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Extremes and Time Series Modeling

Two strategies for thinking about modeling extremes in time series:

1. Fita model to the entire data set (e.g., GARCH and SV for financial
time series) and study the extreme value behavior associated with the
fitted model as truth.

2. Construct and fit models only to the extremes (e.g., observations
exceeding a large threshold).

Do fitted models actually capture the desired (extremal) characteristics of

the data?

* How do we assess “fitted” (expected) with “observed”?
* Need a mechanism for measuring extremal dependence.

Goal of this talk: Describe the extremogram which may be useful as a tool

for addressing this question. That is, how well does the “sample”

extremogram match up with the “population” extremogram?

Copenhagen May 27-30, 2013




Characteristics of financial time series

Define X;=1In (P,) - In (P.4) (log returns)

* heavy tailed

P(IX4] > x) ~ RV(-a1),

* uncorrelated

O<a<4.

P, (h) near 0 foralllags h >0

* |X|| and X{? have slowly decaying autocorrelations

P (h) and p . (1) converge to 0 slowly as h increases.

* process exhibits ‘volatility clustering’.
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Example: Amazon-returns (May 16, 1997 — June 16, 2004)
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Example: Amazon-returns
Hill's estimate of alpha (Hill Horror plots-Resnick)

Hill
3
I

0 100 200 300
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Starting point: GARCH vs SV

X;=0,Z; (observation eqn in state-space formulation)
(i) GARCH(1,1)
X, =07, Uzz = +0’1)(31 +ﬁ10'12.1 , {2}~ 11D(0,)
(i) Stochastic Volatility
)(t = GtZt’ Iothz = (I)O +¢1 Iogctz—l +8t7 {81}~ ”D N(OIGZ)

Key question:

What intrinsic (extremal?) features in the data (if any) can be used
to discriminate between these two models?
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ACF abs values

Amazon returns (GARCH model)

GARCH(1,1) model fit to Amazon returns:
ao=.00002493, o= .0385, B, = .957, X=(ayt+o, X2 4+B4 6% ,)"?Z,,
{Z}~ID (3.672)

Simulation from fitted GARCH(1,1) model
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ACF of the absolute values from 15 simulated re

ACF Plots for Amazon

the GARCH model on previous slide.
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Amazon returns (SV model)

Stochastic volatility model fit to Amazon returns: simulation based on

%~ Extremes and time series modeling

* A motivating example
* Starting point: GARCH vs SV

%" The Extremogram

* Examples

» Sufficient conditions for existence: regular variation
* Empirical extremogram

e lllustrations (permutation procedures)

* Cross-extremogram (devolatilizing/deGARCHing)

%~ Connections with Return Times of Rare Events

%~ Bootstrapping the Extremogram
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* Theory & examples

fitted model.
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The Extremogram

The extremogram of a stationary time series {X;} can be viewed as the
analogue of the correlogram in time series for measuring dependence in
extremes (see Davis and Mikosch (2009)).

Definition: For two sets A & B bounded away from 0, the extremogram
is defined as

pas(h) = lim,, P(X, € xB | X € xA)
= lim,_, .P(X; € XA, X, € XxB)/P(X, € XA),
forh =0, 1, ..., provided the limit exists, where X, =(X,,Xp+1s- - - s Xnsx)-

Remark: This definition requires that the limit exists.
a) exists for heavy-tailed time series (see forthcoming slide)
b) exists for some light-tailed time series w/ special choices of A and B.
c) extremal dependence depends on the choice of sets A & B.
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The Extremogram (cont)

If one takes A=B=(1,c0) and k = 0, then
Pag(h) = lim, . P(X, >x | Xy >X) = A(Xo,Xp)
often called the extremal dependence coefficient (A = 0 means
independence or asymptotic independence).
Other choices of A and B can lead to interesting extremograms:
* P(X; <-x| X,<-x) (negative return followed by a neg return)
* P(X; > x| X, < -x) (neg return followed by a pos return)
e P(Xy + -+ X,>2x | X, < -X) (neg return followed by a big pos
return aggregated over next 4 days)
* P(Xy>x, ..., Xs>x|X,>X) (pos return followed by a pos
return in next 4 days)

* P(min{X,, X5, X, } > x| X;> X, X;>X) (2 pos returns=pos return)
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The Extremogram: examples

LetA=B = (1,), then
pap(h) =lim,_ P(X, > x, X;, > x)/P(X;> x)
Gaussian Processes: In this case,
pag(h) =0 forallh>0 (asymptotic independence).
GARCH: In this case
pag(h) >0 forallh>0,
but decays to 0 geometrically fast.
SV process: X, =c,Z, logc’ :“’+in81—]’ {e,}~ 1IDN(0,6%)
In this case, -

pas(h) =0 forallh>0.
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The Extremogram: examples

LetA=B = (1,), then
pag(h) =lim,_ P(X, > x, X, > x)/P(X;,> x)
AR(1): Xi= ¢ X4 + Z;, {Z}~1ID Cauchy. Then
pap(h) = max(0, o).
Note if ¢ < 0, then extremogram alternates between positive #s and 0

MaxMA(2): Let (Z,) be iid with Pareto distribution, i.e., P(Z; > x) = x©
for x 21, and set X,= max(Z, Z,, Z;,). Then
pag(h)=1 forh=0.
=2/3 forh=1
=1/3 forh=2
=0, forh>2.
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Regular Variation and the Extremogram

Facts

1. The extremogram of a RV stationary time series {X,} exists for all
choices of sets A & B bounded away from the origin.

2. Many heavy-tailed time series (GARCH and SV) are regularly
varying.

Copenhagen May 27-30, 2013

The Empirical Extremogram

A natural estimator of the extremogram,

Pasth) = lim xaooP(Xh €xB | XO € XA)

based on observations, X;,...,X,, is the empirical extremogram

defined by -
m
; Zl{a;}x, ed, 41X, B}
~ =
P A,B (h) = : m !
n ;I X, e 4y

where a,, is the 1 — m/n quantile of |X,|. For the theory to work, need
my, — o with m/n — 0.

Under suitable mixing conditions, a CLT for the empirical estimate is
established in D&M (2009).
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The Empirical Extremogram — central limit theorem

m n—h I
Pas (n)=

m
- Zl{afl)( ed}y
n t:l mrt

After first establishing a joint CLT for the numerator and denominator, we

obtain the limit result
(I m)"(p, 5 (h) = p, (1) =, N(0,6*(4,B)),
where p,(h) is the ratio of expectations (pre-asymptotic extremogram),
P (a, "X, €A, a, "X, e B) P (a, "X, € A).
Now provided a bias condition, such as
(n/m)12 (mP (a,; X, € A, X, € B) — py(AxB)) — 0,

holds, then p,,(h) can be replaced with p, g(h). This condition can often
be difficult to check.
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Application to Five-Minute Return Data (US/DM) exchange
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Application to Five-Minute Return Data (US/DM) exchange

Extremogram absolute values: choice of threshold a,,
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extremogram
04
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Application to Five-Minute Return Data (US/DM) exchange

Extremogram A=B=(1,x)
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Application to Five-Minute Return Data (US/DM) exchange

Extremogram A=B=(1,x)
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Application to Five-Minute Return Data (US/DM) exchange

Extremogram A=B=(1,)
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Time out: Resampling and Testing for Serial Dependence

A natural way (not often used in time series) for testing serial
correlation is to compute the ACF for random permutations of the
data. If the sample ACF appears more extreme than the ACFs based
on random permutations, then there is evidence of serial correlation.
We apply the same idea to the extremogram.
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Time out: Resampling and Testing for Serial Dependence

A natural way (not often used in time series) for testing serial
correlation is to compute the ACF for random permutations of the
data. If the sample ACF appears more extreme than the ACFs based
on random permutations, then there is evidence of serial correlation.
We apply the same idea to the extremogram.
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Time out: lllustration with ACF (Windspeed at Kilkenny)

Wind Speed at Kilkenny 1/1/61-1/17/78

speed (knots)

1961 1963 1965 1967 1969 1971 1973 1975 1977

time
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Time out: lllustration with ACF

In plotting the sample ACF, one normally includes the +1.96/sqrt(n)
bounds (95% CI under the assumption of iid noise). One could use
the permutation idea here as well.

lag (h
Copenhagen May 27-30, 2013 ag () 28
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Time out: lllustration with ACF

Wind speed at Kilkenny adjusted

Wind speed at Kilkenny Adjusted for Volatility
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Time out: lllustration with ACF

Wind speed at Kilkenny adjusted

Wind speed at Kilkenny Adjusted for Volatility
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extremogram

Application to Five-Minute Return Data (US/DM) exchange

Extremogram for residuals from subset AR(18) and from GARCH

A=B=(1,x)

Residuals from AR

Residuals from GARCH
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lag
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extremogram

Application to Five-Minute Return Data (US/DM) exchange

Extremogram for residuals from subset AR(18) and from GARCH

A=B=(1,:0)

Residuals from AR

Residuals from GARCH
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extremogram

Extremogram of a SV Process

SV Process: X&=6,Z,, {Z}~1IDt,;logo, =.9log o4 + ¢
GARCH(1,1): X=(.1+.14 X2, +.830%_,)"2Z,, {Z} ~1ID N(0,1),
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| |
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lag
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Threshold = .97 quantile
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lag

GARCH
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extremogram

Extremogram of a SV Process

SV Process: X, =o0,Z,, {Z}~I1IDt,;logo, =.9logo, +¢;

GARCH(1,1): X, = (1 + .14X%, + 8362)Y/2Z,, {Z.}~1ID N(0,1),

0.04 0.06 0.08

0.02 0.04 0.06 0.08 0.10 0.12

0.02

Threshold = .97 quantile
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Extremogram of a Max-MA(2)

Example: Let (Z,) be iid with Pareto distribution, i.e., P(Z, > x) = x©

for x 21, and set X, = max(Z; Z4, Z,,). Then
nP(X; > xn"* ) — 3x* and F"(xn"*) — exp(-3x®).
On the other hand,
P(n"eM, <x)=P(n"*max(Z,,..., Z,) < X) > exp(-x* )=exp(-1/3 3x),
which implies that the extremal index is 6 = 1/3.

The extremogram with A=B = (1, «) is
lim, P(X,>n"| X,>n") =1 forh=0.

=2/3 forh=1
=1/3 forh=2
=0, forh>2.

Copenhagen May 27-30, 2013 37

Extremogram of a Max-MA(2)

Extremogram: lim, P(X,, > nVe | X, > n'e) = 2/3,1/3, 0 for

h =1, h=2, and for h > 3, respectively. Blue = sample
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Extremogram of a Max-MA(2)

Extremogram: lim, P(min(X;,X,) > n"e | X, >n") = 2/3,1/3, 0 for

h =0, h=1, and for h > 2, respectively.
Note: Confidence intervals are narrow—how come?

extremogram
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Extremogram of a Max-MA(2)

Extremogram: lim, P(min(X,,X,.1) > n" | X, > n"e) = 2/3,1/3, 0 for

h =0, h=1, and for h > 2, respectively.
Note: Confidence intervals are narrow—how come?

0.6
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extremogram
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Log-returns for DAX and Nikkei (Apr 4, '84-Oct 2, "09
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extremogram

extremogram

Extremogram for FTSE, S&P, DAX, Nikkei

FTSE S&P

extremogram
02

° DAX = Nikkei

0
extremogram
0

;
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Cross-Extremogram

The cross-extremogram measures extremal dependence between two
or more series. Suppose we have two time series {X;} and {Y}

Definition: For two sets A & B bounded away from 0, the cross-
extremogram is defined as

papchy = lim, , P(Y,exB | X,€ xA)

For example, if X, and Y, represent log-returns of two stocks, then one
might be interested in extremal dependence of negative returns. It
may seem natural to take A = B = (—, —1], so that

pap(h) =1lim, PV, < —x|X, < —2).

Copenhagen May 27-30, 2013 44
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Cross-Extremogram

As before, we estimate
pas(h) =1im,, P(Y,exB | X € xA)

by
;. Z {an 1X ed.a,, L2¥,.,eB}

72 {a, ,1X,eA}

/OA s(h)=

Problem: For log-returns, heteroskedasticity can produce spurious
extremograms. That is, volatility in both series (which tend to happen
in unison) produce large extremograms.

Copenhagen May 27-30, 2013
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Cross-Extremogram FTSE and SP
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Cross-Extremogram

Strategy: Devolatilize the component series before computing the
extremogram. This is analogous to the issue of spurious cross-
correlations in a time series without whitening the series first.

Cross-correlation between
two “independent” AR(1)’s

Cross-correlation between
the whitened series’
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Devolatilizing (dleGARCHing) S&P

Extremogram for S&P: significant for large number of lags ~40+

Devolatilize S&P by fitting GARCH(1,1):

X, = (6.28e — 7 + .057X%, +.93902 )27, {Z} ~1ID t(6.14),

|1‘|' IR

de-volatilized

-10

T T
Copenhagen Mﬂy 27-30, 2013 1000 2000 3000 4000 5000 6000
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Devolatilizing S&P

Extremogram for S&P: significant for large number of lags ~40+
Devolatilize S&P by fitting GARCH(1,1):

X, = (6.28e — 7 + .057X2, +.93962.,)'/2Z, {Z} ~IID t(6.14),

=
=)

extremogram
0.2 0.3

0.1

<
)
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Devolatilizing (dleGARCHing) FTSE

Extremogram for FTSE: significant for large number of lags ~40+
Devolatilize FTSE by fitting GARCH(1,1):

X=(1.32e—6+.084 X2, +.90402, ,)"2Z, {Z}~ D t(13),

de-volatilized

Copenhagen May 27-30, 2013
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Devolatilizing FTSE

Extremogram for FTSE: significant for large number of lags ~40+

Devolatilize FTSE by fitting GARCH(1,1):
X/=(6.28e-7+.057 X2, +.93902,_,)12Z,, {Z} ~ IID t(6.14),
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FTSE |
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Cross-Extremogram for 3 Time Series

We extend the cross-extremogram to 3 time series.

Definition: For three sets A, B & C bounded away from 0, the cross-
extremogram is defined as

Papc(h) =lim, P(Z,exC,Y,exB|XyexA)
We estimate p,gc(h) as before the empirical cross-extremogram.
To illustrate, we will look at 5 min log-returns , Dec 1, "04-July 26, "06.
= 5 minute log-returns Bank of America

= 5 minute log-returns Citibank

Z,= 5 minute log-returns Microsoft
Two cases:

(1) papc(h) = limxﬁoop(lzhl >xor Yy >x|1X| > x)
(il) pap,c(h) = lim ., P(IZ,] > x| |Yo] > x o7 |X,| > x)

Copenhagen May 27-30, 2013 55
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Cross-Extremogram for 3 Time Series

X,=BAC, Y,= Citibank, Z, = MSFT
() P(Zul > xor [V > x| |1Xo] >x) (i) P(1Z,] > x [ Vo] > o7 |X,] | > x)
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Cross-Extremogram for 3 Time Series

X,= BAC, Y,= Citibank, Z, = MSFT
() P(Zy| > xor|Y,| >x||Xo| >x) (i) P(IZ] > x [ |Yo| > o7 |Xo|| > x)

I I !
0.20 0.25 0.30
I I I

extremogram
0.15
|

0.0

(i) Given BAC is large = CB or MSFT is large in same time period or
5 minutes hence.
(i) Given BAC or CB large = MSFT is large in one time period.
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Connections with Return Times (of rare events)

This is an idea due to Geman and Chang (2009):
Setup:
« {X} time series—think log-returns, for example.
* &, &, are the vth and (1-v)th quantile of the of the marginal
distribution.
Define the exceedance (or stopping times) times 1; by
T=min{t21: X, < §, or X, < &,.}
Te=min{ t 27 X, < g, or X, <&.},j20.
The inter-arrival (or return times) are

T

iTh

i~ T j2 1

These are the times between occurrences of rare events (number of

tosses of a coin until next head).

Copenhagen May 27-30, 2013
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Connections with Return Times (of rare events)

For nice time series, like iid observations, the T,'s are iid with a
geometric distribution,

P(T, =k) = (1-p)<'p, k=1,2, ...,

p=P(X, <& 0r X >¢&.)=2v.
Recall for a geometric rv,

E(T,) = 1/p.
Note: This is the backstory behind the term 100 year flood, or 100
year blank, which corresponds to the threshold x such that the
expected time until x is exceeded is 100. (In this case, p =.01, x=
€.99-)
Idea: For v fixed (can do one-sided tail), look at the histogram of

return times and compare against a geometric distribution.
Copenhagen May 27-30, 2013
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Connections with Return Times (of rare events)

Idea: For v fixed (can do one sided tail), look at the histogram of

return times and compare against a geometric distribution.
Example with BAC, v=.05 = geometric(p=.1)

P(T=1)%1

000 005 0.10 /015 020 025 0.30 0.35

|
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Connections with Return Times (Daily Returns for BAC)

BAC, 2 tail, v=.05 = G(p=.

N
~

BAC, lower only v=.01 =
G(p=.1):

|
i

0.00 005 0.10 0.15 020 025 030 0.35

7

0 10 20 30

return_time
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0.00 005 010 0.15 020 025 030 0.35

Connections with Return Times

BAC devolatilized BAC devolatilized
v=.05 = G(p=.1) lower tail only v=.01 =
G(p=.1)

1
0 005 0.10 0.15 020 025 0.30 0.35
I

-

return_time return_time

Copenhagen May 27-30, 2013 62

Connections with Return Times (of rare events)

Question: What is the connection with the extremogram?
Answer: The estimated distribution for the return times is exactly
the extremogram for specially chosen sets A & B. For example,
in the upper tail case, P(1T1 = 1) is estimated by

z X X
~ (Kizan Xoazan} g consecutive pairs> a
P(T :l) =1 - m

I #observatims >a,,
2 Loz
=1

m n—l[
— 2 0 0
=

/5A,B (1) = P
m

Lix 20,3
t=1
Remark: So theory and methodology (permutation/bootstrapping)
developed for the extremogram applies to the histogram
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Bootstrapping the Extremogram

The stationary bootstrap, introduced by Politis and Romano (1994)
seems well suited for the extremogram.

Stationary Bootstrap Setup: Have data X, . . ., X,, and construct BS
sample as follows:
* Ky, Ky, .. ., beiid uniform on {1,..., n}

* L,, L, ..., beiid geometric(p,)

The BS sample X; ..., X, is given by the first n observations in the
sequence.
X X

TN, RV GRNUD. GVID. GRS, P

where

N=infi=1:L +---+L >n}.

Copenhagen May 27-30, 2013
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Bootstrapping the Extremogram

L CALITE, CAVIRTD. SR, CHVIRTIRND. SO, G
* Ky, Ky, .. ., beiid uniformon {1,..., n}
* Ly Ly, ..., beiid geometric(p,)
Remarks

* Procedure is similar to the block bootstrap method
» Each block has a random length given by independent
geometrics, Ly, Ly, . . ..
* Mean block size is 1/p,
* Mean number of blocks is np,,
» By the previous two bullet points, we require
p, = 0,np, > .
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Bootstrapping the Extremogram (cont)

The extremogram, computed from either the sample or BS sample, are
ratios of partial sums of the form,

~ m & A m &
l)” (C) =— Zl a,lX,eC} and 1)’1 (C) =— ZI atX; eC}"
t=1

n = n
Theorem . Assuming our general setup (mixing conditions + regular
variation, etc), and the growth conditions,
np, — «©, np?m,— o,
we have E"P"(C)—> u(C) andms? =Var (n/ m)"* P (C))—62(C).
Moreover,

sup| P((n/m)"? (ms?) (B (C) ~ B, (C)) € x| Xy, X, )~ ()| 50

66
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Bootstrapping the Extremogram (cont)

The sample extremogram and its BS counterpart are:

m n—h m n—h
E I E I
; {4 X, eAa;'X,,, B} ; {a,}X; 4,0,/ X;,,€B}
n = ~x _nia
Ps (h)= - P (h)= n
Y/ Y/
- -1 - 1yp*
n pry {a, X,e4} n pcy {a, X, e4}

Theorem . Assuming our general setup (mixing conditions + regular
variation, etc), and the growth conditions,

np, — <, np4m,— o,
we have

SUplP((n/m)llz(f?;,g(h)—ﬁA,B(h)) <x| Xy X,) =

P11 m)* (B, ()~ p, (1)) £ )| -0

67
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Bootstrap of the Extremogram of the Max-MA(2)

0.6
!

0.4

extremogram

0.2

0.0
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Bootstrap of the Extremogram of the Max-MA(2)

06 0.8
1 f
0.8
!

06
!

0.4
0.4

0.0
1
0.0
!

p, =.02 (mean block size is 50) p, = 1 (mean block size is 1)
BS reps = 1000
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Extremogram of a GARCH(1,1)

GARCH(1,1): X&=(.1+.14 X3, +.836%, )"2Z,, {Z}~ IID N(0,1), n=108
3-dim extremogram (lim,, P(min(X;,X;,1) > n*e | X, > n'/®))

Pn
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= .02 (mean block size is 50) BS reps = 1000
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Extremogram of a GARCH(1,1)

GARCH(1,1): X=(.1+.14 X2, +.83c2, ,)"2Z, {Z}~1ID N(0,1), n=108
3-dim extremogram (lim, P(min(X;,X;.1) > n"e | X, > n'e ) )

v
=3

0.10
N

0.05
s

0.0
L

p, =1 (mean block size is 1)
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p, = .02 (mean block size is 50)

BS reps = 1000
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Extremogram of a SV

SV Process: X&=c,Z, {Z}~IIDt,;logo, =.9log o, +g,n=108
3-dim extremogram (lim,, P(min(X;,X;,1) > n*e | X, > n'/®))

0
R 11

p, = .02 (mean block size is 50) BS reps = 1000

Copenhagen May 27-30, 2013

72

Extremogram of a SV

SV Process: X&=o,Z, {Z}~I1IDt,;logo, =.9log o, +¢,n=108
3-dim extremogram (lim, P(min(X;,X;.1) > n"e | X, > n'e ) )

S wmmmmmmanAnWARAw

0
S

0.10

0.05
!

p, =1 (mean block size is 1)
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Extremogram of a SV

SV Process: X&=c,Z, {Z}~IIDt,;logo, =.9log o, +g,n=108
3-dim extremogram (lim,, P(min(X;,X;,1) > n*e | X, > n'/®))

i g
IIJ 5‘0 1&0 1;0 2&0 ll) 5‘0 150 1;0 2!‘)0
p, =1 (mean block size is 1) p, = .02 (mean block size is 50)

BS reps = 1000
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extremogram

Application to FTSE (left) and cross S&P | FTSE (right)
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Application to FTSE (lower tail)

03 04

extremogram

Red =97.5% /.025% qtles for p*
Blue = extremogram
4 Blue dot = mean BS
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0 10 20 30 40 o 10 20 30 4(
lag lag
p, =1/50 p, =1/200
Copenhagen May 27-30, 2013 76

0.4

0.3

Application to FTSE (lower tail)
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Blue = extremogram
4 T Green = level .03
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Wrap-up

» Extremogram is another potential tool for estimating extremal
dependence that may be helpful for discriminating between models
on the basis of extreme value behavior.

» Permutation procedures are a quick and clean way to test for
significant values in the extremogram and other statistics.

* Bootstrapping may prove useful for constructing Cl’s for the
extremogram and also for assessing extremal dependence.

* The Extremogram can provide insight on extremal dependence
between components in a multivariate time series.

* Interesting connection between return times and the extremogram.
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