of ε1. More generally, weighted integrated periodograms based on the classes
Fg = {I[0,x]g(x): x ∈ [0,π]} for suitable functions g are used to estimate the spectral density or
to perform various tests concerning the spectrum of the underlying stationary sequence [32].

The weighted integrated periodogram is also the basis of one of the classical estimators for
fitting ARMA and fractional ARIMA models. This method goes back to early work by Whit-
tle [37]. In this context, one considers the functional Jn,X(1/fX(·; θ)), fX(·; θ) ∈ FW, where
FW is a class of spectral densities indexed by a parameter θ ∈ 	 ⊂ Rd . The Whittle estimator
θ̂n of the true parameter θ0 ⊂ 	 is the minimizer of Jn,X(1/fX(·; θ)) over 	. This estimation
technique is one of the backbones of quasi-maximum likelihood estimation in parametric time
series modeling. The Whittle estimator is known to be asymptotically equivalent to the corre-
sponding least-squares and Gaussian quasi-maximum likelihood estimators [4]. When proving
the asymptotic normality and consistency of θ̂n, one has to study the properties of the sequence
(Jn,X(1/fX(·; θ̂n))) which, again, can be considered as a weighted integrated periodogram in-
dexed by a class of functions.

The above examples have in common that one always considers a stochastic process
(Jn,X(f ))f ∈F for some class of functions. In all cases, one is interested in the asymptotic behav-
ior of the process Jn,X , uniformly over the class F . This is analogous to the case of the empirical
distribution function indexed by classes of functions. General references in this context are the
monographs [31,36]. Early on, this analogy was discovered by Dahlhaus [8], who gave the
uniform convergence theory for Jn,X under entropy and exponential moment conditions. The al-
most sure and weak convergence theory under entropy and power moment conditions was given
in [28]. A recent survey of nonparametric statistical methods related to the empirical spectral
distribution indexed by classes of functions is [9].

It is the aim of this paper to develop an analogous weak convergence theory for heavy-tailed
stationary processes. We will understand ‘heavy-tailedness’ in the sense of infinite variance of the
marginal distributions. Our focus will be on linear processes (Xt ) with i.i.d. symmetric α-stable
(SαS) innovations (εt ) for some α ∈ (0,2). Recall that a random variabl Yα has a symmetric
stable distribution (Yα ∼ Sα(σ,0,0)) if there are parameters 0 < α ≤ 2, and σ ≥ 0 such that
its characteristic function has the form EeitYα = e−σα |t |α . For convenience, we also assume that
σ = 1 for the distribution of ε1. For α < 2, the random variable ε1 is known to have infinite
variance [15,35]. Much of the theory given below depends on tail estimates for random quadratic
forms in i.i.d. infinite variance random variables. Such results are available for i.i.d. stable se-
quences. Although it seems feasible that the theory can be extended to the more general class of
processes whose innovations have regularly varying tails, we do not attempt to achieve this goal.
The price would be more technicalities and the gain would be negligible.

We intend to show how the classical (finite variance) tools and methods have to be modified in
the infinite variance stable situation which can be considered as a boundary case of the classical
one when some of the innovations assume extremely large values. By now, there exists quite a
clear picture concerning the asymptotic theory of the sample autocovariances, the periodogram



998 S.U. Can, T. Mikosch and G. Samorodnitsky

and its integrated versions when the innovation sequence in a linear process has infinite vari-
ance; see [13], Chapter 7. In addition to the latter reference, goodness-of-fit tests for heavy-tailed
processes (corresponding to the class FI ) were considered for short- and long-memory linear
processes [18,20], and Whittle estimation for infinite variance ARMA and FARIMA processes
was also studied [19,27].

The paper is organized as follows. In Section 2, we introduce some useful notation for the
integrated periodogram. Our main goal is to prove the weak convergence of the integrated peri-
odograms indexed by suitable classes of functions. We achieve this goal for an i.i.d. sequence in
Section 3, first by showing the convergence of the finite-dimensional distributions (Section 3.1),
then the tightness. The conditions and methods are rather different in the cases α ∈ (0,1) (Sec-
tion 3.2) and α ∈ [1,2) (Section 3.3). The case α ∈ (0,1) is treated in the more general context
of random quadratic forms with Toeplitz coefficient matrices satisfying some summability con-
dition. The case α ∈ [1,2) requires entropy conditions and the corresponding techniques. In
Section 4, we extend the limit theory for the integrated periodograms from an i.i.d. sequence
to linear processes. The Appendix contains some auxiliary results concerning tail estimates of
random quadratic forms in stable random variables. The weak convergence results of this paper
might also be of separate interest in the context of infinite variance random quadratic forms. The
theory for such quadratic forms is not well studied. We also refer to an extended version of this
paper [5] which covers the class of stochastic volatility processes with regularly varying marginal
distributions.

2. Preliminaries on the periodogram

The following decomposition of the periodogram is fundamental:

In,X(λ) = γn,X(0) + 2
n−1∑
h=1

cos(λh)γn,X(h), (2.1)

where γn,X(h) = 1
n

∑n−|h|
t=1 XtXt+h, h ∈ Z, denotes the sample autocovariance function of the

sample X1, . . . ,Xn. Note that the definition of γn,X deviates slightly from the usual one where the
Xt ’s are centered by the sample mean. However, for the theory given below, this centering is not
essential. Centering with the sample mean Xn is not the most natural choice when dealing with
infinite variance processes. In what follows, we will frequently make use of the self-normalized
periodogram

Ĩn,X(λ) = In,X(λ)

γn,X(0)
= ρn,X(0) + 2

n−1∑
h=1

cos(λh)ρn,X(h),

where ρn,X(h) = γn,X(h)/γn,X(0), h ∈ Z, denotes the sample autocorrelation function of
X1, . . . ,Xn. In view of (2.1), we can rewrite Jn,ε(f ) as follows:

Jn,ε(f ) = γn,ε(0)a0(f ) + 2
n−1∑
h=1

ah(f )γn,ε(h), (2.2)
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where

ah(f ) =
∫ π

0
cos(λh)f (λ)dλ, h ∈ Z, (2.3)

are the Fourier coefficients of f . We also introduce the self-normalized version of Jn,ε :

J̃n,ε(f ) = ρn,ε(0)a0(f ) + 2
n−1∑
h=1

ah(f )ρn,ε(h). (2.4)

3. The i.i.d. case

In this section, we study the limit behavior of the integrated periodograms Jn,ε indexed by classes
of functions for an i.i.d. SαS sequence with α ∈ (0,2). In Section 3.1, we consider the conver-
gence of the finite-dimensional distributions. In Sections 3.2 and 3.3, we prove the tightness of
the processes in the cases α ∈ (0,1) and α ∈ [1,2), respectively. In the case α ∈ (0,1), we solve
a more general weak convergence problem for random quadratic forms in the i.i.d. sequence (εt );
the convergence of the integrated periodograms indexed by classes of functions is only a special
case. The case α ∈ [1,2) is more involved. Among others, entropy conditions will be needed
and we only prove results on the weak convergence of the empirical spectral distribution, that
is, we focus on random quadratic forms with Toeplitz coefficient matrices given by the Fourier
coefficients ah(f ) defined in (2.3).

3.1. Convergence of the finite-dimensional distributions

A glance at decomposition (2.2) is enough to see that the convergence of the finite-dimensional
distributions of Jn,ε is essentially determined by the weak limit behavior of the sample autoco-
variances γn,ε(h). For this reason, we recall a well-known result due to Davis and Resnick [12];
see also [4], Section 13.3.

Lemma 3.1. For every m ≥ 1,(
nγn,ε(0)

n2/α
,

nγn,ε(h)

(n logn)1/α
, h = 1, . . . ,m

)

⇒ (Y0, Y1, . . . , Ym), (3.1)

where 
⇒ denotes weak convergence, the Yh’s are independent, Y0 is Sα/2(σ1,1,0) and
(Yh)h=1,...,m are i.i.d. Sα(σ2,0,0) for some σi = σi(α), i = 1,2. In particular,

(n/ logn)1/α(ρn,ε(h))h=1,...,m 
⇒ (Yh/Y0)i=1,...,m. (3.2)

The latter result is an immediate consequence of (3.1) and the continuous mapping theorem.
Lemma 3.1 yields the weak convergence for any finite linear combination of the sample autoco-
variances and autocorrelations. It also suggests that the weak limit of the standardized process
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Jn,ε(f ) will be determined by the infinite series
∑∞

h=1 ah(f )Yh. But this also means that we
need to require additional assumptions on the sequence (ah(f )).

We will treat this problem in a more general context. Consider a sequence

a = (a1, a2, . . .) ∈ �α,

that is, a satisfies the summability condition
∑

h |ah|α < ∞. For such an a, we define the se-
quences of processes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Xn(a) = (n logn)−1/α
n−1∑
k=1

ak[nγn,ε(k)], Y (a) =
∞∑

k=1

akYk,

X̃n(a) = (n/ logn)1/α
n−1∑
k=1

akρn,ε(k), Ỹ (a) = Y(a)/Y0.

(3.3)

Here, Y0, Y1, Y2, . . . are independent stable random variables, as described in Lemma 3.1. The 3-
series theorem [30] implies that a ∈ �α is equivalent to the a.s. convergence of the infinite series
Y(a) in (3.3). However, for the weak convergence of (Xn) and (X̃n), we need a slightly stronger
assumption:

a ∈ �α log� =
{

a = (a1, a2, . . .) ∈ �α:
∞∑

k=1

|ak|α log+ 1

|ak| < ∞
}

.

This assumption ensures the weak convergence of the random quadratic forms in (3.3); see the
proof of Theorem 3.2 below. Assumptions of this type frequently occur in the literature on infinite
variance quadratic forms (e.g., [22]). They appear in a natural way in tail estimates for quadratic
forms in i.i.d. stable random variables; see the Appendix.

We can now formulate our result concerning the convergence of the finite-dimensional distri-
butions.

Theorem 3.2. For any α ∈ (0,2),

(Xn(a))a∈�α log�
fidi−→ (Y (a))a∈�α log� and (X̃n(a))a∈�α log�

fidi−→ (Ỹ (a))a∈�α log�.

Proof. Using a Cramér–Wold argument, it suffices to prove the convergence of the one-dimensi-
onal distributions. From (3.1) and the continuous mapping theorem, it immediately follows that
for every m ≥ 1,

(n logn)−1/α
m∑

k=1

ak[nγn,ε(k)] 
⇒ Ym(a) =
m∑

k=1

akYk,
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where 
⇒ denotes weak convergence. Since a ∈ �α , Ym(a) 
⇒ Y(a) as m → ∞ follows from
the 3-series theorem. According to [3], Theorem 4.2, it remains to show that

lim
m→∞ lim sup

n→∞
P

(
(n logn)−1/α

∣∣∣∣∣
n−1∑

k=m+1

ak[nγn,ε(k)]
∣∣∣∣∣ > ε

)
= 0

for every ε > 0 and a ∈ �α log�. We write pn,m(a; ε) for the above probabilities. Applying
Lemma A.1 in the Appendix and the fact that a ∈ �α log�, we conclude that

pn,m(a; ε) ≤ const
∞∑

k=m+1

|ak|α
[

1 + log+ 1

|ak|
]

→ 0 as m → ∞.

(The constant on the right-hand side depends on ε.) This proves the theorem for (Xn); the con-
vergence of (X̃n) can be shown analogously by utilizing (3.2). �

As an immediate corollary of Theorem 3.2, we obtain the following result which solves
the problem of finding the limits of the finite-dimensional distributions for the integrated pe-
riodogram Jn,ε in (2.2) and its self-normalized version J̃n,ε in (2.4).

Corollary 3.3. Let α ∈ (0,2) and

F = {f ∈ L2[0,π]: a(f ) = (a1(f ), a2(f ), . . .) ∈ �α log�},
where a(f ) is specified in (2.3). We then have

n(n logn)−1/α[Jn,ε(f ) − a0(f )γn,ε(0)]f ∈F
fidi−→ 2[Y(a(f ))]f ∈F ,

(n/ logn)1/α[J̃n,ε(f ) − a0(f )]f ∈F
fidi−→ 2[Ỹ (a(f ))]f ∈F .

Remark 3.4. The condition a(f ) ∈ �α log� is, in general, not easily verified. However, if f rep-
resents the spectral density of a stationary process (Xn) with absolutely summable autocovari-
ance function γX , then, up to a constant multiple, f is represented by the Fourier series of γX ,
and the rate of decay of γX(h) → 0 as h → ∞ is well known for numerous time series models.
For example, if f is the spectral density of an ARMA process, γX(h) → 0 at an exponential rate
and then a(f ) ∈ �α log� is satisfied for every α > 0.

Conditions ensuring that a(f ) ∈ �α can be found in the literature on Fourier series, for ex-
ample, in [39]. Theorem (3.10) on page 243 in Volume I of that reference yields, for Lipschitz
continuous functions f with exponent β ∈ (0,1], that a(f ) ∈ �α for α > 2/(2β + 1), but not
necessarily for α = 2/(2β + 1). This means, in particular, that Lipschitz continuous functions
do not necessarily satisfy a(f ) ∈ �α for small values α < 1. Zygmund’s Theorem (3.13), [39],
page 243, Volume I, states that a(f ) ∈ �α if f is of bounded variation and Lipschitz continuous
with exponent β ∈ (0,1] such that α > 2/(2 + β), but this statement is not necessarily valid for
α = 2/(2 + β).
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We also note that a(f ) /∈ �α for f (x) = I[0,x], x ∈ (0,π] and α ≤ 1. Indeed, then ak(f ) =
k−1 sin(xk), k = 1,2, . . . and

∑
k |ak(f )|α = ∞. The latter condition implies that the series

Y(a(f )) diverges a.s. by the 3-series theorem and the 0–1 law. Hence, Corollary 3.3 does not
apply to the important class of indicator functions when α < 1. Moreover, (Jn,ε(f )) is not tight.
Indeed, it follows from the argument above and from [22], Theorem 6.2.1 that for some δ > 0,
for every K > 0,

δ ≤ lim
m→∞ lim

n→∞P

(
(n logn)−1/α

∣∣∣∣∣
m∑

k=1

ak(f )[nγn,ε(k)]
∣∣∣∣∣ > K

)

≤ const lim inf
n→∞ P

(
n(n logn)−1/α|Jn,ε(f ) − a0(f )γn,ε(0)| > K

)
.

3.2. Tightness and weak convergence in the case α ∈ (0,1)

In order to derive a full weak convergence counterpart of the convergence in terms of the finite-
dimensional distributions in Corollary 3.3, it remains to establish tightness of the corresponding
family of laws. We start, once again, in the more general context of random fields indexed by
sequences in �α log�. Since we are dealing with the weak convergence of infinite-dimensional
objects, we may expect difficulties which are due to the geometric properties of the underlying
path spaces. It is also not completely surprising that the case α ∈ (0,1) is the ‘better one’ in com-
parison with α ∈ [1,2); see, for example, the results on boundedness, continuity and oscillations
of α-stable processes in [35], Chapter 10. Note, however, that the constraint a(f ) ∈ �α log� is
harder to satisfy for smaller α than for larger α; see also Remark 3.4.

In the present case α ∈ (0,1), we introduce the function

h(x) =
{ |x|α log(b + |x|−1), x 
= 0,

0, x = 0,

where b is chosen so large that h is concave on (0,∞). Note that

�α log� =
{

a:
∞∑

k=1

h(ak) < ∞
}

and this set is a linear metric space when endowed with the metric d(a,b) = ∑∞
k=1 h(ak − bk).

Assume that A is a compact set of �α log� with the additional property that

∞∑
k=1

sup
a∈A

h(ak) < ∞. (3.4)

Observe that A is then also a compact subset of �α and (Y (a))a∈A is sample-continuous as a
random element with values in C(A), the space of continuous functions on A equipped with
the uniform topology; see [35], Section 10.4. The following is our main result on the weak
convergence of the sequences (Xn) and (X̃n) of infinite variance random quadratic forms in the
case α ∈ (0,1).
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Theorem 3.5. Assume α ∈ (0,1). For a compact set A of �α log� satisfying (3.4), the following
weak convergence result holds in C(A):

(Xn(a))a∈A 
⇒ (Y (a))a∈A and (X̃n(a))a∈A 
⇒ (Ỹ (a))a∈A,

where Xn, X̃n, Y and Ỹ are defined in (3.3) and the processes Y and Ỹ are sample-continuous.

Proof. We restrict ourselves to showing that Xn 
⇒ Y . In view of Theorem 3.2, it suffices to
prove the tightness of the processes Xn in (C(A), dA), where dA is the restriction of d to A. We
have, for positive ε and δ,

P
(

sup
dA(a,b)<δ

|Xn(a) − Xn(b)| > ε
)

(3.5)

≤ P

(
n−1∑
k=1

sup
dA(a,b)<δ

|ak − bk|
[
nγn,|ε|(k)

]
> ε(n logn)1/α

)
= Pn(ε, δ).

We want to show that Pn(ε, δ) can be made arbitrarily small for all n, provided that δ is small.
We solve this problem in a modified form: let C = (C0,Cs,t , s, t = 1,2, . . .) be a sequence of
i.i.d. S1(1,0,0) random variables, independent of (εt ), and (bs,t ) a double array of real numbers.
We then have

C0

∑
1≤s<t≤n

|bs,t ||εsεt | d=
∑

1≤s<t≤n

bs,tCs,t |εsεt | d=
∑

1≤s<t≤n

bs,tCs,t εsεt .

By virtue of this argument, it suffices to replace the products |εt εs | in the quadratic form in (3.5)
with the products Cs,t εt εs . This means that it suffices to show that

P ′
n(ε, δ) = P

(
n−1∑
k=1

ck(δ)

n−k∑
j=1

Cj,j+kεj εj+k > ε(n logn)1/α

)

can be made arbitrarily small for all n, provided that δ is small, where ck(δ) = supdA(a,b)<δ |ak −
bk|. Now, first apply Lemma A.2 to the P ′

n’s and then condition (3.4):

P ′
n(ε, δ) ≤ const

1 + log+ |ε|
|ε|α

1 + logn

n logn

n−1∑
i=1

n∑
k=i+1

|ck(δ)|α
(

1 + log+ 1

|ck(δ)|
)

≤ const
∞∑

k=1

h(ck(δ)) → 0 as δ → 0.
�

Theorem 3.5 provides the limit process for a very general class of random quadratic forms with
infinite first moments. The coefficient matrices of these quadratic forms are given by Toeplitz ma-
trices. The conditions on the parameter set A are nothing but restrictions on the infinite Toeplitz
matrices (ai−j )i,j=1,2,.... When specified to the particular case of Fourier coefficients, as in (2.3),
Theorem 3.5 yields the following.
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Corollary 3.6. Assume that α ∈ (0,1) and let

F = {f ∈ L2[0,π]: a(f ) = (a1(f ), a2(f ), . . .) ∈ A},
where A is a compact set of �α log� satisfying (3.4) and a(f ) is specified in (2.3). We then have{

n(n logn)−1/α[Jn,ε(f ) − a0(f )γn,ε(0)]f ∈F 
⇒ 2[Y(a(f ))]f ∈F ,

(n/ logn)1/α[J̃n,ε(f ) − a0(f )]f ∈F 
⇒ 2[Ỹ (a(f ))]f ∈F ,
(3.6)

where the convergence holds in C(F ).

Proof. Let T : F → A be defined by Tf = a(f ). We claim that T F ⊂ A is closed, hence com-
pact. Indeed, if (fn) ⊂ F is such that Tfn converges in �α log� to some point a ∈ A, then (as
0 < α < 1), the sequence

fn(λ) = 1

π

∞∑
j=−∞

a|j |(fn) cos jλ, λ ∈ [0,π],

n = 1,2, . . . converges in L1[0,π] to some function f that must necessarily be in F . Therefore,
a = Tf ∈ T F , and the latter set is compact. The above argument shows that L2[0,π] con-
vergence in F is equivalent to �α log� convergence in T F . Since Theorem 3.5 implies weak
convergence of the left-hand side of (3.6) to its right-hand side in C(A) (when each func-
tion f ∈ F is identified with Tf ∈ A), we conclude that weak convergence in (3.6) also holds
in C(F ). �

3.3. Tightness and weak convergence in the case α ∈ [1,2)

Establishing full weak convergence in the case α ∈ [1,2) is more difficult than in the case α ∈
(0,1). Indeed, for α ∈ (0,1), we were allowed to switch from the random variables εt to their
absolute values, due to the specific geometry of the spaces �α and, in particular, �α log�. The
spaces �α , α ∈ [1,2), have a much more complicated structure and, therefore, the particular
geometry of these spaces will be need to be invoked in proving tightness for the random quadratic
forms Xn and X̃n. The requirements prescribed by the geometry are usually given by entropy
conditions; see [23] for a general treatment of random elements with values in Banach spaces.
Entropy conditions are typically needed when α-stable processes with α ∈ [1,2) appear; see the
discussion in [35], Chapter 12.

In this section, we only consider vectors a ∈ �α log� of the form (2.3), that is, they are the
Fourier coefficients of some functions f . Corollary 3.3 determines the structures of the limit
processes of the quadratic forms Jn,ε via the convergence of their finite-dimensional distribu-
tions. It hence suffices to show the tightness in C(F ) for suitable classes F . [20] considered the
special case of the one-dimensional class FI of indicator functions on [0,π]. We extend their
approach to more general classes of functions, using an entropy condition.



Weighted periodogram for infinite variance processes 1005

For f,g ∈ F , let

dj (f, g) = j |aj (f ) − aj (g)|, j ≥ 1.

Each dj defines a pseudo-metric on F . Let

ρk(f, g) = max
2k≤j<2k+1

dj (f, g), k ≥ 0.

Recall that the ε-covering number N(ε, F , ρk) of (F , ρk) is the minimal integer m for which we
can find functions f1, . . . , fm ∈ F such that supf ∈F mini=1,...,m ρk(f,fi) < ε.

Theorem 3.7. Assume that α ∈ [1,2), define a(f ) as in (2.3) and let F be a subset of L2[0,π]
satisfying:

(i) a(f ) ∈ �α log� for all f ∈ F ;
(ii) ∃β ∈ (0, α) such that

N(ε, F , ρk) ≤ const [1 + (2k/ε)β ], ε > 0, k ≥ 0. (3.7)

The weak convergence result (3.6) then holds in C(F ).

In contrast to the finite variance case [8,28], the entropy condition (3.7) is a rather strong one.
Indeed, in the papers mentioned, integrability of some power of logN(ε) in a neighborhood of
the origin suffices. However, conditions such as (3.7) are common in problems of continuity and
boundedness for stable processes; see [35], Chapter 10.

Proof of Theorem 3.7. The convergence of the finite-dimensional distributions follows from
Theorem 3.2. We restrict ourselves to proving tightness for Jn,ε , which follows by proving that

lim
m→∞ lim sup

n→∞
P

(∥∥∥∥∥
n∑

j=m

aj γ̂n,ε(j)

∥∥∥∥∥
F

> ε

)
= 0 for every ε > 0, (3.8)

where ‖g‖F = supf ∈F |g(f )| and

γ̂n,ε(j) = (n logn)−1/α[nγn,ε(j)], j = 1,2, . . . .

As in [20], (6.4), one can argue that it suffices in (3.8) to consider m and n of some specific form.
Let a < b be two positive integers, m = 2a and n = 2b+1 − 1, and consider numbers εk = 2−kθ ,
k ≥ 1, with θ > 0. For θ sufficiently small and a large enough, we have

P

(∥∥∥∥∥
n∑

j=m

aj γ̂n,ε(j)

∥∥∥∥∥
F

> ε

)
≤

b∑
k=a

P

(∥∥∥∥∥
2k+1−1∑
j=2k

aj γ̂n,ε(j)

∥∥∥∥∥
F

> εk

)
=

b∑
k=a

pk. (3.9)
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Consider an array (εk,l) of positive numbers such that εk,l → 0 as l → ∞ for each k ≥ 0. Then,

pk ≤ N(εk,0, F , ρk)pk,0 +
∞∑
l=1

N(εk,l, F , ρk)pk,l,

where

pk,0 = sup
f ∈F

P

(∣∣∣∣∣
2k+1−1∑
j=2k

aj (f )γ̂n,ε(j)

∣∣∣∣∣ > εk/2

)
,

pk,l = sup
f,g∈F ,ρk(f,g)≤εk,l−1

P

(∣∣∣∣∣
2k+1−1∑
j=2k

[aj (f ) − aj (g)]γ̂n,ε(j)

∣∣∣∣∣ > 2−(l+1)εk

)
.

By virtue of Lemma A.1, we have, for all f,g ∈ F ,

P

(∣∣∣∣∣
2k+1−1∑
j=2k

[aj (f ) − aj (g)]γ̂n,ε(j)

∣∣∣∣∣ > 2−(l+1)εk

)
≤ const bk,l,

where

bk,l = ε−α
k 2αl

2k+1−1∑
j=2k

|aj (f ) − aj (g)|α[
1 + log+(

1/|aj (f ) − aj (g)|)].
Assuming that ρk(f, g) ≤ εk,l−1, we have

bk,l ≤ const ε−α
k 2αlεα

k,l−1

2k+1−1∑
j=2k

j−α[1 + log j log+ ε−1
k,l−1]

≤ const ε−α
k 2αlεα

k,l−12−k(α−1)[1 + k log+ ε−1
k,l−1].

Hence, we are left to consider

b∑
k=a

∞∑
l=1

N(εk,l, F , ρk)ε
−α
k 2−k(α−1)+αlεα

k,l−1[1 + k log+ ε−1
k,l−1]

=
b∑

k=a

2−k(α−1−αθ)

∞∑
l=1

N(εk,l, F , ρk)ε
α
k,l−1[1 + k log+ ε−1

k,l−1]2αl (3.10)

≤ const
b∑

k=a

2−k(α−1−αθ)
∞∑
l=1

[
1 +

(
2k

εk,l

)β]
εα
k,l−1[1 + log+ ε−1

k,l−1]2αl.
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Assume that θ is so small that (3.9) holds. Define the numbers εk,l = 2−γ1l−γ2k , k, l ≥ 0 with
γ1, γ2 > 0 such that 1+γ2 > (1+αθ)/(α−β) and γ1 > α/(α−β). For these parameter choices,
it is not difficult to see that (3.10) converges to zero by first letting n → ∞ (i.e., b → ∞) and
then m → ∞ (i.e., a → ∞). This proves (3.8), hence the tightness of the processes considered
in C(F ). �

In what follows, we give examples of function spaces F satisfying condition (ii) of Theo-
rem 3.7.

Example 3.8. Consider a space of indexed functions G	 = {gθ : θ ∈ 	} that are defined on
[0,π] such that (	, τ) is a compact metric space, the mapping θ �→ gθ is Hölder continuous
with exponent b > 0 and constant K > 0, that is,

sup
0≤x≤π

|gθ1(x) − gθ2(x)| ≤ K(τ(θ1, θ2))
b for all θ1, θ2 ∈ 	,

and the number of balls (in metric τ ) of radius at most ε necessary to cover 	 is of the or-
der ε−a for some 0 < a < bα. Then, G	 satisfies N(ε, G	,ρk) ≤ const (2k/ε)a/b with a/b ∈
(0, α). Indeed, let ε > 0, k ≥ 0. We can find N ≤ c((Kπ2k+1)/ε)a/b balls of radius at most
(ε/(Kπ2k+1))1/b covering 	. Call them B1, . . . ,BN , with centers θ1, . . . , θN . Now, given θ ∈ 	,
we have θ ∈ Bi for some i ∈ {1, . . . ,N} and

ρk(gθ , gθi
) = max

2k≤j<2k+1
j

∣∣∣∣∫ π

0
cos(jx)

(
gθ (x) − gθi

(x)
)

dx

∣∣∣∣
≤ 2k+1π sup

0≤x≤π

|gθ (x) − gθi
(x)| ≤ 2k+1πKτ(θ, θi)

b ≤ ε.

The desired bound now follows since N(ε, G	,ρk) ≤ N ≤ const (2k/ε)a/b.

Example 3.9. Consider a Vapnik–Červonenkis (VC) class G of functions defined on [0,π] with
VC index V (G) = 2; see [36], Section 2.6.2 for more information on VC classes of functions.
Given ε > 0 and k ≥ 0, we can find N ≤ c(π2k+1)/ε balls of radius at most ε/(π2k+1) that
cover G in the norm 1

π

∫ π
0 | · |dx; see, for example, [36], Theorem 2.6.7. Therefore, there exist

g1, . . . , gN ∈ G such that for any g ∈ G ,

min
1≤i≤N

1

π

∫ π

0
|g(x) − gi(x)|dx <

ε

π2k+1
.

We then have

min
1≤i≤N

ρk(g, gi) = min
1≤i≤N

max
2k≤j<2k+1

j

∣∣∣∣∫ π

0
cos(jx)

(
g(x) − gi(x)

)
dx

∣∣∣∣
≤ min

1≤i≤N
2k+1

∫ π

0
|g(x) − gi(x)|dx ≤ ε.

It follows that N(ε, G, ρk) ≤ N ≤ const 2k/ε.
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4. The linear process case

It is the aim of this section to show that the results for the case of an i.i.d. sequence (εt ) translate
to the linear process case. The following decomposition will be crucial:

In,X(λ) = In,ε(λ)|ψ(e−iλ)|2 + Rn(λ). (4.1)

This decomposition is analogous to the decomposition fX(λ) = fε(λ)|ψ(e−iλ)|2 of the spectral
density fX of a linear process. We will show that the normalized integrated remainder term∫ π

0 Rn(λ)f (λ)dλ is negligible, uniformly over the class of functions F , in comparison to the
normalized main part ∫ π

0
In,ε(λ)|ψ(e−iλ)|2f (λ)dλ, f ∈ F ,

which can be treated by the methods of the previous section. Note that, for a given sequence
of coefficients (ψj )j∈Z, the functions |ψ(e−i·)|2f constitute just another class of functions on
[0,π], Fψ say, and therefore we will study the process Jn,ε(f ), f ∈ Fψ , for suitable classes Fψ .

Lemma 4.1. Let Rn be the remainder term appearing in the decomposition (4.1) of the peri-
odogram In,X . Suppose that the linear filter (ψj ) of the process X satisfies

∞∑
j=−∞

|ψj ||j |2/α(1 + log+ |j |)(4−α)/(2α)+τ < ∞ (4.2)

for some τ > 0 and F is a collection of real-valued functions defined on [0,π] such that
supf ∈F ‖f ‖2 < ∞. We then have

n

(n logn)1/α
sup
f ∈F

∣∣∣∣∫ π

0
f (x)Rn(x)dx

∣∣∣∣ P−→ 0.

Proof. From [27], Proposition 5.1, substituting n1/2 for an, we have the following decomposition
for Rn:

Rn(x) = n−1(ψ(eix)Ln(x)Kn(−x) + ψ(e−ix)Ln(−x)Kn(x) + |Kn(x)|2), (4.3)

where ψ is the transfer function as defined before and

Ln(x) =
n∑

t=1

εte
−ixt , Kn(x) =

∞∑
j=−∞

ψj e−ixjUnj (x),

Unj (x) =
(

n−j∑
t=1−j

−
n∑

t=1

)
εte

−ixt .
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We first show that

1

(n logn)1/α
sup
f ∈F

∣∣∣∣∫ π

0
f (x)|Kn(x)|2 dx

∣∣∣∣ P−→ 0. (4.4)

Note that ∣∣∣∣∫ π

0
f (x)|Kn(x)|2 dx

∣∣∣∣ ≤
∫ π

0
|f (x)|

( ∞∑
j=−∞

|ψj ||Unj (x)|
)2

dx

≤ const

( −1∑
j=−∞

+
∞∑

j=1

)
|ψj |

∫ π

0
|f (x)||Unj (x)|2 dx.

The convergence in (4.4) will follow if we can show that the suprema over f ∈ F of the two
infinite sums in the last expression are bounded in probability as n → ∞. We will prove this for
the second sum; the first one can be handled analogously.

We have, by definition of the terms Unj (x), the Cauchy–Schwarz inequality and the fact that,
by assumption, supf ∈F ‖f ‖2 < ∞,

sup
f ∈F

∞∑
j=1

|ψj |
∫ π

0
|f (x)||Unj (x)|2 dx

≤ sup
f ∈F

n∑
j=1

|ψj |
∫ π

0
|f (x)|

∣∣∣∣∣
0∑

t=1−j

εte
−ixt −

n∑
t=n−j+1

εte
−ixt

∣∣∣∣∣
2

dx

+ sup
f ∈F

∞∑
j=n+1

|ψj |
∫ π

0
|f (x)|

∣∣∣∣∣
n−j∑

t=1−j

εte
−ixt −

n∑
t=1

εte
−ixt

∣∣∣∣∣
2

dx

≤ c[I1(n) + I2(n) + I3(n) + I4(n)],
where

I1(n) =
n∑

j=1

|ψj |
(∫ π

0

∣∣∣∣∣
0∑

t=1−j

εte
−ixt

∣∣∣∣∣
4

dx

)1/2

,

I2(n) =
n∑

j=1

|ψj |
(∫ π

0

∣∣∣∣∣
n∑

t=n−j+1

εte
−ixt

∣∣∣∣∣
4

dx

)1/2

,

I3(n) =
∞∑

j=n+1

|ψj |
(∫ π

0

∣∣∣∣∣
n−j∑

t=1−j

εte
−ixt

∣∣∣∣∣
4

dx

)1/2

,

I4(n) =
∞∑

j=n+1

|ψj |
(∫ π

0

∣∣∣∣∣
n∑

t=1

εte
−ixt

∣∣∣∣∣
4

dx

)1/2

.



1010 S.U. Can, T. Mikosch and G. Samorodnitsky

It remains to show that each sequence Ik(n), k = 1,2,3,4, is tight. Now,

I1(n)
d=

n∑
j=1

|ψj |
(∫ π

0

∣∣∣∣∣
j∑

m=1

εmeixm

∣∣∣∣∣
4

dx

)1/2

.

Let ε > 0. Choose M > 0 so large that the following holds, for δ = 2α
4−α

τ :

P
(|εm| > Mm1/α(1 + logm)1/α+δ for some m ≥ 1

) ≤ ε/2.

Write

Jm = εmI{|εm|≤Mm1/α(1+logm)1/α+δ}.

Then, for k > 0, we have, for δ chosen as above,

P
(
I1(n) > k

) − ε/2

≤ P

(
n∑

j=1

|ψj |
(∫ π

0

∣∣∣∣∣
j∑

m=1

εmeitx

∣∣∣∣∣
4

dx

)1/2(∫ π

0

∣∣∣∣∣
j∑

m=1

Jmeitx

∣∣∣∣∣
4

dx

)1/2

> k

)

≤ k−1
n∑

j=1

|ψj |
(∫ π

0
E

∣∣∣∣∣
j∑

m=1

Jmeitx

∣∣∣∣∣
4

dx

)1/2

= k−1
n∑

j=1

|ψj |
[∫ π

0

(
j∑

m=1

E(J 4
m)

+ 6
j∑

m1=1

j∑
m2=m1+1

E(J 2
m1

)E(J 2
m2

) cos
(
(m1 − m2)x

)
dx

)]1/2

≤ c

k

n∑
j=1

|ψj |
[(

j∑
m=1

(
m1/α(1 + logm)1/α+δ

)4−α

)1/2

+
([

j∑
m=1

(
m1/α(1 + logm)1/α+δ

)2−α

]2)1/2]

≤ c

k

∞∑
j=1

|ψj |j2/α(1 + log j)(4−α)/(2α)+τ .

By virtue of (4.2), the last expression can be made smaller than ε/2 by choosing k large enough,
which proves the tightness of I1(n). Similar arguments show that Ij (n), j = 2,3,4, are tight
sequences as well. The convergence in (4.4) follows.
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By the decomposition (4.3), the proof will be finished if we can also establish that

1

(n logn)1/α
sup
f ∈F

∣∣∣∣∫ π

0
f (x)ψ(eix)Ln(x)Kn(−x)dx

∣∣∣∣ P−→ 0. (4.5)

We have, by the Cauchy–Schwarz inequality and the identity |Ln(x)|2 = nIn,ε(x),∣∣∣∣∫ π

0
f (x)ψ(eix)Ln(x)Kn(−x)dx

∣∣∣∣
≤ c‖f ‖2

(∫ π

0
|Ln(x)Kn(−x)|2 dx

)1/2

≤ c‖f ‖2n
1/2

(
sup

0≤x≤π

In,ε(x)
)1/2

(∫ π

0
|Kn(−x)|2 dx

)1/2

.

We therefore see that

1

(n logn)1/α
sup
f ∈F

∣∣∣∣∫ π

0
f (x)ψ(eix)Ln(x)Kn(−x)dx

∣∣∣∣
≤ c

n1/α−1/2

(sup0≤x≤π In,ε(x))1/2

(logn)1/α

(∫ π

0
|Kn(−x)|2 dx

)1/2

.

Similar arguments as for (4.4) ensure the tightness of the sequence
∫ π

0 |Kn(−x)|2 dx. The tight-
ness of the term

(sup0≤x≤π In,ε(x))1/2

(logn)1/α

follows from [29] Theorem 2.1 (for 0 < α < 1) and Proposition 3.1 (for 1 ≤ α < 2). Thus, we
conclude that (4.5) holds, and Lemma 4.1 is proved. �

Remark 4.2. A referee kindly pointed out that Lemma 4.1 remains valid under the following
condition, which is weaker than (4.2): assume that there exists a sequence (ωn) of positive num-
bers such that

(n logn)−1/α

(
n∑

k=1

ω−α
k

)2/α−1/2 ∑
|j |≤n

|ψj |
(

j∑
l=1

ω4−α
l

)1/2

→ 0.

Condition (4.2) follows by taking ωn = n1/α(1 + logn)1/α+δ for some positive δ.

By (4.1), we may write, for each f ,

Jn,X(f ) − a0(f |ψ |2)γn,ε(0) = Jn,ε(f |ψ |2) − a0(f |ψ |2)γn,ε(0)

+
∫ π

0
f (x)Rn(x)dx,
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where |ψ |2 stands for |ψ(e−i·)|2. Combining this decomposition with Lemma 4.1, we can now
state the following analogs to Corollary 3.6 and Theorem 3.7.

Corollary 4.3. Assume that α ∈ (0,1) or α ∈ [1,2) and let F be as defined as in Corollary 3.6
or Theorem 3.7, respectively. Suppose that the set {f : [0,π] → R: f |ψ |2 ∈ F } = Fψ satisfies
supf ∈Fψ

‖f ‖2 < ∞ and (4.2) holds for some τ > 0. We then have

{
n(n logn)−1/α[Jn,X(f ) − a0(f |ψ |2)γn,ε(0)]f ∈Fψ


⇒ 2[Y(a(f |ψ |2))]f ∈Fψ
,

(n/ logn)1/α[J̃n,X(f ) − a0(f |ψ |2)]f ∈Fψ

⇒ 2[Ỹ (a(f |ψ |2))]f ∈Fψ

,
(4.6)

where the convergence holds in C(Fψ).

Appendix

For an array b = (bs,t ) of real numbers, define the quadratic forms

Qn,ε(b) =
∑

1≤s 
=t≤n

bs,t εsεt

and

�n(b) =
∑

1≤s 
=t≤n

|bs,t |α
(

1 + log+ 1

|bs,t |
)

.

The following lemma is a consequence of [34], Theorem 3.1; see also [22].

Lemma A.1. For α ∈ (0,2), there exists a positive constant Dα such that for all x > 0,

P
(
Qn,ε(b) > x

) ≤ Dα

1 + log+ x

xα
�n(b).

Now, let C = (C0,Cs,t , s, t = 1,2, . . .) be a sequence of i.i.d. S1(1,0,0) random vari-
ables, independent of (εt ), and let b be as above. The following lemma is a consequence of
Lemma A.1.

Lemma A.2. For α ∈ (0,1), there exists a positive constant D′
α such that for all x > 0,

In(x) = P

( ∑
1≤s<t≤n

bs,tCs,t εsεt > x

)
≤ D′

α

1 + log+ x

xα
�n(b). (A.1)
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Proof. Apply Lemma A.1 to In(x), conditionally on C:

In(x) = P

( ∑
1≤s<t≤n

bs,tCs,t εsεt > x

)

= ECP

( ∑
1≤s<t≤n

bs,tCs,t εsεt > x

∣∣∣C)
(A.2)

≤ const
1 + log+ x

xα

n∑
s=1

n∑
t=i+1

|bs,t |αE|C0|α
(

1 + log+ 1

|bs,tC0|
)

,

Because α ∈ (0,1), we also have, for x > 0,

E|C0|α
(

1 + log+ 1

|xC0|
)

≤ const

(
1 + log+ 1

|x|
)

, (A.3)

and combining (A.2) and (A.3), we thus obtain (A.1). �
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[34] Rosiński, J. and Woyczyński, W.A. (1987). Multilinear forms in Pareto-like random variables and

product random measures. Colloq. Math. 51 303–313. MR0891300
[35] Samorodnitsky, G. and Taqqu, M. (1994). Stable Non-Gaussian Random Processes. New York: Chap-

man & Hall. MR1280932
[36] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes. New York:

Springer. MR1385671
[37] Whittle, P. (1951). Hypothesis Testing in Time Series Analysis. Uppsala: Almqvist & Wicksel.

MR0040634
[38] Willinger, W., Taqqu, M.S., Sherman, R. and Wilson, D. (1995). Self-similarity through high

variability: Statistical analysis of ethernet lan traffic at the source level. Proceedings of the
ACM/SIGCOMM’95, Cambridge, MA. Computer Communications Review 25 100–113.

[39] Zygmund, A. (2002). Trigonometric Series, I and II, 3rd ed. Cambridge, UK: Cambridge Univ. Press.
MR1963498

Received March 2009 and revised September 2009

http://www.ams.org/mathscinet-getitem?mr=1331670
http://www.ams.org/mathscinet-getitem?mr=1472960
http://www.ams.org/mathscinet-getitem?mr=1782277
http://www.ams.org/mathscinet-getitem?mr=1353441
http://www.ams.org/mathscinet-getitem?mr=0762984
http://www.ams.org/mathscinet-getitem?mr=2271424
http://www.ams.org/mathscinet-getitem?mr=0891300
http://www.ams.org/mathscinet-getitem?mr=1280932
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=0040634
http://www.ams.org/mathscinet-getitem?mr=1963498

	Introduction
	Preliminaries on the periodogram
	The i.i.d. case
	Convergence of the finite-dimensional distributions
	Tightness and weak convergence in the case alpha(0,1)
	Tightness and weak convergence in the case alpha[1,2)

	The linear process case
	Appendix
	Acknowledgements
	References

