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Extreme Value Analyses

General Idea: Distributions suggested by the asymptotic the-
ory are fit using only data considered to be extreme.

Univariate approaches:

1. Block maximum data

• GEV(µ, σ, ξ)

2. Threshold exceedance data

• GPD(σ̃u, ξ, ζ)

• PPE(µ, σ, ξ)

Things we know:

• ξ determines the type of tail and is difficult to estimate.

• always data poor in extreme value analyses.

• risk often summarized in terms of return levels.
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Extreme Values in more than one dimension

Multivariate Extremes

• Theory well developed.

• Some existing parametric models for moderate dimension.

• Block maximum and threshold exceedance approaches have
both been used.

Extremal Processes

• Theory well developed.

• Some existing models for max-stable processes.

• Application to threshold exceedances (Huser and Davison,
2012)

• Although process models (d =∞), only the bivariate
(Smith: trivariate) joint distributions known in closed form.

In practice, marginal effects and dependence structure are
handled separately, often transformed to RV(1).
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Spatial Extremes, Climate, and Weather

There are two spatial effects at work in the data: climate
and weather effects.

Q: What’s the difference?

Climate vs. Weather

“Climate is what you expect, weather is what you get”

...but this doesn’t really apply when doing an EV analysis.

Instead: Climate is the distribution from which weather is
drawn (not just the expected value).
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Climate and Weather Spatial Effects

Spatial dependence in data from two sources:

• local dependence due to events that effect more than one
location (weather).

• regional dependence due to similar characteristics between
locations (climate).

In terms of a statistical model:

climate effects: how the marginal distribution changes
with location.

weather effects: the joint behavior of multiple locations.
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Goal of Modeling Climate Extremes

Precipitation Atlases:
NOAA’s provides “official” estimates for extreme precipita-
tion for US locations. http://www.nws.noaa.gov/ohd/hdsc/noaaatlas2.htm

Colorado 40◦N 105◦W (Boulder)
Map Prcp (inches) Prcp Intensity (in/hr)

2-year 6-hour 1.49 0.25
2-year 24-hour 2.13 0.09

100-year 6-hour 3.68 0.61
100-year 24-hour 5.06 0.21

Estimates based on NOAA Atlas 2, 1973.

• Precip. atlases used as inputs to hydro models.

• Other uses for climatological extremes:

– Wind: structural design of buildings, power.

– Sea level: sea walls, oil-drilling platforms.

– Climate models: how will extreme precip change with
climate change?
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Historical Approach for Modeling Climate Extremes

Regional Frequency Analysis

• Traces roots to Dalrymple (1960).

• Thorough treatment of modern practice: Hosking and
Wallis (1997)

• Basic idea is “trading space for time”

• Basic steps:
1. Define and test homogeneous regions
2. Normalize (block maximum) data using “index flood”

– often a mean of annual maxima.
3. Combine data and estimate parameters (L-moments)
4. Un-normalize data by index flood to get estimates at

each location

• NOAA using a variant of RFA to update its maps.
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Recent Approach: Spatial Hierarchical Models

Basic idea: Assume there is a latent spatial process that
characterizes the behavior of the data over the study region.

• much of early work done in epidemiology

• Diggle et al. (1998)

• Banerjee et al. (2004)

• Climate/weather applications: Cressie, Wikle, Berliner,
others

Why bother?

• Latent process too complex to capture with fixed effects;
covariates not rich enough.

• Intelligently borrows strength
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Spatial HM General Framework

Bayesian formulation, three levels.

π(θ1, θ2|y) ∝ π(y|θ1)︸ ︷︷ ︸
data

π(θ1|θ2)︸ ︷︷ ︸
process

π(θ2)︸ ︷︷ ︸
prior

,

Data level: Likelihood characterizing the observed data given
the parameters at the process level.
Process level: Latent process captured by spatial model for
the data level parameters.
Prior level: Prior distributions put on the parameters in the
process level.

Typically an assumption of conditional independence made
at the data level and joint likelihood is the product of the
individual likelihoods at each location.

Sensible for epidemiology, perhaps not for weather data.
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Overview of a Case Study:
Regional Climate Model Precipitation Extremes
(Cooley and Sain (2010)

Data: Output from a RCM for the western US, ∼ 2500 loca-
tions. Both control and future runs modeled simultaneously.

π(θ1, θ2|y) ∝ π(y|θ1)︸ ︷︷ ︸
data

π(θ1|θ2)︸ ︷︷ ︸
process

π(θ2)︸ ︷︷ ︸
prior

,

Data Level: Point process model for threshold exceedances.
Conditional independence assumed.

Process Level: Multivariate IAR model for (µ,σ, ξ).

• Q has dimension 14784 x 14784.

• 29598 (non-indep) parameters, effective number ∼ 4250

• Inference via Gibbs Sampler
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Parameter Estimates (Posterior Mean, Winter)

Control
µ σ ξ
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Risk Assessments: 100-year Return Levels

Control Future % Change
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What is gained from BHM?

ξ MLE ξ BHM
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• seems to capture climate effects

• latent spatial model needed

– available covariates inadequate to capture effects

– borrows strength across locations for estimates

• uncertainty easily obtained from MCMC runs
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What about the weather effects?

Spatial extent of intense storms in year 1
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Clearly, conditional independence assumption does not hold.

Q1: How to model extreme weather events’ spatial effects?
Q2: If one is only interested in climate extremes questions,
does one need to worry about ignoring the weather effects?

16



Outline

1. Introduction
• Statistics for Extremes
• Climate and Weather

2. Modeling Climate Spatial Effects for Extremes
• Historical Methods
• Bayesian Hierarchical Models

3. Models for Weather Spatial Effects for Extremes
• Max-stable Processes
• Fitting Max-stable Processes: Composite Likelihoods

4. Modeling Both Climate and Weather Effects
• Possible Approaches
• Employing a Max Stable Process Model
• Appropriate Bayesian Inference for Composite L’hoods
• Implementation in a BHM and Results

17



Max-stable Processes

Let Ym(x),x ∈ D,m = 1, . . . , n be independent copies of Y (x),
and let Mn(x) = maxm Ym(x). Y (x) is termed max-stable if
there exist an(x) and bn(x) such that

P
(
Mn(x)− bn(x)

an(x)
≤ y(x)

)
= P(Y (x) ≤ y(x)).

• Max-stability is foundation of EVT.

• Limit process for site-wise maxima.

• Use is justified by extreme value theory.

• Suitable for modeling fields of block (annual) maximum
data.

• From an EV perspective, max-stable processes are the
correct answer to Q1.

• A few models have been proposed.
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Point process formulation of max-stable processes
(de Haan and Ferreira, 2006, Corollary 9.4.5)

Z(x),x ∈ D is max-stable with unit Fréchet marginals
iff

There exist iid positive stochastic processes V1(x), V2(x), . . .
with E[Vi(x)] = 1 for all x ∈ D and E[supx∈D V (x)] ≤ ∞ and
an independent point process {ηi}∞0 on (0,∞] with intensity

measure r−2dr such that Z(x)
d

= maxi=1,2,... ηiVi(x).
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Models for Max-stable Processes

• Smith (1990)

• Schlather (2002)

• de Haan and Ferreira (2006)

• Kabluchko et al. (2009)
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Smith Model for a Max-stable Process

Pr[Z(xi) ≤ z1 , Z(xj) ≤ z2] =

exp
{
−

1

z1
Φ
(
a

2
+

1

a
log

z2

z1

)
−

1

z2
Φ
(
a

2
+

1

a
log

z1

z2

)}
,

where a2 = (xi − xj)TΣ−1(xi − xj).

• Characterized by the parameter Σ =

[
σ1,1 σ1,2

σ1,2 σ2,2

]
• Assumes the marginals are unit Fréchet: P(Z(xi) ≤ z) =

exp(−z−1).

• If marginals not Fréchet, then a marginal transformation
can be performed.

• Has a “storm” interpretation.

• We use this in the data level of our hierarchical model
described later.
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Smith Model for a Max-stable Process

Pr[Z(xi) ≤ z1 , Z(xj) ≤ z2] =

exp
{
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where a2 = (xi − xj)TΣ−1(xi − xj).
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Schlather (2002) Model for a Max-stable Process

Pr[Z(xi) ≤ z1, Z(xj) ≤ z2] =

exp

{
−

1

2

(
1

z1
+

1

z2

)(
1 +

√
1− 2(ρ(z1 − z2) + 1)

z1z2

(z1 + z2)2

)}
,

where ρ is the correlation function of the standard normal
Gaussian process.
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Brown-Resnick Model for a Max-stable Process
Kabluchko et al. (2009)

Pr[Z(xi) ≤ z1, Z(xj) ≤ z2] =

exp

−
e−z1Φ


√
ρ(xi − xj)

2
+

z2 − z1√
ρ(xi − xj)


+ e−z2Φ


√
ρ(xi − xj)

2
+

z1 − z2√
ρ(xi − xj)





• Gives realistic-looking realizations.

• As distance increases, observations become independent.

• Interesting construction from Brownian motion with drift–
the stationary process is constructed as a maximum of
non-stationary processes.
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Fitting Max-stable Processes

For the max-stable process models, only the bivariate distri-
butions are known (trivariate for Smith model?). How does
one fit a model to K observations?

A: Composite Likelihoods

Composite likelihoods are used to obtain estimating equa-
tions when the true likelihood is too difficult or impossible to
obtain (Lindsay, 1988).
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Pairwise Likelihoods

Since we have the bivariate distributions we will use the pair-
wise likelihood.

Assume independent observations ym = (y(1)
m , y(2)

m , . . . , y(k)
m )T ,

m = 1, . . . ,m arise from a probability model with density
f(y; θ) which has bivariate marginals f(y(i)

m , y
(j)
m ; θ). Then the

pairwise log-likelihood is given by

`p(θ; y) =
n∑

m=1

K−1∑
i=1

K∑
j=i+1

log f(y(i)
m , y

(j)
m ; θ).

Things to keep in mind:

• Not a true likelihood.

• Over-uses the data – each observation appears K−1 times.
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Frequentist Methods for Composite Likelihoods

Point estimation achieved by maximizing the composite like-
lihood; MCLE denoted θ̂c.

1. Estimation is unbiased.

2. Uncertainty estimates achieved via the information sand-
wich approach.

√
n{H(θ0)J(θ0)−1H(θ0)}1/2(θ̂c − θ0) −→ N(0, Idp),

where H(θ0) = E[∇2`c(θ0;Y )] and J(θ0) = Var[∇`c(θ0;Y )].
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Pairwise Likelihoods for Max-stable Processes
(Padoan, Ribatet, and Sisson, 2010)

Use pairwise likelihood approach for annual maximum precip-
itation data.

Marginals: trend surface of longitude, latitude, and elevation.
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Figure 4: Locations of the 46 gauging stations.
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Figure 5: Left: Elevation map (metres) of the region; Right: Pointwise 50-year return

level map (cm) estimated from the fitted Gaussian extreme value process.
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Findings:
1. Improved modeling of joint occurrence.

2. Some reason to question the fit of marginal distributions.
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Modeling Both Climate and Weather Effects

SHM Revisited

π(θ1, θ2|y) ∝ π(y|θ1)︸ ︷︷ ︸
data

π(θ1|θ2)︸ ︷︷ ︸
process

π(θ2)︸ ︷︷ ︸
prior

,

• To capture the weather effects, one needs to capture the
dependence among observations due to weather events.

• Would have spatial model in both data and process levels.
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Possible Approaches for Likelihoods

• Multivariate Extreme Value Models

• Copula Approaches

• Max-stable Process Models
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Possible Approaches for Likelihoods

• Multivariate Extreme Value Models

+ Models can be applied to both block maxima or thresh-
old exceedance data.

− Existing models (e.g., Tawn (1990); Cooley et al. (2010))
applicable only to data of relatively low dimension (d ∼
5).

• Copula Approaches

• Max-stable Process Models
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Possible Approaches for Likelihoods

• Multivariate Extreme Value Models

• Copula Approaches

• Gaussian copula (Sang and Gelfand, 2010).

+ Very natural, intuitive approach.
+ Computationally feasible.
◦ Leads to an asymptotically independent model.

lim
u→∞

P(Xi > u|Xj > u) = 0

• Dirichlet process (Fuentes et al., 2009)

+ Both asymptotic dependence and asymptotic inde-
pendence possible.
◦ Unclear ties to EVT.

• Max-stable Process Models
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Possible Approaches for Likelihoods

• Multivariate Extreme Value Models

• Copula Approaches

• Max-stable Process Models
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Capturing the Weather Effects with a Max-stable
Process

π(θ1, θ2|y) ∝ π(y|θ1)︸ ︷︷ ︸
data

π(θ1|θ2)︸ ︷︷ ︸
process

π(θ2)︸ ︷︷ ︸
prior

,

We aim to employ a likelihood from a max-stable process at
the data level.

Challenge:

• Since only the bivariate distributions are known, we cannot
use the correct likelihood → composite likelihood.

• Frequentist methodology exisits for composite likelihoods,
can ideas be extended to obtain appropriate inference in
a Bayesian setting?
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Bayesian Methods for Composite Likelihoods?

posterior ∝ likelihood * prior

If true likelihood is replaced by pairwise likelihood, resulting
posterior is too narrow.

50 replicates of a mean-zero Gaussian process with
exponential covariance structure, observed at 20 locations
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Appropriate Bayesian Inference

Ribatet, Cooley, and Davison (2009) investigate appropri-
ate Bayesian inference for composite likelihoods by adjusting
likelihood to obtain an appropriate posterior.

Two approaches suggested:
1. Magnitude adjustment (Also: Pauli et al. (2011))
2. Curvature adjustment

As the curvature adjustment can be shown to perform better,
we focus on it here.

37



Curvature Adjustment

In the context of performing likelihood ratio tests (frequen-
tist), Chandler and Bate (2007) suggest replacing the com-
posite likelihood with an adjusted inference function:

`A(θ; y) = `c(θ
∗; y),

θ∗ = θ̂c +M−1MA(θ − θ̂c),
where MTM = −H(θ0), MT

AMA = H(θ0)J(θ0)−1H(θ0).

• `A(θ̂c) = `c(θ̂c) .

• the Hessian of `A(θ̂c; y) is HA(θ0) = H(θ0)J(θ0)−1H(θ0).

• Note: to calculate `A(θ), θ̂c must be known.
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Gaussian Process Simulation Results

Truth: µ = 0, τ = 1, ω = 3

Coverage

Full Magnitude Curvature Unadjusted
µ τ ω µ τ ω µ τ ω µ τ ω

ω = 3 96 94 94 89 92 100 94 93 94 16 21 37
ω = 1.5 94 95 96 85 93 100 94 94 93 19 22 53

39



Implementation in BHM models

π(θ1, θ2|y) ∝ π(y|θ1)︸ ︷︷ ︸
data

π(θ1|θ2)︸ ︷︷ ︸
process

π(θ2)︸ ︷︷ ︸
prior

,

Idea is straightforward: replace the true (but unattainable)
likelihood with the appropriately adjusted pairwise likelihood.

`A(θ) used in MH ratio, detailed balance condition met.

Implementation not straightforward: adjusting the likelihood
requires knowledge of the MCLE’s.

Inference for BHM models obtained via Gibbs samplers, we
examine two approaches:
1. Overall Gibbs sampler: MCLE’s and matrices H(θ̂c) and
J(θc) obtained initially and used throughout.

2. Adapted Gibbs sampler: Data-level parameters must be
drawn conditional on the current values of process- and
prior-level parameters.
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Adaptive Gibbs Sampler

Algorithm 1: Adaptive Gibbs sampler

Input : θ0 ∈ Θ
Output: A Markov chain of length N + 2

for t← 0 to N do1
for i← 1 to K do2

Update {µ̂(xi), σ̂(xi), ξ̂(xi)} via numerical optimization;3
Update {µ(xi), σ(xi), ξ(xi)} via MH;4

end5
Update Σ̂ via numerical optimization;6
Update Σ via M.–H.;7
for p ∈ {µ, σ, ξ} do8

Update βp directly;9
end10
for p ∈ {µ, σ, ξ} do11

Update τp directly;12
end13
for p ∈ {µ, σ, ξ} do14

Update ωp directly;15
end16
Store all the updated values in θt+1;17

end18
return {θt}t=0,...,N+1;19
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Adaptive Gibbs Sampler

• Numerical optimization at steps 3 and 6 makes things very
slow

• Have shown via a completion argument that adaptive Gibbs
sampler does converge

• However, argument does not account for numerical opti-
mization

• Convergence checked using trace plots and the
√
R̂ statis-

tic – all indicate convergence achieved
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Simulation Study

Zj(x); j = 1, . . .50 realizations of Smith’s ms process. (weather)

Marginals: Y (x) ∼ GEV (µ(x), σ(x), ξ(x));
µ(x), σ(x), ξ(x) are Gaussian process realizations. (climate)
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Simulation Results: Estimating Marginals
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Simulation Results: Weather Dependence

Given by:

Σ =

[
σ1,1 σ1,2

σ1,2 σ2,2

]

Estimates
Simulated 95% Cred. Int.

σ1,1 6 (5.39, 8.76)
σ1,2 0 (-1.28, 0.67)
σ2,2 6 (5.58, 8.37)

Simulated Realization
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Application: Switzerland Precipitation

Zurich

Dob

10 km
0

250

500

750

1000

1250

1500

1750

Elevation
(meters)

• 50 years of annual maximum data

• 35 stations used for model fitting

• 16 used for model validation
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Results: Estimating Marginals

QQ plots of the annual max data at a validation station
verses the model’s estimated marginal.
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Results: Describing Joint Behavior
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Summary of this Study

By applying a max-stable model in the data level of a hierar-
chical model, we can account for both weather and climate
spatial effects in extreme observations.

• Needed to employ a pairwise likelihood approach to fit the
max-stable model.

• Needed to make adjustments to obtain appropriate infer-
ence.

+ Model at data level is grounded in extreme value theory.

+ Hierarchical approach allows for flexible modeling of cli-
matological effects.

+ Bayesian approach simultaneously estimates marginal and
dependence effects.

− As currently implemented, method is computationally fea-
sible only for relatively small spatial problems.

◦Many avenues for speeding up computation.
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