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Motivating Example: Daily Air Pollution, Leeds UK

Daily max pollution at Leeds, UK Frechet Scale
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Data exhibit asymptotic independence (Heffernan and Tawn,
2004).



Outline

e Hidden Regular Variation
e Sum Characterization of HRV
e Estimation via MCEM

e Application: air pollution data



When Multivariate Regular VVariation Fails

Multivariate Regular Variation:

R v
tP [— >r,We B| —r “H(B).

b(t)

In some cases, the angular measure H degenerates on some
regions of N, masking sub-asymptotic dependence features.

Example: asymptotic independence in d = 2:

lim P(Z1 > z|Z> > z) = 0.

Z—>Z_|_

e H consists of point masses at {0} and {1} (using || - ||1)
e €.g. bivariate Gaussian with correlation p <1

Normalization by b(¢) Kills off sub-asymptotic dependence
structure.



Hidden Regular Variation
(Resnick, 2002)

A regular varying random vector Z exhibits hidden regular
variation on a subcone ¢ C € if v(€) = 0 and there exists
{bo(t)}, bo(t) — oo with bo(t)/b(t) — O s.t.

— vo(")

t]P[ c -

bo(1)
as t — oo in M4 ().

e Scaling: vo(tA) =t “py(A) for measurable A € &g, ap > «
e 15 IS Radon but not necessarily finite.

Equivalently,
R
tIP’[
bo(1)
for B a Borel set of No = ¢y NN (e.g. No=1(0,1)).

Hy is called the hidden angular measure.

>r,W € B| — r *Hy(B)




Example: bivariate Gaussian

Consider Z with Fréchet margins and Gaussian dependence,
p € [0,1). Recall v places mass only on the axes of €.

Define n = (14p) /2, the coefficient of tail dependence (Led-
ford and Tawn, 1997).

e 7Z exhibits hidden regular variation of order ag = 1/7

e [ he density of the hidden measure o can be written

1 1
vo(dr x dw) = —r~ YD dr x 4—{w(1 —w)} V2w
N 7]

\ 4

Ho(dw)

Hy is infinite on (0,1).



Tail Equivalence
(Maulik and Resnick, 2004)

Two random vectors X and Y are tail equivalent on the cone
¢*if

X
ﬂP[b()

as t — oo in My (¢€*) for ¢ > 0.

Y
b*(t)

— v() and tP [ € ] — cv ()

‘Extremes of X and Y samples taken in €* will have the same
asymptotic properties.’



Mixture Characterization of HRV

(Maulik and Resnick, 2004)

Suppose Z is regular varying on ¢ with hidden regular variation
on ¢o:

- U |
tP :@ c-| — v(-) in M, (¢) and
tP _bo%t) €| — wo(-) in My(C)

with v(&y) = 0 and bo(t)/b(t) — 0 as t — oo.

e lLet Y be RV(a) with support only on €\ ¢&.

o lLet V = RyOp, Ro ~ FRo(t) = 1/b_>(t) and 0y ~ Hp, finite.

e Then Z is tail equivalent to a mixture of Y and V on both
¢ and ¢,.

Works because Y's support doesn't mess with the HRV.
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Construction of Y +V

Define Y = RW, withP(R>r) ~ 1/b=(r) and W drawn from
limiting angular measure H. Notice that Y has support only
on @\@o

Let V € [0,00)? be regular varying on ¢y with limit measure
L.

v
bo(t)

Further assume that on ¢,

P(|V] >r) ~cr @

tP [ €.l - vo(-) in M4 ().

*

as r — oo, with ¢ > 0 and

o > aV (ag— a).

Assume R, W, V are independent.



Tail Equivalence Result

Then
Y+ V

b(¢)
(Jessen and Mikosch, 2006).

tP

€. — v(-) in M4 (<)

Furthermore, tail equivalence (Maulik and Resnick, 2004)
also holds on ¢g:

Theorem. With'Y and V as defined above,

P [Y—|—V

bo(t) = Vo(-) in M_|_(Q:o).

E .

View Z as a sum of ‘first-order’ Y and ‘second-order’ V.
The sum Y + V is tail equivalent to Z on both € and ¢&;.



Simulation when g is finite.
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No point falls exactly on an axis.



Infinite Measure Example: Bivariate Gaussian

Z has Fréchet margins and Gaussian dependence (p < 1).
Recall: Hg is infinite on Ng = (0, 1).

Poses difficulty near the axes of .

Proposed construction of V:

e Restrict to €5 = €y NN, where N§ = [¢,1 — €] for

e € (0,1/2).
e Simulate Wy from probability density Ho(dw)/Ho(N§)
e Let Ry follow a Pareto distribution with aa = 1/7€
oV = [RoWoy, Ro(1 — Wp)]*

Y + V is tail equivalent to Z on € and .



Sum representation of bivariate Gaussian

Example with p = 0.5 (n = 2500):

z Y+V (e =0.01) Y+V(e=0.1)
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For any set completely contained in €5 we achieve the correct

limit measure vyg.

Choice of € involves a trade-off between:
e Size of the subcone on which tail equivalence holds
e Threshold at which Y + V is a useful approximation
e Biases due to choice of € calculated.



Inference via the EM Algorithm

Observe realizations from Z, tail equivalent to Y+V. Assume
parametric forms and perform ML inference via EM.

If we assume Z =Y + V,
09 f(:0) = [ 100 f(z,y,v;0)f (v, v|z 6)dydv

— [ 109 f(y, Iz 0)f (v, v
= Q016" — H(8|6").

z: 0" dydv

Here: Z and Y 4+ V are only tail equivalent; 8 governs tail

behavior of Y and V. Requires a modification of the EM
setup.



EM for Extremes

Consider distributions with densities gy(y;0) and gv(v;0)
which are tail equivalent to the true distributions; i.e.,

gv(y;0) = fy(y;0) for |y|l>ry
gv(v;0) = fy(v;0) for |v] >ry,

Complete likelihood is based on limiting Poisson point pro-
cesses for Y and V.

e E step: expectation is taken with respect to g(y,v|z;0).
e M step: maximization is taken over only ‘large’ y and v.

We show
H(OW[0%) — H(6]0%) >0

using Jensen’s inequality.



MCEM

Natural framework for MCEM.

At the E step of the (k 4+ 1) iteration, simulate from
gy (y; 0" gv(z — y; 0W) « g(y, v|z; 8P)

for all z and use the simulated realizations to compute
N 1
Qm(010™) = —>"(0;2,y;,v;).
m i

employing Poisson point process likelihoods for large realiza-
tions of Y and V.

Key idea: likelihood only depends on 0 for ‘large’ y and v!

Uncertainty estimates obtained via Louis’ method.



Example w/ Infinite Hidden Measure

Simulate n = 10000 realizations from a bivariate Gaussian
distribution with correlation p, transform marginals to unit
Fréchet.

Tail equivalent on € and € to Y + V, where V has angular
measure 1
Ho(dw) = 4—{w(1 —w)} V2w,
n

Aim: estimate n = (1 4+ p)/2 from the e-restricted model.

e Must select both e and r5;

e Trade-off in finite sample estimation problems



Infinite Hidden Measure Results

Shown for n = 0.75 (p = 0.5)
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Air Pollution Data

Daily max pollution at Leeds, UK Frechet Scale
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e Strong evidence for asymptotic independence
e Aim: estimate risk set probabilities



Competing Approaches

Examine three modeling approaches:

1. Assume asymptotic dependence; i.e. that v(-) places mass
on the entire cone ¢. Fit a bivariate logistic angular de-
pendence model to largest 10% of observations (in terms
of L1 norm). Estimate 8 = 0.713.

2. Assume asymptotic independence and ignore any possible
hidden regular variation.

3. Assume asymptotic independence and hidden regular vari-
ation. Fit the e-restricted infinite hidden measure model
via MCEM. Select ry;, = 7.5 and ¢ = 0.3. Estimate n =
0.748.



Results - risk set estimates

Daily max pollution at Leeds, UK

0 100 200
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400 500

Model P(Z € A,) Expected # p-val
1 (asy. dep.) 0.0297 59.04 0.480
2 (asy. indep.)| 0.0120 23.86 8.17 x 107°
3(Y+YV) 0.0261 51.89 0.210
Empirical 0.0292 58 —




Results - risk set estimates

Daily max pollution at Leeds, UK

| T | T 1
100 200 300 400 500

NO2

Model P(Z € A>) Expected # p-val

1 (asy. dep.) 0.0044 8.74 0.132

2 (asy. indep.)| 0.0002 0.40 0.009

3(Y+V) 0.0018 3.58 0.274
Empirical 0.0025 5 —




Results - risk set estimates

Daily max pollution at Leeds, UK
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Model P(Z € A3) Expected # p-val

1 (asy. dep.) 0.0010 1.99 0.130
2 (asy. indep.) 0 0 1

3(Y+V) 0.0002 0.40 0.704
Empirical O 0 —




Summary

T his work introduces a sum representation for regular varying
random vectors possessing hidden regular variation.

e Useful representation for finite samples

e Asymptotically justified by tail equivalence result

e Difficulty arises when Hj is infinite - restrict to a compact
cone to simulate V

e Likelihood estimation via modified MCEM algorithm

e Captures tail dependence in the presence of asymptotic
independence

e Improved estimation of tail risk set probabilites
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