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Washington DC Air Pollution Measurements

NO_2 Measurements 09/09/2002

e values are high; each exceeds the 0.97 empirical quantile.

e aim: use observed values to predict/interpolate at unob-
served locations.



Outline

e Part A: Background on multivariate extremes.
(Statistical Application Point-of-View)
— What is meant by tail dependence?
— Asymptotic dependence and measuring tail dependence.
— Modeling tail dependence.
x Marginal and dependence effects.
x Multivariate regular variation and angular measure.
— Illustration of an extreme value analysis: estimating
probability of falling in a risk region.
e Part B: Approximating the conditional density via the an-
gular measure.
— A Model for the Angular Measure
— Approximating the Conditional Density when Observed
are Large.
— Washington DC pollution application.



Tail Dependence
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A central aim of multivariate extremes is trying to find an
appropriate structure to describe tail dependence.
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NOT Tail Dependence: Correlation

)= E[(X = p2)(Y — py)]
VEIX = 1) E[(Y — py)?]

model.output alx

5= 0.59 5= 0.83

Correlation measures ‘“spread from center”, does not focus
on extremes.



A Start: Asymptotic Dependence/Independence

A random vector (X,Y) with common marginals is termed
asymptotically independent if

im P(X >u|Y >u)=0.

uUu—T

Or if X has cdf F'x and Y has cdf Fy, then
Iinq P(Fx(X)>u| Fy(Y)>u) =0.

If limits is > 0, then X and Y are asymptotically dependent.

To talk about tail dependence, we need to know something
about what it means to be in the tail of each component:
e have a common marginal,

e Or account for different marginals.

Asymptotic dependence/independence is a way to begin to
talk about tail dependence, but doesn’t yield whole picture.



Tail Dependence of Examples

X IS an empirical measure of asymptotic dependence.
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Application of MV Extremes

Typical Goal: estimate the probability of landing in the risk
region.

Wave height and storm surge data (Coles, 2001).
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Data appear tail dependent, but risk estimate requires more
than just a summary measure of tail dependence.



Multivariate Regular Variation

Idea: Joint tail behavior like a power function.

So What? Because it is defined in terms of tail behavior, it
provides a framework for describing the joint tail.

Let Z = (Z1,...,Z3)" > 0 be a random vector, define C to be
the set [0,00]\ 0 and let {b,} be such that P(||Z| > b,) ~ n~1.

Then Z is regularly varying if:
Z v
nP (b_ € > — v(-),

n

where v is a positive measure, v denotes vague convergence
(Resnick, 2007), and || - || is any norm.

It can be shown that:

v(tB) =t “v(B).



Scaling Property in a Picture
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v(tB) = t~“u(B).

e What's v? A measure, but not a probability measure.
e Nice sets aren’t easily described by Cartesian coordinates.

e Scaling property suggests a (pseudo-)polar coordinate trans-
formation.



Regular VVariation and the Angular Measure

Another Definition: Let R = ||Z|| and W = ||Z||"'Z. Z is
regular varying if there exists a normalizing sequence {b,}
where P(b||Z|| > r) ~ 1/n, such that

nP(b,'R>r,W € A) 5 r*H(A)

where d is the dimension of Z, and where H is some proba-
bility measure on the unit ‘ball’ Sy = {z € R?| ||z]| = 1}.

e mMmeasure on right is a product measure.
® SO...
— LHS: “as points get big (radial component)”
— RHS: “radial and angular comps. become independent”
e angular measure H describes distribution of directions —
completely describes dependence.

e note: definition requires a common tail behavior
(often not true: wave and surge data).



Polar Decomposition in a Picture

nP (b,'R>r,W € A) 5 r *H(A)

To obtain the result, we looked at a convenient set.
Nice sets are pie-shaped regions.



Regular Variation and Point Processes

Z v v
nP (b—e ) —v(); nP (bT_LlR>’r,W€A) —r “H(A)

n

{Z;},i=1,2,... iid copies of Z,

Z €Z;/bn i PRM(”))
=1
where v(dr x dw) = r~tDdrH(dw).

If H continuously differentiable, then A is the angular density.

*R Demo*



Point Processes in a Picture
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What's v(B)? It's the expected number of (normalized)
points in set B.



Measuring Tail Dependence, Revisited

0
Z

B V([u,oo]x[u,oo]) fs, min(j—ll,j—g) H(dw)

X V([u,oo]x[O,oo]) - Js, 71 H (dw)

last equality assumes L; norm and a =1

e Several other dependence metrics out there.
e Most measure bivariate dependence.



Statistical Practice utilizing MV Regular Variation

e convert marginals to a common and convenient heavy-
tailed distribution.

e Similar in approach to copula methods, models differ.
e goal is to model the angular (or spectral) measure H.
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Transformed Data: Air Pollution Datasets

We choose o« = 1, accentuates large values, will also use L1
norm.
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Transformed Wave/Surge Data
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Largest 150 observations shown in red; approx 0.95 empirical
quantile or radius of 40.6.

Goal: To estimate risk we need to estimate the dependence
structure in the tail.



Estimating the Angular Measure
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Logistic Model:

() = 2178 - 1) (w1 —w)) (w4 1wy )

ML estimate: 3 = .680(.018).



Probability assoc. with Risk Region (1)
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v(A") = /01 /7:0 r?h(w)drdw
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Using fitted logistic model:
v(A*) = 0.00079



Probability assoc. with Risk Region (2)

Z
nP (— C A) ~ v(A)
2n
nP(Z € 2nA) ~ v(A)
A*
= nP(Z € A" ~ 1/(
2n

) = 2nv(A")

est

= P(Z € A*) =~ 2v(A*) = 0.00158.

Empirical probability:
2/2894 = 0.000691

If p = 0.00158, probability of two exceedances is

2894
( )(.00158)%(1 — .00158)**%? = 0.11



Expanded Set Estimate (Nonparametric)
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%
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A = A*/10
P(Z ¢ A*) = 44/2894 = 0.0152
= P(Z € A*) = 0.00152



Take-away Messages for Part A

e Tail dependence is different than what we usually think of
as dependence.

e In reqgular variation framework, tail dependence is com-
pletely described by the angular measure.

e Regular variation provides a mathematical framework for
describing tail behavior—leads to a polar decomposition.

e Current statistical practice often separately handles
marginal effects and tail dependence (although the two-
step approach illustrated is not always used).

e Extreme value analyses often try to assess the probability
associated with a risk region.



Outline

e Part A: Background on multivariate extremes.
— What is meant by tail dependence?
— Asymptotic dependence and measuring tail dependence.
— Modeling tail dependence.
x Marginal and dependence effects.
x Multivariate regular variation and angular measure.
— Illustration of an extreme value analysis: estimating
probability of falling in a risk region.

e Part B: Approximating the conditional density via the an-
gular measure.
— A Model for the Angular Measure
— Approximating the Conditional Density when Observed
are Large.
— Washington DC pollution application.



Washington DC Air Pollution Measurements

NO_2 Measurements 09/09/2002

e values are high; each exceeds the 0.97 empirical quantile.

e aim: use observed values to predict/interpolate at unob-
served locations.



Motivation

e Air pollution (and other variables) are of greatest interest
when values are large.
e Linear prediction methods (e.g., Kriging) are well-suited
for center of the distribution.
— use second-moment properties — based on covariances
or correlations.
— almost a Gaussian assumption.
e Utilize extreme value theory to describe tail dependence.
e Point prediction may not be very useful; instead try to
approximate the conditional density.
— What is probability amount exceeds a specified level?
— What is a probabilistic upper bound on the pollution
level?
e An atypical application of multivariate extremes.



Approximating the Conditional Density when
Observations are Large

0,717

ZHIEZE

Z1

Assume 7y, Z> are observed and large and Zp is unobserved.
Any predictor Z§ will yield a point Z* = (Z§, Z1, Z2) which can

be mapped back to S,_1 as HZZ:\h'




Approximating the Condtional Density when
Observations are Large

0,717

ZHIEZE

Z1

Given the radius is large, by knowing the values of the angular
density at —Z— and the value of the “radius” || Z*||1, we aim

12|
to approximaté the values of the joint “density’” and in turn

the conditional ‘“density’ .




Approximating the Condtional Density when
Observations are Large

0,717

ZHIEZE

Z1

We need:

1. A model for the angular measure.
2. To clarify what we mean by ‘“density’ .



Moment Conditions for the Angular Measure

In general, H can be any probability measure.

However, if we assume that Z;,2 = 1,...p have a common
marginal distribution with o« = 1. Then for the :th marginal
component,

Z;
nP<—>z) — v{x el :x; >z}

an
/ / r—2drdH (w)
S,_1 wiz
1

b
< Sp—l
Since we have assumed a common marginal, this implies that
/ widH (w) = / w;dH (w)
Sp—l Sp—l

forall y =2,...,p.



Center of Mass Condition

If « = 1, it is useful to choose the L; norm: ||z|| = z1 4. ..+ 2,.

With this norm, S,_1 is unit simplex and fsp_lwidH(w) = p L.

£2

(20, Z1,Z2)




Parametric Models for MV Extremes

Parametric models have been suggested for the exponent
measure function V(z) or angular density h(w).

V(z) =/S miax%H(dw)

1

Exponent measure function Angular density
V(2) h(w)

e LOgistic e Dirichlet

. C . (Coles and Tawn, 1991)
e Asymmetric Logistic

(Tawn, 1988) e Pairwise Beta

. L (Cooley et al., 2010)
e Negative Logistic

(Joe, 1990) e Geometric Approach
(Ballani and Schlather, 2011)



Pairwise Beta Angular Measure

h(w; o, B)

where h;;(w;a, B ;)

and K,(a) =

Advantages:

Kp(a) Z hij(w; o, B5 ),

1<i<y<p

(wi + wj)Qa_l(l — (w; + wj))o‘(p_Q)—p-l-Q

Bij— Bij—
@) ([ w O w 1
(F(Bi;))? \wi + w; w; + w; 7

2(p —3)! M(ap +2)
p(p—1)ypTQRa+ 1IN (alp —2))(ap+1)

e NO adjustment necessary to get center of mass condition

e parameters have some interpretation: « controls overall
dependence, (3;;'s control pairwise dependence

e largely specified by pairwise parameters
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Idea of a Conditional Density

Assume o« = 1. In the application, we will make a marginal
transformation so that this holds.

We need to work in Cartesian coordinates.

22

(0,Z1,Z2) (Z0%, Z1, Z2)

_—— P i -

ZHIZ

£l

A change of variables argument vyields the Cartesian point
process intensity function:

v(dr x dw) = r2drh(w)dw = v(dz) = ||z||"“TVhr(z|z|| 1)dz.



Obtaining a Conditional Density

We have to work a little to obtain a “density’.

12l )
0 .

Define the conditional survival function

VA
FZ/an(Z,’I”‘o) =P <— < [Z,OO)

an an




Toward a Limiting Density for Large Values

FZ/an(Zy TO)

_ P<£€ . oo)‘ 1z )

Qn,

nP( € [z, oo)>
nP (H > ’I“o)
v([z,00))

“v({z | |2l > ro})

rov([z,00)), because [.., r—2dr = rg?t

ro [ Izl On(z)z) Mdz
[z,00)

We wish to speak of fz,,.(z,70), a limiting joint density of
Z/ay, given ||Z||/an, > ro. We will assume that

f2 /a0 (2,70) = rol|zl| T T VR(z||2]|71); for [|z]| > ro

as n — oo. True if LFz,, (z,10) unif rol|z|| "tV R(z||2|| 7).



Example: Bivariate Logistic

P(Z1 < 21, 7> < z5) = exp[— (27" + 25 1™)] for 8 € (0,1].

h(w) = % (% . 1) (wle)—l/ﬁ—l <w1—1/5 4 wz—l/ﬁ)ﬁ—Q |

Let a, = 2n. Then,
Z
P <2— c [z, oo)> = (2nz1) ' 4 (2nzy) !
n

— ((anl)_l/ﬁ -+ (2nzz)_1/6>6 + o(n™1)

1 _ _
=4 FZ/Qn(za ro) — 57“0 (21_1 + 22_1 — (24 He + 25 1/6)6) -

Differentiating, we obtain:

1, ) e
fzjon(2,70) — 570 (ﬁ L 1) (21 VB 4 o 1/5) o101, ~1/6-1
= roll=lh(zllzl ). 1)



Approximate Conditional Density for Large Values

Assume n is fixed, but large enough such that
210 (2, 70) = 1ol|2]| TRz 2] 7).

We wish to approximate fz(z,r.), the density of Z given that
|Z]|| > r. where r, is large.

fz(z, 1) & rollz/an||”“FVR(2|| 2] a,
= rlz[|"“TPh(z|2] ),

where r, = a,ro9, and thus is large.

Thus, the conditional distribution of [Z; | Z_4 = z_4] when
|z_al| > 7«
|||~ @+Dp (i)

2]

Je Nz~ DR (20 di

fz1z_,(za| z—a) =



Approximation Example: Trivariate Logistic

The trivariate logistic is a regularly varying random vector
with distribution

P(Z1 < 21,20 < 22,723 < 23) = exp[— (27 /7 4+ 2517 4 251/5)8))]

for B € (0, 1].

The angular measure of the trivariate logistic is given by

1/1 2 /8- _ _ _ /-3
h(’w)=§<5—1) (6—1) (wiwowsz) P 1(w11/6—|—w21/6—|—w31/ﬁ) :

We wish to find [Z3 | 1 = Zl,ZQ = ZQ].

True conditional density is known.
Our approximation should improve as size of |(z1,22)| in-
creases.



Approximation Example

1.0

0.8

0.6

0.4

0.2

0.0

(0.23,0.24,0.31)

0.0

0.

2

0.6

0.8

(1.66, 2.06, 1.16) (28.37, 2357, 18.82)

PIT histogram of the largest 1000
of 5000 total simulations.



Washington DC Data

4497 daily observations between January 1, 1995 and January
31, 2010.

Divided into a training set of 2998 observations and a test
set of 1499 observations.

Ignore temporal dependence, assume stationarity of tail de-
pendence structure.

Angular measure model fit at 0.93 quantile.



Transformed Washington DC Data
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Pollution at different sites exhibits tail dependence, some
pairs stronger than others. Need a flexible angular measure
model.



Fitted Pairwise Beta Model

NO_2 Measurements 09/09/2002

alx
mcC
rt
. ts
arl

g RWNME

v P12 P13 B1.a P15 B2.3 Bo.a B2s B3.a B35 Bas
0.37 0.51 0.64 0.56 6.11 0.76 1.64 0.96 0.56 0.98 1.01
(0.03) (0.18) (0.28) (0.19) (2.59) (0.44) (1.08) (0.51) (0.20) (0.51) (0.61)

At this point, we assume to have a model which captures the
tail dependence of the measurements for these five locations.



Approximating Conditional Density at Arlington

We compare our method to kriging and indicator Kriging.
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PIT Histograms
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Evaluating Quantile Scores

How well does each method predict a high quantile?

Interpret as a conditional upper bound.

Quantile 0.99 0.95 0.90 0.75
Cvg QVS Cvg QVS Cvg QVS Cvg QVS
Angular Measure 0.97 40.97 0.93 134.77 0.88 225.68 0.70 398.97
Simple Kriging 0.92 65.80 0.83 170.04 0.81 246.26 0.65 378.27
Indicator Kriging 0.90 67.80 0.86 153.41 0.83 238.63 0.73 377.20

Sampling Error (0.01) — (0.02) — (0.03) — (0.04) —




Summary for Part B

e Our interest lies in cases when observations are large . ..

e ...SO we model only the tail of the distribution and use
angular measure to approximate conditional density.

e Approach allows us to answer any related question (e.qg.
95% quantile of predicted distribution, probability of ex-
ceeding a level of interest).

e Seems to outperform methods devised for entire distribu-
tion (and it should!)

e An interesting application of multivariate extremes.

e \Was not really spatial as we divided into training and test
sets.
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