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1. Motivation

Regression coefficients based on financial data often vary considerably across different samples.
This observation pertains to finance models like the CAPM beta regression, the forward premium
equation and the yield curve regression. In economics, macro models like the monetary model of
the foreign exchange rate also yield a wide spectrum of regression coefficients.

The uncertainty in CAPM regressions was reviewed in Campbell et al. (1997, Ch. 5) and
Cochrane (2001, Ch. 15). Lettau and Ludvigson (2001) explicitly model the time variation in
beta. Hodrick (1987) and Lewis (1995) report wildly different estimates for the Fisher coeffi-
cient in forward premium regressions. Moreover, typical estimates of the expectation coefficient
in yield curve regressions reported by Fama (1976), Mankiw and Miron (1986), Campbell and
Shiller (1991) show substantial variation over time and appear to be downward biased; Campbell
et al. (1997, Ch. 10.2) provide a lucid review. The coefficient of the relative money supply in the
regression of the exchange rate on the variables of the monetary model of the foreign exchange
rate, varies considerably around its theoretical unitary value; see for example Frenkel (1993, Ch.
4). In monetary economics parameter uncertainty is sometimes explicitly taken into account when
it comes to policy decisions; see Brainard (1967) and, more recently, Sack (2000). In a random co-
efficient model, see Feige and Swamy (1974), the (regression) coefficients themselves are subject
to randomness and therefore fluctuate about some fixed values. Estimation of the random coef-
ficient models is reviewed in Chow (1984). Moreover, strategic decisions and rapidly changing
business environments imply that one often works with a relatively short data window. Similarly,
as soon as some macro variables are part of the regression, one is compelled to use low frequency
data and hence a small or medium sized sample.

A possible reason for the considerable variation in estimated regression coefficients across dif-
ferent medium sized samples is the heavy tailed nature of the innovations distribution. It is an
acknowledged empirical fact that many financial variables are much better modeled by distribu-
tions that have tails thicker than the normal distribution; see e.g. Embrechts et al. (1997, Ch.

6), Campbell et al. (1997), or Mikosch (2003) and the references therein. In small and medium



sized samples the central limit theory (CLT) based standard +/n-rates of convergence for the OLS
parameter estimators can be a poor guide to the parameter range that may occur. But small sample
results for the distribution of regression estimators are rare and exact results are difficult to obtain.
In this paper we derive explicit expressions for the tail of the distribution of the regression
estimators in finite samples for the case that the noise distribution exhibits heavy tails.! Consider

the simple regression model:

Y, =BX+¢.

Suppose that the i.i.d. additive noise ¢, has a distribution with Pareto-like tails, i.e. P(|¢| > s) ~
cs~ % for high quantiles s, some constant ¢ > 0 and tail index o > 0. For example, the Student-t
distribution with o degrees of freedom fits this assumption. The ordinary least squares estimator

of B reads
Y XY
Y X7

We show that under some mild conditions, for example if the X; are i.i.d. with a standard uniform

X0

E: =B+p,, wherep,:= ,
I XP

distribution and if the ¢, follow a Student-t distribution with ¢ degrees of freedom, then

Xi

P(py>x) =P(py < —x) ~ nE {W

]QP((p > x).

Note that this is a fixed finite sample size n cum large deviation x result. This relation shows that
for fixed n and large x there is a strong deviation of the tail probability of p,, from a normal based
tail which, for fixed x and large n, would be prescribed by the CLT. In particular, the resulting
Pareto-like tails of p, yield a possible explanation for the empirical observation that regression
estimates often fluctuate wildly around their theoretical values.

The above Pareto-like tail probabilities can be used for statements about very high quantiles of

Pn- Suppose g > x is an even higher quantile, possibly at the border or even outside the range of

'In large samples, given that the innovations have finite variance, CLT based results apply.



the data. Then

()"

Below we demonstrate that in small and medium sized samples with heavy tail distributed innova-
tions, this approximation is considerably better than the normal (CLT) based approach. It can be
used to gauge the probability of observing regression coefficients of unusual size.

The results hinge on relatively weak assumptions regarding the stochastic nature of the ex-
planatory variable. For the linear model above we require that the joint density of the explanatory
variables is bounded in some neighborhood of the origin. A restriction is the condition that the
regressor be exogenous; but the regressor is not assumed to be fixed. In addition to the case of
additive noise ¢, we also investigate the case of random coefficients 3, i.e. the case with multi-
plicative noise. Moreover, we allow for the possibility that the multiplicative noise component is
correlated with the additive noise term. In this sense there can be correlation between the economic
explanatory part and the additive noise structure. Both the noise and the regressor are allowed to
be time dependent. The time dependency has an extra effect on the dispersion of the regression
coefficients.

The paper does not propose alternative regression procedures such as the estimator studied
in Blattberg and Sargent (1971) or the Least Absolute Deviations estimator, Rank estimators in-
vestigated in this issue by Hallin, Swan, Vandebout and Veredas (2011), tail trimming for GMM
estimation studied by Hill and Renault (2010), the partially adaptive methods proposed in Butler,
McDonald, Nelson and White (1990), or the maximum likelihood procedure for the case of resid-
uals that follow infinite variance stable distributions as considered in Nolan and Revah (2011); nor
do we venture into the issue of model identification of infinite variance autoregressive processes as
investigated in Andrews and Davis (2011). The purpose of our paper is different. We investigate
the shape of the distribution of regression coefficients when the standard OLS procedure is applied
in the case that the innovations are heavy tailed distributed. Thus while the alternative estimators
are meant to overcome the deficiencies of the OLS procedure in the presence of heavy tails, we

quantitatively describe the properties of the OLS procedure in this situation. The OLS method is



very widely applied, including the case of financial data which are known to exhibit heavy tails.
Therefore it is of interest to understand the OLS results under non-standard conditions.

The theoretical results are first illustrated by means of a simulation experiment. The Monte
Carlo study demonstrates that in medium sized samples the estimated coefficients can deviate
considerably from their true values. The expressions for the tail probabilities are shown to work as
anticipated and their use for inference is demonstrated. Subsequently, we investigate the relevance
of the theory for the wide dispersion of the expectation hypothesis coefficients in yield curve

regressions.

2. The Model

We study the regression model:

Y, =(B+&)Xi+ ¢, (D

where (&, ¢y) is a strictly stationary noise sequence of 2-dimensional random vectors, and (X;) is
a sequence of explanatory variables, independent of the noise. In what follows, we write @, &,
etc., for generic elements of the strictly stationary sequences (¢;), (&), etc. The coefficient f3 is a
fixed parameter to be estimated by regression. The model (1) comprises a large variety of different
economic models since it allows for both additive and multiplicative uncertainty. If the noises &
and ¢, have zero mean, then, conditionally on the information at time ¢ — 1, the model (1) captures
the structure of many of the rational expectations finance models such as the CAPM.

In what follows, we assume that the right tail of the marginal distributions F¢(x) and Fy(x) of

€ and @, respectively, is regularly varying with index o« > 0. This means that the limits

1-F
}51301_—;();) =s% foralls>0 )

exist for F € {F¢, Fy }. Regular variation entails that (¢ + §)-th moments of F are infinite for >0,

supporting the intuition on the notion of a heavy tailed distribution. Some prominent members



of the class of distributions with regularly varying tails are the Student-t, F-, Fréchet, infinite
variance stable and Pareto distributions. First order approximations to the tails of these distribution
functions F' are comparable to the tail cx~ % of a Pareto distribution for some ¢, > 0, i.e.,

1-F
fim £

x—oo cx ¢

=1.

The power like decay in the right tail area implies the lack of moments higher than a. There are
other distributions which have fatter tails than the normal distribution, such as the exponential or
lognormal distributions. But these distributions possess all power moments. They are less suitable
for capturing the very large positive and highly negative values observed in financial data sets.

Independent positive random variables Aq,...,A, with regularly varying right tails (possibly
with different indices) satisfy a well known additivity property of their convolutions; see for ex-
ample Feller (1971). This means that

lim ;'1:1 P(Al >X) _
x—e P(LLAi > x)

3)

This is a useful fact when it comes to evaluating the distribution al tail of (weighted) sums of
random variables with regularly varying tails. The ordinary least squares (OLS) estimator of 3 is
comprised of such sums, but also involves products and ratios of random variables. In particular,

the OLS estimator E of B in model (1) is

S YL XY
ﬁzi”l—)ézt:ﬁﬂLPn,eJFanpa “4)
=1t
and involves the terms
YA &X? L 0X
Pre = m ez ad Pugi= o )
XX XX

Thus, in the case of fixed regressors X; and with noise (&, ¢;) whose components have distributions



with regularly varying tails, one can rely on the additivity property (3) to deduce the tail probabili-
ties of the E distribution. But if the regressors are stochastic, we face a more complicated problem
for which we derive new results.

This paper investigates the finite sample variability of the regression coefficient estimator in
models with additive noise and random coefficients when the noise comes from a heavy tailed
distribution. In Section 3 we derive the finite sample tail properties of the distribution of the OLS
estimator of B in model (1) when the noise has a distribution with regularly varying tails; see
(2). The simulation study in Section 4 conveys the relevance of the theory. Section 5 applies the
theory to the distribution of the expectations coefficient in yield curve estimation. Some proofs are

relegated to the Appendix.

3. Theory

In this section we derive the finite sample tail properties of the distribution of the OLS regression
coefficient estimator in the model (1) when the noise distribution has regularly varying tails. To
this end we first recall in Section 3.1.1 the definitions of regular and slow variation as well as the
basic scaling property for convolutions of random variables with regularly varying distributions.
Subsequently, we obtain the regular variation properties for inner products of those vectors of
random variables that appear in the OLS estimator of $. The joint distribution of these inner
products is multivariate regularly varying. In Section 3.1.2 we give conditions for the finiteness
of moments of quotients of random variables. Finally, we derive the asymptotic tail behavior of
the distribution of the OLS estimator of 8 by combining the previous results. We present the main
results on the finite sample tail behavior of E for 1.1.d. regularly varying noise (Section 3.2.1), for
regularly varying linearly dependent noise (Section 3.2.2) and give some comments on the case of

general regularly varying noise (Section 3.2.3).



3.1. Preliminaries
3.1.1. Regular variation

A positive measurable function L on [0, o) is said to be slowly varying if

lim Liex)

lim L(x) =1 forallc>0.

The function g(x) = x*L(x) for some ¢ € R is then said to be regularly varying with index a.. We
say that the random variable X and its distribution F (we use the same symbol F for its distribution
function) are regularly varying with (tail) index o > 0 if there exist p,q > 0 with p+¢g =1 and a

slowly varying function L such that

F(—x)=qx *“L(x)(1+o0(1)) and F(x) :=1—F(x) = px *L(x) (1+0(1)), x—o. (6)

Condition (6) is usually referred to as a tail balance condition. For an encyclopedic treatment of
regular variation, see Bingham et al. (1987).

In what follows, a(x) ~ b(x) for positive functions a and b means that a(x)/b(x) — 1, usually
as x — oo, We start with an auxiliary result which is a slight extension of Lemma 2.1 in Davis and
Resnick (1996) where this result was proved for non-negative random variables. The proof in the

general case is analogous and therefore omitted.

Lemma 3.1 Let G be a distribution function concentrated on (0,0) satisfying (6). Assume Z\,...,Z,

are random variables such that

P(Z, P(Z < —
im PG> _ e g i PEST oy, %
LA MRG0

+

for some non-negative numbers c;- and

P(|Z; Z;
e o)




Then

)}LWP(Z1+~6--(;L)ZH > x) S
and
fim A F 2 S =) =+t
TG
The following result is a consequence of this lemma.
Lemma 3.2 Suppose Z; are regularly varying random variables with tail index o; >0,i=1,...,n.

Assume that one of the following conditions holds.
1. The Z;’s are independent and satisfy (7) with G(x) = P(|Z;] > x), x > 0.
2. The Z;’s are non-negative and independent.

3. Zy and Z; are regularly varying with indices 0 < oy < 0 and the parameters p1,q in the

tail balance condition (6) for the distribution of Z, are positive.

Then under (1) or (2) the relations

P(Zi+-+Zy>x) ~ P(Zi>x)+--+P(Z>x),

PZi+-+7Z,<—x) ~ P(Zi<—x)+---+P(Z, < —x)
hold as x — oo. If condition (3) applies, as x — oo,
P(Z\+Zy>x)~P(Zy >x) and P(Zi+Z, < —x)~P(Z < —x)

The proof is given in the Appendix.

Recall the definition of a regularly varying random vector X with values in R¢; see for example
de Haan and Resnick (1977), Resnick (1986,1987). In what follows, S?~! denotes the unit sphere
in R? with respect to a (given) norm | -| and — refers to vague convergence on the Borel o-field

of S?~1; see Resnick (1986,1987) for details.



Definition 3.3 The random vector X with values in R? and its distribution are said to be regularly
varying with index a and spectral measure Pg if there exists a random vector ® with values in
S9! and distribution Pe such that the following limit exists for all t > 0:

PUXI> i X/XI€) v ap \
X >y 0 el e (8)

The vague convergence in (8) means that

P(IX| > tx,X/| X| €5)

PIX] > ) — "% Po(S),

for all Borel sets S C S~ such that Pg(d(S)) = 0, where d(S) denotes the boundary of S. Alter-

natively, (8) is equivalent to the totality of the relations

P(X e€xA)

PIX[=x)  HA)-

Here p is a non-null measure on the Borel o-field of ﬁd\{ﬂ} with property u(tA) =t~ %u(A),
t > 0, for any Borel set A C Ed\{ﬂ}, bounded away from zero and such that p(d(A)) = 0.

We have the following result.

Lemma 3.4 Assume that X = (X1,...,Xy)" is regularly varying in R with index o > 0 and is
independent of the random vector Y = (Yi,...,Y;)" which satisfies E|Y|*T¢ < o for some € > 0.
Then the scalar product Z = X'Y is regularly varying with index o.. Moreover; if X has independent

components, then as x — o,

M=~

d
P(Z>x) ~ P(X]|>x) [ C;FE[YiaI{YpO}]—i_ZCiE[‘Yi‘al{YKO}]] ;
i=1

1

€))

-

1

1

d
P(Z<—x) ~ P(X]|>2x) [ CFE[IGO‘I{Y,->0}]+ZC?E[|IG|“I{Y,-<0}]] ,
i=1

10



where

o . P(X,-<—x)
= _— 7 d = lim ————=.
A D R =V )

The proof is given in the Appendix.

Remark 3.5 To give some intuition on Lemma 3.4, consider the case d = 1, i.e., Z = XY}, and

assume for simplicity that X and Y] are positive random variables. Then the lemma says that
P(X1Y] >x) ~EY¥P(X] >X), x—oo. (10)

The latter relation is easily seen if one further specifies that P(X; > x) = cx~ %, x > ¢!/®. Then a

conditioning argument immediately yields for large x,

P(Z>x) = E[P(XY1>x|1)

cVay
= / P(X; > x/y)dP(Y; <y)+P(Y; > ¢ /%)
0

—1/a

C X
= / ex"%y*dP(Yy <y)+P(Y; > ¢ V%)
0

ey

— P(X,>x) /O Y4 dP(Y, <y) +o(P(X; > x))
— P(Xi > x)EY®(1+0(1)).

Relation (10) is usually referred to as Breiman’s result; see Breiman (1965). A generalization to

matrix-valued Y and vectors X can be found in Basrak et al. (2002).

3.1.2. Finiteness of moments

In this section we give conditions under which the moments of the random variables

~ XZ
Xl‘:n—)(zl{XﬁEO}? le,...,n,
s=1“s

11



are finite, where (X;) is a sequence of random variables. First note that

n
X2 > Ixeoy Y X7 =Y, t=1,..n, (11)

s=1
It will be convenient to work with the sequence (Y;).
Lemma 3.6 Let a be a positive number. Assume that one of the following conditions is satisfied:
1. Xi,...X, areiid., P(|X| <x)<cx? for some y,c >0 and all x < xo, and ny > o.
2. (Xi,...,Xy) has a bounded density f, in some neighborhood of the origin and n > o.
Then E?fa/z < oo and, hence, E|X,|* < o fort =1,...,n.

The proof is given in the Appendix. Condition (2) is for example satisfied if (X,...,X;) is

Gaussian or Student-f, and n > .

3.2. Tail asymptotics for regression coefficient estimators
3.2.1. i.i.d. noise

In this section we consider three sequences of random variables satisfying the following basic

Assumptions:

—_—

. (X;) is a sequence of random variables with X; # 0 a.s. for every 7.

2. (&) isi.i.d., and € is regularly varying with index o > 0.

W

. (@) isi.i.d., and @ is regularly varying with index oty > 0.
4. (X;) is independent of ((&,@;)).

We investigate the distributional tails of the quantities p,, ¢ and p,, o defined in (5). Recall from
(4) that the latter quantities are closely related to the OLS estimator B of B in the regression model

(1) with multiplicative and additive noise.

12



Proposition 3.7 Assume conditions (1), (4) and fix n > 2.

1. If (2) holds, then as x — oo,

i= n 2
S—l)igf . (12)
Plpre =) ~ Ple<—1) ELE | o]
S*]XS
2. If (3) and, in addition,
_% 5
n 2
E (ZX?) < oo forsome 06 >0, (13)
i=1
hold, then, as x — oo,
o [ Xilix>0) L [ Xl <oy
P(ppp>x) ~ P(@>x) E[—’ +P(p<—x) ) E ,
" i:ZI i X2 L
L [ Xilgxsoy 170 T Xillx<0p ]
P(pnop < —x) ~ P(o Z { {}2}} +P(¢ > x) Z { {;2} .
i=1 1 i=1 =1

Proof. Since (X;) and (&) are independent and X?/¥"_, X2 < 1, statement (1) follows from

Lemma 3.4.

If (X;) and (@) are independent and E|X,/Y"_, X2|%+€ < oo for some € > 0, one can apply
Lemma 3.4 to the tails of p, o. An appeal to (11) and (13) ensures that this condition is satisfied,
and therefore (2) follows. m

Sufficient conditions for condition (13) are given in Lemma 3.6. Various expressions in Propo-
sition 3.7 can be simplified if one assumes that Xy, ..., X, are weakly exchangeable, i.e., the dis-
tribution of Xy(1), ..., Xz(,) remains unchanged for any permutation 7(1),...,7(n) of the integers

1,...,n. This condition is satisfied if (X;) is an exchangeable sequence . This means that (X,) is

13



conditionally i.i.d.. If Xj, ..., X}, are weakly exchangeable, then, for example, (12) turns into

Xz 1%
P(ppe >x) ~ nP<8>x)E{ - 2} 7
s:le
x2 1%
P(pne <—x) ~ nP(e<—x)E { . XZ]
s=1“*s

If we assume in addition that (X;) is stationary and ergodic, the strong law of large numbers
applies to (|X;|7) for any p > 0 with E|X|P < oo. This, together with a dominated convergence
argument, allows one to determine the asymptotic order of the tail balance parameters in Propo-
sition 3.7 as n — o. We restrict ourselves to p, ¢; the quantities p, o can be treated analogously.

Consider

n X2 e O Zn—l ’Xt’2ag
o= § [ 2 [
" t:Z:l 1 X7 (= 1Yf_ X7)%

s=1
Assume that E |X |2max(l’a£) < oo, Then the law of large numbers and uniform integrability imply

that as n — oo,

— 0 ifag>1

my(Ot) = 1 ifoe=1 -

— oo ifoe <1

\

We note in passing the difference between the large sample CLT based results and the fixed sample
but heavy tail based result derived here. Indeed, for a > 1 (i.e., finite variance case) we have
my(0te) — 0 as n — oo, This means that tails become thinner for large n and fixed x, whereas for n
fixed and x — oo the tails are determined by the heavy tails of €.

Proposition 3.7 provides sufficient conditions for regular variation of p, ¢ and p, . From this
property we can derive our main result on the tails of the OLS estimator E = B+ Pn,e + Pn,p of the

regression coefficient f3.

Corollary 3.8 If the conditions of Proposition 3.7 hold, then p, ¢ and p, ¢ are regularly vary-

ing with corresponding indices O and 0. Moreover, if we assume that 0t # Gy or that (&) is

14



independent of (¢;) and o = O, then, as x — oo,

P(Pne+Png >x) ~ P(Pne>x)+P(Pngo>x),

P<pn,£ + Pnp < _x) ~ P(pn,e < _x) +P(pn’(p < —x),

where the corresponding asymptotic expressions for the tails of p, ¢ and p, o are given in Propo-

sition 3.7.

Proof. The regular variation of p, ¢ and p, ¢ is immediate from Proposition 3.7. If ae # ap,
then the statement follows from the third part of Lemma 3.2. If & = otz = ¢ty and (&) and (¢;) are
independent, then the vector (&1, ...,&,, @1,..., @) is regularly varying in R?" with index o. Now
a direct application of Lemma 3.4 yields the statement. m

Related work on the tail behavior of the OLS estimator in the linear model Y = Xb + e can be
found in He et al. (1990) and Jureckova et al. (2001), see also the references therein. Here X is a
design matrix, b the parameter vector to be estimated, e a vector of independent errors with com-
mon symmetric absolutely continuous distribution G. The authors consider light- and heavy-tailed
cases. The heavy-tailed case is defined by assuming that the limit lim,_...(log G(x))/logx~% = 1
exists for some a > 0. This condition is equivalent to x~ %€ < G(x) < x~**¢ for every € > 0 and
large x > xq(€). It includes the regularly varying case. Under this condition bounds for the tails of
the OLS estimator are derived. Under our slightly stronger conditions we are able to derive explicit

expressions for these tails.

3.2.2. The noise is a linear process

In the applications we also consider sequences (&) and (¢;) of dependent random variables. We
assume that (&) is a linear process, i.e., there exist real coefficients y; and an i.i.d. sequence (Z;)

such that & has representation

oo t
e=Yviz_j=Y w_z;, tel. (14)
j=0 '

J=—o°

15



The best known examples of (causal) linear processes are the ARMA and FARIMA processes; see
for example Brockwell and Davis (1991). Throughout we assume that Z = Z; is regularly varying

with index az > 0 satisfying the tail balance condition

P(Z > x) :p%(l—}—o(l)) and P(Z < —x) :q%(l—}—o(l)), X — oo, (15)

for some p,g > 0 and p+ g = 1. If the additional conditions

(
Yo oW <eo for some oz > 2,

Yo olwi| %€ < oo for some az <2, some € > 0, (16)

EZ=0 foraz > 1,

\

on the coefficients y; and the distribution of Z hold, then (see Mikosch and Samorodnitsky (2000))

& is regularly varying with index o = 0tz satisfying the relations

[}

Ple>) = (1+o(1) (2] >2) T [y +a(y;)] v = a7
and
P(e < —x) = (1+0(1)) P(|Z] > ) g{ a (W)™ +p(y) %], x =, (18)

where x™ and x~ denote the positive and negative parts of the real number x. This means that &
is regularly varying with index o = 0z, and it is not difficult to show that the finite-dimensional
distributions of (&) are also regularly varying with the same index .

For further discussion we also assume that ¢ is a linear process with representation

t
o= )Y c-jy, tEL, (19)

j:—oo

where (%) is an i.i.d. regularly varying sequence with index oty > 0. Assuming (16) for (c;) instead

of (y;) and the tail balance condition (15) for y instead of Z, it follows that the finite-dimensional

16



distributions of (¢;) are regularly varying with index oy = ¢ty and the relations analogous to (17)
and (18) hold for the left and right tails of ¢y.
Next, we investigate the tail behavior of the quantities p, ¢ and p, o under the assumption that

(&) and (@) are regularly varying linear processes. We state our basic Assumptions:
1. (X;) is a sequence of random variables with X; # 0 a.s. for every t.

2. (&) is a linear process with representation (14), i.i.d. regularly varying noise (Z;) with index

o > 0 satisfying (15) and coefficients y; satisfying (16).

3. (@) is a linear process with representation (19), i.i.d. regularly varying noise (7;) with index
0 > 0 satisfying (15) (with Z; replaced by ;) and coefficients c; satisfying (16) (with y;

replaced by c;).
4. (X;) is independent of ((&,¢@;)).

The following result shows that p, . and p, ¢ are regularly varying . Compare this result with

Proposition 3.7 in the case of i.i.d. noise.
Proposition 3.9 Assume that conditions (1),(4) hold. Fixn > 2.

1. If (2) holds, as x — oo, then

Qe
n n /- X2 *
P(pue>x) ~ PZ>x) Y E||Z=ml) 220
j:—oo Zl:lXt
_7 Qe
Yi—j
Z E t max(1,;) . :
Jj=—o0 Zt 1X

n G
t=max(1,j) Yi—j X

Y X7

P(ppe < —x) ~ P(Z>x) Zn: E

j:—oo

+7 %
n
t=max(1,j) Yi—j X

Y X?

+P(Z < —x) i E

j=—ee

17



2. If (3) and, in addition, (13) hold, then

n n ( )Ct 'X[ %
t=max(1,j) “I—J
P(pngp >x) ~ P(y>x) Z E Y1 X2
J=— =
L
n r e iX ¢
=max(1,j) 1=
‘|‘P(Y§ _x) E f=max 7
o
n P4 Sc—i X ¢
t= 1,j)“t—J M
P(pnp<-x) ~ Py>x) Y E ‘“;‘,5 ’>X2
j:—oo =1t
+1 %

n .
t=max(1,/) Cr—j Xi
2
Y X

The following corollary gives our main result about the tail behavior of the OLS estimator B

of B in the case when both (&) and () constitute linear processes.

Corollary 3.10 If the conditions of Proposition 3.9 hold, then p, ¢ and p, o are regularly vary-
ing with corresponding indices Q¢ and 0. Moreover, if we assume that 0t # Gy or that (&) is

independent of (¢;) and Og = O, then, as x — oo,

P(png+Png>x) ~ P(Pne>x)+P(png>x),
P(Ppe+Pno < —x) ~ P(pne<—x)+P(pnp < —X),
where the corresponding asymptotic expressions for the tails of pne and py o are given in Propo-
sition 3.9.

3.2.3. More general dependent noise

In Section 3.2.2 we demonstrated how the results of Section 3.2.1 change under linear dependence.
We focused on the linear process case because we were able to obtain explicit expressions for

the asymptotic tail behavior of p, ¢, pnp and B. For more complicated dependence structures,
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the regular variation of these quantities follows by an application of Lemma 3.4, if the finite-
dimensional distributions of the noise sequences (&) and (¢;) are regularly varying .

For example, if we assume that both (&) and (¢;) constitute GARCH processes, then the finite-
dimensional distributions of these processes are regularly varying with positive indices, provided
some mild conditions on the noise sequences of the GARCH processes hold. We refer to Basrak et
al. (2002) for the corresponding theory on regular variation of GARCH processes. Alternatively,
one can choose (&) as a GARCH process with regularly varying finite-dimensional distributions
and (@) as a linear process (e.g. ARMA) with regularly varying finite-dimensional distributions, or
vice versa. The index of regular variation of a GARCH process is a known function of the GARCH
parameters and the distribution of the noise. For GARCH processes the asymptotic behavior of the
tails of E cannot be given in explicit form as for linear processes; see Proposition 3.9. However,

we know from Lemma 3.4 that 8 inherits the tail index of the minimum of & and a.

Remark 3.11 The above single regressor theory can be readily extended to the case of multiple
regressors. This approach requires the condition of multivariate regular variation as discussed
in e.g. Basrak et al. (2002) and results in the multivariate analogues of the expressions from
Proposition 3.7. The corresponding theory is rather technical and therefore we have chosen to

omit further details.

4. Simulation Study

We conduct a simulation study based on the model (1) with B = 1 to gain further insight into the
theoretical results. The f3 is estimated by OLS estimator E from (4), with the X;’s mean corrected to
allow for an intercept. First we discuss the specific cases of pure multiplicative and additive noise,
then a combination of the two. Subsequently we investigate how linear and non-linear dependence

in the innovations influences the dispersion of the coefficient estimates.
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4.1. Pure multiplicative noise

Consider the special multiplicative case of (1)
)]t — (1 —|— 8[ )Xl‘

under the conditions:
1. (X;)isi.i.d. N(0,0.04).

2. (&)isiid. N(0,1); or (&) is i.i.d. Student-z distributed with a = 3 degrees of freedom and

rescaled such that the variance of the &’s is 1.

3. (X;) and (&) are independent.

Under these conditions Corollary 3.8 applies if € is Student-¢ distributed. Indeed, as € is regu-
larly varying with index &, we may conclude that [/3\ = B + pn.¢ is regularly varying with index o.
Moreover, the tail asymptotics of p, ¢ are described in part (1) of Proposition 3.7. Since the X;’s

are i.i.d. and € is symmetric, this means that

2

X o
P(ppe > x) =P(pne < —x) ~nE [ . IXZ} P(e >x). (20)
s=1“%s

We illustrate that if € is Student distributed, the estimator E has a wider dispersion in small samples
than if the € follows a Gaussian distribution with the same variance. From (20) one shows that at
fixed sample size n, deep enough into the tails an increase of the degrees of freedom o (which
increases the number of bounded moments), lowers the multiplicative constant E [Xlz /Yy Xﬂ *
and it also reduces the tail probability P(€¢ > x). Recall that the normal distribution is the limit
distribution of the Student-t distribution as @ — oo. This suggests that the normal distribution is a
natural benchmark against which the Student-t results can be judged.

We conduct 20,000 simulations of the time series (¥;);=1 ... , and (X );=1,..., for n = 25,50, 100.

Both the Student and normal distributed innovations € are generated by using the same pseudo
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uniformly distributed random variables. Subsequently, we transform these random variables by
the respective inverse distribution functions. In this way we control for sampling noise across the

alternative distributions.

Table 1 about here

Figure 1 about here

The results are in Table 1. The mean of the E is always close to 1, the standard deviations
do not vary much for fixed n across the different parameter sets. Choosing the same variance for
€ under the normal and Student specifications translates into identical variance of the E ’s across
the two cases. The distribution of the estimates cross in the neighborhood of the 2.5% and 97.5%
quantiles. More substantial differences between the Normal and Student based noise arise in the
tails at the 0.5% and 99.5% quantiles and beyond. The Student distributed innovations generate
a number of outliers in the E ’s vis a vis the normally distributed innovations. The boxplots in
Figure 7.1 are quite revealing in this respect. Note that the vertical axes in the figure have different
scales depending on the sample size. The table and figure also reveal the usual large sample based
effect as the range of the distribution of the E ’s shrinks with the sample size.

How to use these findings for inference about the observed uncertainty of the estimators [/3\
across different samples? For example, evaluate (20) at two large quantile levels 7 and s. Then the

ratio of the tail probabilities satisfies the relation

~ ~ —_

P<B>‘ﬁ3>f) P(e>1) (t)—a
P(Bpos) Ple>a) :

2D
s

where the second step follows from the fact that the Student distribution satisfies (6) with L(x) = ¢
for some constant ¢ > 0 and p = g = 0.5. We continue with some elementary conclusions based
on Table 1.

Consider the column Normal 25. Quite appropriately, the normal distribution at the 97.5% level

with estimated standard deviation 0.336, yields the quantile 1 +1.96x0.336 = 1.658, which is very
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close to the recorded 1.664. Similarly, at 99.5% we find 1.875, while theoretically one should get
1+2.58%0.336 = 1.8669. If instead the Student-t column was erroneously interpreted as coming
from normal innovations, then at the 97.5% probability level with estimated standard deviation
0.343, one obtains the quantile 1 +1.96%0.343 = 1.672. This is still close to the recorded 1.645
quantile value. But at 99.5% we find the quantile 2.045 in the Student 25 experiment, while normal
distribution yields the quantile 1 + 2.58 x 0.343 = 1.885. Under normality, the 2.045 quantile
value is associated with the standard normal quantile (2.045 — 1) /0.343 = 3.046 6 corresponding
t0 99.88%. So an excess probability of 0.5% in the Student case reduces by a factor 4 to 0.12% in
the normal case. Instead, if we use the formula (21) witht =2.045—1,5s=1.645—1, a =3 and
P <E— B> s) = 2.5%, we obtain

-~ 20451\ .
P<[3—/3 >z) - (m) % 0.025 ~5.878 x 10

which is close to the actual 0.995% level in the Table 1.
Furthermore, if we investigate the probability of obtaining the maximum observation 5.615, a
calculation based on our formula (21) yields

=~ 5615—1\° s
P(B- = (22— 025~ 6.825 x 1075,
(B-B>1) (1.645_1> % 0.025 ~ 6.825 x 10

This value is quite close to the reciprocal of the number of simulations: 0.00005. However, if the
normal model were applied, the corresponding probability would be judged smaller than 10~4°
(using the classical Laplace first order approximation based on the ratio of the density to the quan-
tile). This approach yields an entirely different order of magnitude. Thus, if one has a number
of coefficient estimates from different samples, the above formula can be used to check whether
the largest and smallest estimates can reasonably be expected by using the more central outcomes
and an extrapolation based on (21). This judgement can be contrasted with the usual (CLT based)

opinion.
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4.2. Pure additive noise

Next we investigate the other special case of (1), which is the specification with solely additive
noise

Yt =1 +Xt + O,
under the conditions
1. (X;)isi.i.d. N(0,0.04).

2. (@) isiid. N(0,0.09) or (¢) is i.i.d. Student-z distributed with o = 3 degrees of freedom

and rescaled such that the variance of the ¢;’s is 0.09.

3. (X;) and (¢,) are independent.

If ¢ is Student-¢ distributed, Corollary 3.10 applies. In particular, we conclude from part (2) of

Proposition 3.7 that

X1

n 2
s=1 Xs

P(prg > 1) = Plpag < ) ~ nE | 53 1| Plp =) @)

As in the case of (20), the expression (22) reveals that sufficiently deep into the tails and at fixed
n, an increase in o lowers the tail probability P( ‘ pn7(p| > x). We conduct again 20,000 simulations
to generate the time series (¥;);=1.., and (X;);=1. , for n =25,50,100. The same seeds are
used as in the case of the multiplicative model to enhance comparability across the two cases.
The variance of ¢ is chosen lower than the variance of € of the multiplicative specification; this
generates quantiles of comparable size. As before, the mean of B is always close to 1, the standard
deviations do not vary much for fixed n across the different parameter sets, neither are the 2.5%
and 97.5% quantiles very different across the Student and normally distributed innovations. But at
the more extreme quantiles we do again see from Table 2 that the heavy tail makes a difference.
By the fact that the distributions of the E ’s cross, not only does the Student noise generate more

outliers, it also implies more peakedness into the center. Boxplots are provided in Figure 7.1 and
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tell a similar story as for the case of multiplicative noise. As the different scales of the vertical axes

reveal, the ranges shrink if the sample size n increases.

Table 2 about here

Figure 2 about here

4.3. Combination of additive and multiplicative noise

We combine the multiplicative and additive model into the mixed model
Yo=(1+¢&)(1+X)

satisfying the conditions:
1. (X;)isii.d. N(0,0.04).

2. (&) isi.id. N(0,0.09) or (&) is i.i.d. Student-¢ distributed with a = 3 degrees of freedom

and rescaled such that the variance of the &’s is 0.09.

3. (X;) and (&) are independent.

The mixed model has a random intercept and a random coefficient driven by the same noise €.

Hence, the tail probabilities in case of the Student noise are the sum of (20) and (22)

2 « a
n{E{ﬁ&XJ +E{JM;4 }mg>m. (23)
s=1“s s=1s

The setup of the experiment is as before and we use again the same seed. The results are in Table

3 and in Figure 7.1. Even though the additive noise and multiplicative noise are both present and
are even perfectly correlated, the results are very similar to the two previous cases. Even if we
increase the variance of € to 1, as in the case of the pure multiplicative model, the results do not

change very much (this case is not shown for consideration of space).
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Table 3 about here

Figure 3 about here

4.4. Linearly dependent noise

We investigate the effect of autoregressive noise in the multiplicative model
In what follows, we keep the assumptions (1) and (3), but we replace (2) by a particular dependence

condition:

(2’) (&) is an autoregressive process of order 1, i.e. AR(1), with coefficient
8;20.781‘,1—{—2;, tGZ,

and where (Z;) is i.i.d. Student-t distributed with o = 3 degrees of freedom and rescaled

such that the variance is unity; or, alternatively, (Z;) is i.i.d. standard Gaussian.

Under this assumption, Z;, & and p,, ¢ are regularly varying with index & and from the first part

of Proposition 3.9 we have

o

—Jjy2
:l:max(l,j) ,}/ th
Y X7

P(ppe>x) =P(ppe < —x)~P(Z>x) Y E

J=—o0

(24)

Notice that the factor in (24) after P(Z > x) is larger than in the case of i.i.d. &. Therefore the heavy
tails of € have a stronger influence on the tails of p,, ¢. This is illustrated in Table 4 and Figure 7.1.
We used a different seed from the previous three cases to generate some variety; nevertheless the

seed is only important for the size of the most extreme quantiles.

Table 4 about here

Figure 4 about here
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The autoregressive nature of the innovations & makes the distribution of p, ¢ more spread out
than their i.i.d. counterparts, both under the Gaussian noise and the Student distributed noise. The
usual large sample effect operates as before in reducing the range. To offer a somewhat different
view as is conveyed by boxplots, we report in Figure 7.1 histograms (the boxplots are available
upon request). These histograms demonstrate nicely that not only are the coefficient estimates
more dispersed, the center of the distribution is also more peaked due to heavy tailed innovations.
To conclude, the time dependency in the noise increases the dispersion of the OLS estimates in
samples of moderate size. But the differences between the Normal and Student noise are not very

different from before. This changes when we investigate the case of non-linear dependence.

4.5. Non-Linear dependency

In order to study the influence of non-linear dependence on the OLS slope estimator for the multi-
plicative model ¥; = 1+ (1+ &)X, and the additive model ¥; = 1+ X, + ¢;, we consider an ARCH(1)

process in the innovations € and ¢ respectively. The two ARCH(1) processes read
& =012, (712 :ﬁ+lgt2—17

and
_ 2 _ 2
O =072, o =P+A¢ 4,
for i.i.d. N(0,1) noise (Z). It follows from e.g. Basrak et al. (2002) that € and ¢ are regularly
varying with index « which is given as the unique solution to the equation

E|AZ?|*? =1,

For a = 3, this boils down to solving I'(2) = \/ﬁ(Zl)_3/z, which gives A ~ 0.732, see e.g.
Embrechts et al. (1997, ch.8). Setting § = 0.09 (1 — % (717)1/3> ~ (0.024, then induces an uncon-

ditional variance /(1 —A) of 0.09. The simulation setup is as before, except that in order to
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initialize the ARCH process, the first 5 realizations are ignored. For comparison we also draw an
i.i.d. N(0,0.09) sample of ¢;’s and &’s. Independently of (¢;) and (&) we drew i.i.d. N(0,0.04)

random variables X;. Subsequently we calculate the 20,000 values of the OLS coefficient estimates.

Table 5 about here

Figure 5 about here

The results are in Table 5. The differences between the heavy tailed cases with ARCH additive
noise and the cases of i.i.d. normal additive noise are more pronounced than the cases with multi-
plicative noise. The histograms for the additive model are reported in Figure 7.1. The differences
for the additive case are also more pronounced in comparison with the previous cases generated
by i.i.d. and linear noise. The distributions are much more spread out in the case of ARCH noise
in comparison the normal i.i.d. noise. To conclude, in the case of additive noise case, the OLS
coefficient estimates vary more in medium sized samples if the noise process is of the ARCH

variety.

5. Application

The motivation for this study comes from the empirical fact that in various applications involving
small and medium size samples of financial data there appears a wide variation in reported coeffi-
cient estimates across different samples. One possible explanation for this variation is the regular
variation of the distributions of the innovations. Both from an estimation point of view and for
policy making it is important to capture the uncertainty in the estimates, as standard central limit
type of error bands can be quite misleading in smaller samples.

The application focuses on the yield curve. Mankiw and Miron (1986) report typical slope
estimates of the expectations coefficient in yield curve regressions for quite different samples.
There are two important data features. First, all reported point estimates are less than two, and two
slope estimates are even negative (one is significantly negative). Only in one of their five samples,

with about 80 observations each, the point estimates come close to the benchmark theoretical
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slope of two (zero term premium). Second, the point estimates come in a wide range. Fama and
Bliss (1987) emphasize the variability of the coefficient estimates. While a sizeable literature has

focused on the apparent downward bias, in this study we focus on the coefficient variability.

5.1. Economics

To introduce the issue of yield curve estimation, consider a stylized three period investment prob-

lem under uncertainty:

maxEU(x,X,-) = EV(X) + (1 — ﬂ)Zin,-pV(X,-), Yim =1 (25)
subjecttow = d+b,
x = (I+r)d+(1+49)b,

Xi = (1+s)b+(1+R)(1+rd, i=1,..,n.

Here V(.) and pV/(.) are the strictly concave first and second period utility functions and where
p <1 is the pure rate of time preference. There are two types of uncertainty. The first type of
uncertainty stems from the uncertain liquidity needs of agents as in Diamond and Dybvig (1983):
With probability 7 an agent wants to consume early, and with probability 1 — 7 an agent finds out
that he desires to consume late during the third period.

The other uncertainty, 7;, pertains to the return R; on the second period short term bond. At
the beginning of the first period, wealth w can be invested in a one-period bond d yielding 1+ r
in the second period and a two-period zero-coupon bond b yielding 1+ s in the third period. The
one-period bond investment can be rolled over into a new one-period bond investment if one turns
out to be a late consumer. The interest rate on the second period short term bond is uncertain at
the time when the first investment decision has to be taken; R; materializes with probability 7;,
and there are n states of the world i = 1,...,n. If the consumer has early liquidity needs, the long
term bond investment has to be liquidated early. This comes at a cost, and we assume that g < r,

where r — ¢ is the liquidation premium. The costs of early liquidation are due to irreversibilities
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of longer term capital investments and transactions costs, see Diamond and Dybvig (1983). If
(1+5) > (1+r)E[1+R;], arisk averse agent will want to hedge against liquidity needs by partly
investing in the long term bond and partly investing in the short term bond.

The first order conditions for a maximum to the problem (25) imply the following pricing

kernel

. v_4q-r ll—i—s
EM;(1+R))] = 1+r+E {Mll%—r} , (26)
where
1—7:8V(X,~)/8X,~

. JdV(x)/dx

Mizp

is the intertemporal marginal rate of substitution or discount factor, for short.
Rewrite (26) by using the covariance cov(M;, R; — r) between the discount factor and the short
term interest rate innovations. Let y be the 1-period yield on the two period bond, i.e., (1+y)? =

(1 +5). Then (26) can be restated as
E[R,—r]:2(y—r)-l—P(M,,R,,q)-l—T(y,r), (27)

and where the term premium P and convexity term 7 read respectively

1 g—r n cov(—M;,R;—r)
EM; 1+r EM,;

P(Miath) =

Thus the expected difference between two subsequent short rates is equal to twice the the difference
between the long yield and the short rate plus the term premium P and a small convexity term 7.
The term premium consists of two parts, a liquidity premium and a risk premium. The liquidity
premium is negative, since g < r, which reflects the costs of liquidating the long term investment
early. If agents have power utility preferences and are risk averse, then the risk premium part is
positive.> Thus the term premium P can be of either sign, since the liquidity premium is negative

and the risk premium is positive.

2This can be shown by using that for any random variable X > 0 and a monotone non-decreasing function g(x) it
follows from association that the relation E[X g(X)] > E [X] E [g(X)] holds; see Resnick (1987), Lemma 5.32(iv).
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Not much can be said, however, about the correlation between P and the yield differential y —r.
As the term premium is unobserved, this may cause an omitted variable bias in regressions of R; —r

on y — r. This is the standard explanation for the “downward bias” in the regression

Ri—r=0+B(y—r)+¢e, Ee=0. (28)

Typically the hypothesis B = 2, known as the Expectations Hypothesis, applies if agents are risk
neutral and when there is no premium to liquidity in (27), is rejected as the estimated coefficients
are usually significantly below 2. In this study we take B < 2 as a stylized fact. Instead, we focus
on the considerable dispersion of the reported 3 estimates in different samples.

In the application, we first run the specification (28) for a number of different countries, with
and without the convexity term, and basically find the same results as are reported in the literature.
Since the model applies to each country individually, one can also investigate the model relative
to a benchmark country. Due to a negative correlation between the unobserved term premium and
the spread, the relative specification may diminish the omitted variable bias. The bias would be
reduced if cov(X,P) + cov(X*, P*) is negative and —cov(X, P*) — cov(X™, P) is positive, which
happens when countries experience simultaneously similar movements in their yield curves, so

that P (and P*) also co-vary negatively with y* — r* and y — r respectively. Thus we also estimate

where X = X — X*, and X* denotes the benchmark country variable.

5.2. Time series regressions

We obtained data on the one month and two month interest rates from February 1995 to December
1999 for 14 countries, yielding 59 observations per country. The countries with the abbreviations
used in the tables are respectively Belgium (Bel), Canada (Can), Germany (Ger), Denmark (Den),

France (Fr), United Kingdom (UK), Italy (It), Japan (Jap), Austria (Aus), Portugal (Por), Sweden
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(Swe), United States of America (USA), Switzerland (Swit), and The Netherlands (Neth). The
data are beginning of the month figures on short term treasury paper available from datastream.
Since for the purpose of the paper we are interested in running both time series, panel and cross
section regressions, we are squeezed by data availability. Only since the middle of the 1990’s there
are more than 10 countries which report such rates. By the end of that decade, though, we are
confronted by the data squeeze due to the European monetary unification process, which implies

that at the short end of the yield curve rates became about equal.
Table 6 about here

The first column of Table 6 gives the results for specification (28). The next column labeled
relative is based on (29) but without the convexity term, and where The Netherlands is taken as
the base country. The third column labeled relative & convex is based on the full specification
of (29) including the convexity term 7' (y,r). The last two columns repeat the same exercise but
use panel regressions in which the data are pooled. The table conveys two main results. (i) The
B-coefficients are almost all significantly positive, but hover more closely around 1, rather than
around the Expectations Hypothesis value 2, indicating that the term premium P(M;,R;,q) is neg-
atively correlated with (y — r). Comparing the first column of Table 6 to the other columns, it
appears that using the relative country spreads is helpful in reducing the downward bias. (i1) There
is quite a considerable variation in the coefficient estimates as can be seen from the range statistic,
which is the difference between the highest and the lowest estimated value. These results thus cor-
roborate the results reported previously in the literature, although in our sample we do not find any
negative coefficients. Not reported are the intercept estimates which were invariably very small

and never significantly different from zero.

5.3. Cross section regressions and coefficient variability

We investigate further the considerable variation in the individual cross country estimates. Fama

and Bliss (1987) and Cochrane (2001, Ch. 20) show that almost all variation is in the short term
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interest innovations R; — r rather than in the variation of the expected changes, i.e. Og,—, > 0Oy_,.
Could it be that the news distribution is heavy tailed in such a way that it explains the considerable

variation in the slope estimates?
Figure 6 about here

Since several countries pursued quite similar economic (monetary) policies during the second
half of the nineties, the variation is perhaps not so much a cross country issue. Rather, the variation
may be due to similar country shocks over time. To investigate the amount of time variation in the
slopes, we now assume identical slopes per country but allow for temporary disturbances. This
model can be estimated by running per period cross section regressions. A graph of the 59 cross
country [/3\, OLS estimates for the specification (29) is provided in Figure 7.1. There is indeed quite
a bit of variation in the cross section slope estimates. Since the yield curve is widely known to
be rotating and shifting, this was perhaps to be expected. Summary statistics are given in Table 7.
The standard error of the slope estimates, the range and the kurtosis confirm the sizeable variation.
But this is not due to a bad fit, since the R-squared statistic is mostly acceptable for the small
cross section regressions. The variation appears to be genuine. The average of the slope estimates

re-confirms the downward bias from the Expectations Hypothesis.
Table 7 about here

The high kurtosis reported in Table 7 points towards the possiblity of a heavy tail distribution.
In Section 3 we showed that the heavy tail feature of the innovations carries over to the distribution
of the coefficient estimates. To pursue this further, we investigate the tail shape of the empirical
distribution of the 59 cross section E,’s.

To be able to exploit (20) or (22), as was done in (21), one first needs an estimate of the
coefficient of regular variation ¢o.. The standard approach to estimating & is by means of computing
the Hill statistic, which coincides with the maximum likelihood estimator of the tail index in case

the data are exactly Pareto distributed. If the Pareto approximation is only good in the tail area,
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one conditions the estimator on a high threshold s, say, to obtain

1 —X;
_ = — 1
bR VI (30)

1.X;<—s §

where M is the random number of extreme observations X; that fall below the threshold —s. In
practice one of the higher order statistics is used as a threshold. If one plots & derived from (30)
against different threshold levels, one obtains the so called Hill plot. Since the Hill estimator is
biased, stemming from the fact that the distribution is not exactly Pareto, there is a region where
if one uses too many observations the bias dominates, while the variance exerts a dominating
influence if one uses too few observations. There exists an intermediate region in which the two
vices are optimally balanced. The way to read these plots is further explained in Embrechts et al.
(1997, p. 341).

The 59 slope estimates depicted in Figure 7.1 are the basis for the Hill plot. A Hill plot gives
the value of the inverse of (30) along the vertical axis, and the horizontal axis reports the number
of highest order statistics used in (30). First, however, the slopes are demeaned by their empirical
mean of 1.18. Secondly, we use the absolute values of the demeaned slopes upon the presumption
that the slope distribution is symmetric. This helps to increase the low number of observations.
The Hill plot in Figure 7.1 shows that there is quite some variation if one uses only the most
extreme observations, while moving to the right the bias kicks in and causes the monotone decline.

Eyeballing this plot suggest that o ~ 2.
Figure 7 about here

Given the low number of observations, we use also the regression methodology to estimate o
as a robustness check. To this end the Figure 7.1 offers a Pareto log-log plot of the cross country
slope estimates. In a Pareto log-log plot, the log rank of the data is plotted against the log of the
slope estimates. A regression on the most rightward (largest slopes) 26 observations gives a slope

estimate of —1.81, a standard error of 0.09, and R*2 of 0.95. This corresponds to an @ = 1.81.

Figure 8 about here
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If we proceed with @ = 1.8, we find that if we use as a benchmark the 10% largest observation

(slope value 2.92) that at the 5% level one should find

0'1 1/1.8

The demeaned 5% highest slope estimate is in fact somewhat lower 3.63. At the 1.5% probability
level (corresponding to 1/59), which is the highest slope estimate, we get a demeaned slope of

8.02, while the approximation formula suggests

0.1 1/1.8
~ 292 — ~ 8.
t 92 x (0'015) 8.38

The corresponding normal based calculation would give

o~ o 1 12 203 1 1/8.02\2
P(B-B>802) ~ —— )= 2 (2=
(ﬁ h> ) x\/_zﬂeXp( 202> (8.02)\/_2716’“’( 2<2.03) )
~ 4.12x107°

which is much lower than 1.5 x 1072, So from the fat tail point of view, the variation and extremes
in the slope estimates are quite normal, but not so under the normal interpretation.’

Our theory can also be used to test the null Expectations Hypothesis that f = 2. Assume that
the cross section coefficient estimates depicted in Figure 7.1 and summarized in Table 7 are i.i.d.
This assumption is reasonable since, as discussed below, the data reveal strong cross sectional
but little intertemporal dependence. The average of the estimates is 1.18. To be able to use our

tail approximations, we have to take care of the change in the scale parameter due to averaging.

Assuming that P(B; > t) ~ ct~%, a standard result on convolutions (see e.g. Lemma 1.3.1 in

3The Pareto plot in Figure 7.1 is approximately linear with slope estimate 1.97 over the range of the 20% largest
observations. Thus if we alternatively used these 20% largest observations as a benchmark, our tail approximation
formula yields ¢t ~ 2.90 at the 5% level, while ¢ ~ 5. 65 at the 1.5% probability level .
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Embrechts et al. (1997)) yields

~

Bi>1)~cn! "%,

D=

P(

S | =

~.

1

Proceeding as above, we find t ~ 6.31. Rescaling according to the above formula then gives 6.31 x
0.037 = 0.23. The upper bound of a two-sided confidence band at the 5% level is 1.18 +0.23 =
1.41, which is far below the value = 2. A similar calculation yields an upper bound of the two-
sided confidence band at the 1% level of 1.18 +0.57 = 1.75, which is still not in agreement with
the Expectations Hypothesis 8 = 2.

We investigate the dependency structure of the data, both over time and cross sectionally. From
the correlograms for the slope estimates and the squares thereof, there is no indication for the
level or the squares to be time dependent. We further investigate the autocorrelation structure by
estimating an AR(1) model for the level and the squares, but find no indication that these slope
estimates are time dependent. Secondly, we look at the time structure of the per country residuals
from the cross sectional slope estimates, to see whether there is evidence for (time) dependency
in the noise. On basis of correlograms, ARMA and ARCH estimates, there is again little or no
evidence for a time structure in the residuals. To conclude, it appears that there is little or no
evidence for dependency over time in the data.

Lastly, we also investigate the per period cross-sectional dependency. Since several countries
pursued similar monetary policies at the time (relative to the base country), cross-sectional depen-
dency would be consistent with the economic facts. From the cross-sectional slope estimates we
construct the matrix (across months and countries) of residuals and the corresponding covariance
matrix is formed. Using the Anderson (1984, p. 434-7) xz—based test, the null of cross sectional
independence is overwhelmingly rejected.* To conclude, while there is little or no dependency
over time, there is clear evidence for cross-sectional dependency. This cross sectional dependence
makes that large shocks, which stem from the non-normal error structure, appear simultaneously

in several countries. As is explained in the theory section and the simulation study, this may be

“The estimation effects are neglected.
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the cause for the high variability in the small sample cross sectional slope estimates as depicted in

Figure 7.1.

6. Conclusion

The paper provides a theory for tail probabilities for the linear regression estimator distribution in
medium sized samples if the multiplicative and additive error terms follow a heavy tailed distri-
bution. We show that even if standard moment conditions such as the existence of the variance
are satisfied, the usual benchmarks based on central limit theory can be misleading. The results
hinge on relatively weak assumptions regarding the stochastic nature of the explanatory variable.
With additive uncertainty we require that the joint density of the explanatory variables is bounded
in some neighborhood of the origin. A restriction is the condition that the regressor be exogenous.
On the other hand, we allow for the possibility that the random multiplicative noise component be
correlated with the additive noise term, and in this sense there can be correlation between the eco-
nomic explanatory part and the additive noise structure. Moreover, both the noise and the regressor
are allowed to be time dependent.

It is shown that for a fixed sample size and if the perturbations are regularly varying, the OLS
regression coefficient estimator has a tail probability which is the product of the tail probability of
the perturbations and the expected "kernel weight’. From this result we obtain explicit expressions
for the tail probabilities of the distribution of the OLS estimator. These formulas are useful for
inference. In large samples the tail influence of the perturbation term is lost by virtue of the
central limit theorem. To derive these results we started with a novel result on scaling properties
of products and ratios of regularly varying random variables.

A Monte Carlo study showed the importance of the alternative assumptions of normally dis-
tributed versus heavy tail distributed innovations. Regardless of whether the noise in the regression
is additive or multiplicative, there exists a clearly discernible effect of wider spread of the OLS

estimator in medium sized samples, in contrast to the normal approximation and in contrast to
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normally distributed noise. Dependency gives an additional kick. The considerable deviations of
the coefficient estimates from their true values correspond well with our theoretical formulas.

The application to yield curve estimation demonstrates the relevance of the theoretical results.
Traditional slope estimates are highly variable and clearly downward biased in comparison with
the theoretical value suggested by the Expectations Hypothesis, but are not necessarily in conflict
with more elaborate economic theory that includes a liquidity premium. We focussed on the con-
siderable variation over time of the coefficient estimates. A thorough analysis of the set of cross
country slope estimates revealed that the estimated random components come from a distribution
with a regular varying tail. The heavy tail feature is significant in the cross sectional estimates
due to the small cross section sample size and the cross sectional dependence. The more extreme
estimates seem to adhere well to our theoretical formulae for the distribution of tail realizations.

We conclude that the theory seems applicable to economic data and potentially explains the

wide variability of observed regression estimates.
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7. Appendix

We give the proofs to Lemmas 3.2, 3.4 and 3.6.
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7.1. Proofs to Section 3

We start with Lemma 3.2.
Proof. Assume first that the Z;’s are independent. If the Z;’s are non-negative the result is
standard; see Feller (1971), p. 278, or Embrechts et al. (1997), Lemma 1.3.1. and Appendix A3.3.

For general Z; and Z;, i # j, using the independence,

Pz 7 >0
ST O

Taking into account these calculations and assumption (7), we see that the conditions of Lemma 3.1

are satisfied and so it follows that

. PZi+-+Z,>x)
lim —

+ +
=_C +"'+C ,
e G 1 "

implying that

P(Zi++Zy>x) = (1+0(1)) (P(Z1 >x)+ -+ P(Zy > x)).

The case of the left tail P(Z, + - -- +Z, < —x) is analogous.
For dependent Z;,Z, with o) < o, P(|Z2| > x) = o(P(|Z;| > x)). Then similar calculations as
above yield that the assumptions of Lemma 3.1 are satisfied. m

We continue with Lemma 3.4.

Proof. The fact that Z is regularly varying with index o follows by a straightforward applica-
tion of Proposition A.1 in Basrak et al. (2002). The techniques used there also allow one to derive

(9), which relation we show in detail. Let M > 0. Then

P(Z>x) = P(Z>xA)+P(Z>xA)+P(Z>xA3)

=: p1+p2+p3,
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where

={|Y|<M '}, A= {MT<|Y| <M}, Ay ={[Y| > M}.

Then we have

p1 < P(X][Y| > x,A1) < P(IX| > xM).

Clearly, |X| is regularly varying with index o, and so

lim limsup— 21— —0. 31)

—®  x—oo P<|X| >X)

Recall from Breiman (1965) that for independent non-negative random variables &, 1 such that

EN%*t9 < oo for some § > 0 and P(E > x) regularly varying with index a > 0.
P(En >x) ~EN*P(E > x), x — .

For p3 we have, using Breiman’s result, regular variation of |X| and Lebesgue dominated conver-

gence,
P(IX[|Y |1 ps 00 (|Y]) > x
lim limsup—p3 < lim limsup (1] |<M’ )(l ) )
Mo P PIX] > x) T we P(X| > x)
= lim E[[Y|*l70)(|Y])] = 0. (32)

By virtue of (31) and (32) the result must follow by a consideration of p,. Indeed,

P(Z Y
lim P2 lim ( > x| )

PP 50 R ayien (XIS )

d
= E Iy 4 (Y]) Y (cTE[Y® Iyl + ¢ E [V Iy ]) |- (33)
i—=1

In the last step of the proof we made use of Pratt’s lemma (see Pratt (1960)) and Lemma 3.2. Now

let M — o in (33) to conclude that the statement of the lemma is correct for P(Z > x). The case
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P(Z < —x) is completely analogous. ®
The proof of Lemma 3.6 goes as follows.

Proof. Calculation shows that £ 17,_&/ ? < o if and only if for some xy > 0,

X0 ~
/ P(Y, < x¥%)x2dx < oo. (34)
0
If the X;’s are i.i.d. we have
P <00 < b man x7<2) 35)

= P'(|X| <x"/%*) < constx™/%

The function x*¥/*~2 is integrable on [0,xo] if ny/o > 1, hence (34) holds. Now assume that
(Xi,...,X,) has a bounded density f,, in some neighborhood of the origin. We conclude from (35)
that

P, <x*%) < / fuly) dy < constx’V/ ¢,

for sufficiently small x, and so we may conclude that (34) holds for n > . This concludes the
proof. m
Next we give the proof of Proposition 3.9.

Proof. (1) We observe that

n 4
Yexi=Y z Z Vi X/
t=1

J=—°  t=max(1,j)

Write
7= r—max(1,j) Yi—iXi
/ Yo X2

For fixed k < n we may then conclude from Lemma 3.4 that

P(iZJlT/j>X>NP(Z>X)iE[f/71 1Pz <) Z
=

j=k j=k
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Without loss of generality assume that £k < 1. Observe that
_ n
vl <) il
t=1
Then similar calculations as in Mikosch and Samorodnitsky (2000) show that

P <‘Zl};l,wzj17’j’ > x)
lim limsup

=0.
k—>—°° X—o0 P(‘Z‘ >.x)

This proves the asymptotics for the right tail of p, .. The asymptotics for the left tail of p, ¢ are
analogous.

(2) The proof of the second part is analogous, making use of the representation

n

Z(PzXzZ Z Yi Z cr—jXr,
=1 '

J=—c t=max(l,j)

the moment condition (13) and, again, Lemma 3.4.
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Table 1: Slope Estimates for the Multiplicative Model

Student-t Normal
sample size 25 50 100 25 50 100
mean 1.000 1.000 0.998 | 1.000 1.000 0.997
st. dev. 0.343 0.239 0.171 | 0.336 0.242 0.172
min -5.226 -1.514 -2.321|-0.942 0.064 0.254

0.5% quantile | -0.055 0.289 0.505 | 0.093 0.389 0.542
2.5% quantile | 0.360 0.540 0.669 | 0.331 0.526 0.657
97.5% quantile | 1.645 1453 1323 | 1.664 1472 1.332
99.5% quantile | 2.045 1.747 1.479 | 1.875 1.637 1.435
max 5.615 4569 2927 | 2438 2.051 1.628
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Figure 1: Boxplots for ¥; = (1 + &)X;.
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Table 2: Slope Estimates for the Additive Model

sample size
mean

st. dev.

min

0.5% quantile
2.5% quantile
97.5% quantile
99.5% quantile

max

Student-t Normal

25 50 100 25 50 100
0999 1.002 1.001 | 0998 1.003 1.000
0.324 0.218 0.153 | 0.318 0.218 0.153
-2.937 -1.675 -0.770 | -0.406 0.123 0.323
0.024 0361 0.587 | 0.146 0415 0.611
0.372 0578 0.706 | 0.363 0.569 0.700
1.621 1419 1.300 | 1.626 1.423 1.299
1.996 1.611 1429 |1.859 1.570 1.393
5540 37776 3413 | 2398 2.179 1.617
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Figure 2: Boxplots for ¥; = 1+ X; + ¢.
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Table 3: Slope Estimates for the Mixed Model

sample size
mean

st. dev.

min

0.5% quantile
2.5% quantile
97.5% quantile
99.5% quantile

max

Student-t Normal

25 50 100 25 50 100
0999 1.002 1.000 | 0998 1.003 0.999
0.344 0230 0.161 | 0334 0.229 0.162
-4.804 -2.117 -0.344 | -0.535 0.054 0.201
-0.030 0.318 0.560 | 0.103 0.387 0.581
0.350 0.554 0.684 | 0.329 0.549 0.679
1.648 1436 1.315 | 1.654 1.446 1.318
2079 1.667 1465 | 1902 1.592 1417
6.603 4611 3390 | 2538 2280 1.697
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Figure 3: Boxplots for ¥; = (1 +&)(1 +X;).
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Table 4: Slope Estimates for the Multiplicative Model with AR(1) Noise

Student-t Normal
sample size 25 50 100 25 50 100
mean 1.001 1.002 1.000 | 1.007 1.003 1.003
st. dev. 0.719 0.529 0.383 | 0.718 0.532 0.380
min -14.257 -5.659 -3.361 | -2.109 -1.205 -0.332

0.5% quantile | -1.050 -0.483 -0.041 | -0.838 -0.403 0.026
2.5% quantile | -0.348  -0.020 0.255 | -0.399 -0.052 0.253
97.5% quantile | 2.375 2025 1.719 | 2414 2035 1.741
99.5% quantile | 2.988 2472 2031 | 2867 2378 1976
max 8.170 7.193 6944 |4.126 3.339 2.406

Note: Monte Carlo results for ¥, = 1+ (1 + &)X;,with & = 0.7¢,_1 + Z,, and where Z is either standard normal or unit
variance Student-t with 3 d.f. distributed.
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Figure 4: Histograms for ¥; = 1 + (1 + &)X;, with & = 0.7¢,_1 + Z;.
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Table 5: Slope Estimates with ARCH(1) Noise

model Multiplicative Noise Additive Noise

Student-t Normal Student-t Normal
sample size 25 100 25 100 | 25 100 25 100
mean 1.000 1.000 | 1.000 1.000 | 0.998 1.000 | 0.999 1.000
st. dev. 0.150 0.079 | 0.100 0.051 | 0.478 0.236 | 0.318 0.152
min -0.555 -0.589 | 0.515 0.766 | -5.383 -1.417 | -0.333 0.334

0.5% quantile  0.482 0.753 | 0.734 0.866 | -0.636 0.281 | 0.142 0.601
2.5% quantile  0.711 0.851 | 0.802 0.898 | 0.063 0.548 | 0.363 0.703
97.5% quantile 1.285 1.150 | 1.197 1.102 | 1.930 1.452 | 1.630 1.301
99.5% quantile 1.490 1.240 | 1.261 1.135|2.573 1.714 | 1.839 1.392
max 3315 1.877 | 1.561 1.238 | 7.797 4.209 | 2.646 1.557

Note: Monte Carlo results for ¥, = 1+ (1 + &)X; and ¥, = 1 + X, + ¢, with ARCH(1) innovations in € and ¢.
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Table 6: Slope Estimates for Expectations Hypothesis Model

count OLS relative relative & pool & pool & relative
convex relative & convex

Bel 1.01 1.86 0.58 0.99 0.54

Can 1.20 1.91 2.14 1.98 2.09

Ger 1.28 0.97 0.22 1.00 0.47

Den 2.02 221 2.27 1.44 1.93

Fr 1.99 2.89 2.96 2.68 3.35

UK 0.87 1.37 1.35 1.15 1.28

It 0.98 1.30 1.27 1.22 0.97

Jap 0.95 1.02 1.26 1.15 1.28

Aus 0.51 1.39 1.40 1.25 1.46

Por 0.54 0.70 0.42 0.42 0.49

Swe 0.84 1.29 1.16 1.05 1.10
USA 0.36 0.91 1.10 0.66 1.09
Swit 1.15 1.01 0.99 1.00 0.91
Neth 1.22 / / / /

mean 1.06 1.44 1.31 1.23 1.30
range 1.66 2.19 2.74 2.26 2.88

st. dev. 0.48 0.61 0.76 0.57 0.79

Note: The table records coefficient estimates for the slope coefficient of the expectations model. The first column are
the per country OLS results for (28); column two is for (29) without the convexity term and the third column is for
(29). The base country in the regressions is The Netherlands.
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Figure 6: Cross Section Slope Estimates.
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Table 7: Summary Statistics Cross Country Slope Estimates

mean 1.18
standard error (of mean) 0.26
median 1.21
standard deviation 2.03
sample variance 4.13
kurtosis 4.52
skewness 0.50
range 14.65
minimum -5.43
maximum 9.22
mean R? 0.31
standard error (of mean R?) 0.03
standard deviation R? 0.22

Note: The table records the summary statistics of the cross country regressions.
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Figure 7: Hill Plot cross section slope estimates.
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Figure 8: Pareto log-log plot of the cross section slope estimates.
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