RANDOM FIELDS AND GEOMETRY

from the book of the same name by

Robert Adler and Jonathan Taylor

IE&M, Technion, Israel, Statistics, Stanford, US.

ie.technion.ac.il/Adler.phtml www-stat.stanford.edu/~jtaylor

Mapping the Brain

 A result 70 years in the making: Under the model

$$f(t): M \rightarrow \mathbb{R}$$
 is smooth, Gaussian $\mathbb{E}\{f(t)\} \equiv 0.$ $\mathbb{E}\{f^2(t)\} \equiv \sigma^2 = 1.$ $C(s,t) \stackrel{\triangle}{=} \mathbb{E}\{f(s)f(t)\}$ is known.

$$\mathbb{P}\left\{\sup_{t\in M} f_t > u\right\}$$

$$\approx e^{-u^2/2} \sum_{j=0}^n C_j u^{\alpha-j} + o\left(e^{-u^2(1+\eta)/2}\right)$$

• THEOREM: For piecewise C^2 Whitney stratified manifolds M embedded in C^3 ambient manifolds \widetilde{M} , and with convex support cones

$$\lim_{u \to \infty} \inf -u^{-2} \log \left| \mathbb{P} - \sum_{j=0}^{\dim M} \mathcal{L}_{j}(M) \rho_{j}(u) \right| \\
\geq \frac{1}{2} + \frac{1}{2\sigma_{c}^{2}(f)}.$$

The main Gaussian result

Excursion sets

$$A_u(f, M) \stackrel{\triangle}{=} \{t \in M : f(t) \ge u\}$$

The result:

$$\sum_{j=0}^{\dim M} \mathcal{L}_j(M)\rho_j(u) = \mathbb{E} \{\mathcal{L}_0(A_u(f,M))\}$$

where

$$\rho_j(u) = (2\pi)^{-(j+1)/2} H_{j-1}(u) e^{-\frac{u^2}{2}}$$

ullet H_j is the j-th Hermite polynomial

$$H_n(x) = n! \sum_{j=0}^{\lfloor n/2 \rfloor} \frac{(-1)^j x^{n-2j}}{j! (n-2j)! 2^j}$$

$$H_{-1}(x) = e^{x^2/2} \int_x^{\infty} e^{-x^2/2} dx$$

• The $\mathcal{L}_j(M)$ are the Lipschitz-Killing curvatures of M

Non-Gaussian processes

- $f^1(t), \ldots, f^k(t)$ i.i.d. Gaussian satisfying all the assumptions in force until now
- $F: \mathbb{R}^k \to \mathbb{R}$ twice differentiable defines $f(t) \triangleq F\left(f^1(t), \dots, f^k(t)\right)$
- Examples of F:

$$\sum_{1}^{k} x_{i}^{2}, \quad \frac{x_{1}\sqrt{k-1}}{(\sum_{2}^{k} x_{i}^{2})^{1/2}}, \quad \frac{m\sum_{1}^{n} x_{i}^{2}}{n\sum_{n+1}^{n+m} x_{i}^{2}}$$

The result:

$$\mathbb{E}\left\{\mathcal{L}_{j}(A_{u}(f, M))\right\}$$

$$= \sum_{l=0}^{\dim M - j} \begin{bmatrix} j+l \\ l \end{bmatrix} (2\pi)^{-j/2} \mathcal{L}_{j+l}(M) \mathcal{M}_{l}^{(k)} \left(D_{F, u}\right)$$

where

$$D_{F,u} = F^{-1}([u,\infty))$$

We cannot avoid geometry

• The result:

$$\begin{split} & \lim_{l=0}^{\dim M-j} \left[j+l \right] (2\pi)^{-j/2} \mathcal{L}_{j+l}(M) \, \mathcal{M}_l^{(k)} \left(D_{F,u}\right) \\ & D_{F,u} \, = \, F^{-1}([u,\infty)) \\ & \text{Lipschitz-Killing curvatures } \mathcal{L}_j, \\ & \text{Whitney stratified manifolds } M, \\ & \text{Gaussian Minkowski functionals } \mathcal{M}_j^{(k)} \end{split}$$

In dimension 1, with f stationary:

$$M = [0, T]$$

$$\mathcal{L}_{0}(A_{u}) = \mathbb{1}_{f(0)>u} + \{t \in [0, T] : f(t) = u, f'(t) > 0\}$$

$$\mathcal{L}_{1}(A_{u}) = \lambda_{1} \{t \in [0, T] : f(t) \geq u\}$$

$$\mathcal{L}_{0}(M) = 1$$

$$\mathcal{L}_{1}(M) = T$$

But the $\mathcal{M}_{l}^{(k)}$ remain!

Lipschitz-Killing curvatures: I

• The 'tube' in $\mathbb{R}^{N'}$ of radius ρ around an N dimensional M, $(N \leq N')$ is

Tube
$$(M, \rho) \triangleq \{t \in M : d(t, M) \leq \rho\}$$

• For nice (e.g. convex) M, the volume of Tube (M,ρ) is, for $\rho < r'_c(M)$, given by Weyl's tube formula,

$$\lambda_{N'}(\mathsf{Tube}(M,\rho)) = \sum_{j=0}^{N} \omega_{N'-j} \rho^{N'-j} \mathcal{L}_{j}(M)$$

- ullet The \mathcal{L}_j can be defined via the tube formula
- ullet The \mathcal{L}_j are intrinsic

Two examples:

• The solid ball $B^N(T)$:

$$\lambda_{N} \left(\text{Tube} \left(B^{N}(T), \rho \right) \right)$$

$$= (T + \rho)^{N} \omega_{N}$$

$$= \sum_{j=0}^{N} {N \choose j} T^{j} \rho^{N-j} \omega_{N}$$

$$= \sum_{j=0}^{N} \omega_{N-j} \rho^{N-j} {N \choose j} T^{j} \frac{\omega_{N}}{\omega_{N-j}}.$$

so that

$$\mathcal{L}_{j}\left(B^{N}(T)\right) = {N \choose j} T^{j} \frac{\omega_{N}}{\omega_{N-j}}.$$

• The sphere $S^{N-1}(T) \equiv S_T(\mathbb{R}^N)$:

Tube
$$\left(S^{N-1}(T),\rho\right)=B^N(T+\rho)-B^N(T-\rho)$$
 yields

$$\mathcal{L}_{j}\left(S^{N-1}(T)\right) = 2\binom{N}{j} \frac{\omega_{N}}{\omega_{N-j}} T^{j}$$

if N-1-j is even, and 0 otherwise.

ullet Note the scaling in T!

Fundamental nature of \mathcal{L}_j

Let ψ be a real valued function on nice sets in \mathbb{R}^N which is

- Invariant under rigid motions.
- Additive, in that

$$\psi(M_1 \cup M_2) = \psi(M_1) + \psi(M_2) - \psi(M_1 \cap M_2)$$

Monotone, in that

$$M_1 \subseteq M_2 \Rightarrow \psi(M_1) \leq \psi(M_2)$$
.

Then

$$\psi(M) = \sum_{j=0}^{N} c_j \mathcal{L}_j(M),$$

where c_0, \ldots, c_N are non-negative (ψ -dependent) constants.

\mathcal{L}_0 : The Euler characteristic

- ullet $M\subset\mathbb{R}^N$ is nice and "triangulisable"
- ullet $lpha_k$ is the number of k-dimensional simplices in the triangulation
- $\circ \alpha_0 = \text{number of vertices}$
- \circ α_1 = number of lines .
- \circ α_k = number of "full" simplices
- $\mathcal{L}_0(M) \equiv$ Euler characteristic of M is

$$\varphi(A) = \alpha_0 - \alpha_1 + \dots + (-1)^d \alpha_N$$

Whitney stratified manifolds

WSM's can be written as

$$M = \bigcup_{k=0}^{\dim M} \partial_k M$$

with rules about glueing strata.

 Piecewise smooth manifolds are WSM's which have convex support cones

Riemannian manifolds

ullet Riemannian metrics. For each $t\in T$,

$$g_t: T_tM \times T_tM \rightarrow \mathbb{R}$$

is linear, positive definite, symmetric.

- $g_t(X_t, X_t) = 0 \iff X_t = 0$
- \bullet (M,g) is called a Riemannian manifold
- g is NOT a metric, but τ_q is:

$$\tau_g(s,t) = \inf_{c \in D^1([0,1];M)_{(s,t)}} L(c)$$

$$L(c) = \int_{[0,1]} \sqrt{g_t(c',c')(t)} dt$$

and $D^1([0,1];M)_{(s,t)}$ contains all piecewise C^1 maps $c:[0,1]\to M$ with $c(0)=s,\ c(1)=t.$

The canonical Gaussian metric:

$$g_t(X_t, Y_t) \triangleq \mathbb{E} \{X_t f, Y_t f(t)\}$$

Riemannian curvature

Curvature operator:

$$R(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}.$$

Curvature tensor:,

$$R(X, Y, Z, W) = g(R(X, Y)Z, W)$$

ullet Second fundamental form S

$$S(X,Y) \stackrel{\Delta}{=} \widehat{\nabla}_X Y - \nabla_X Y = P_{TM}^{\perp} (\widehat{\nabla}_X Y)$$

• Scalar second fundamental form S_{ν} If ν is a unit normal vector field on M, The scalar second fundamental form of M in \widehat{M} for ν is

$$S_{\nu}(X,Y) \stackrel{\triangle}{=} \widehat{g}(S(X,Y),\nu)$$

• Shape operator S: Defined by

$$\widehat{g}(\mathcal{S}_{\nu}(X),Y) = S_{\nu}(X,Y)$$

for $Y \in T(M)$, maps $T(M) \to T(M)$

Lipschitz-Killing curvatures II

1: The general case of LK measures:

$$\mathcal{L}_{i}(M, A)$$

$$= \sum_{j=i}^{N} (2\pi)^{-(j-i)/2} \sum_{m=0}^{\left\lfloor \frac{j-i}{2} \right\rfloor} \frac{C(N-j, j-i-2m)}{(-1)^{m} m! \ (j-i-2m)!} \times \int_{\partial_{j} M \cap A} \int_{S(T_{t} \partial_{j} M^{\perp})} \operatorname{Tr}^{T_{t} \partial_{j} M} \left(\widehat{R}^{m} \widehat{S}_{\nu_{N-j}}^{j-i-2m} \right) \times \mathbb{1}_{N_{t} M} (-\nu_{N-j}) \ \mathcal{H}_{N-j-1} (d\nu_{N-j}) \mathcal{H}_{j}(dt)$$

2: M embedded in \mathbb{R}^l with Euclidean metric:

$$\mathcal{L}_{i}(M, A)$$

$$= \sum_{j=i}^{N} (2\pi)^{-(j-i)/2} C(l-j, j-i)$$

$$\times \int_{\partial_{j} M \cap A} \int_{S(\mathbb{R}^{l-j})} \frac{1}{(j-i)!} \operatorname{Tr}^{T_{t} \partial_{j} M} (S_{\eta}^{j-i})$$

$$\times \mathbb{1}_{\widehat{N_{t} M}} (-\eta) \mathcal{H}_{l-j-1} (d\eta) \mathcal{H}_{j} (dt)$$

3: Lipschitz-Killing curvatures:

$$\mathcal{L}_j(M) = \mathcal{L}_j(M, M).$$

Tube formulae

ullet On \mathbb{R}^l :

 $M \subset \mathbb{R}^l$ a piecewise smooth manifold. For $\rho < \rho_c(M, \mathbb{R}^l)$

$$\mathcal{H}_l\left(\mathsf{Tube}(M, \rho)\right) = \sum_{i=0}^N \rho^{l-i} \, \omega_{l-i} \, \mathcal{L}_i(M)$$

• On the sphere $S_{\lambda}(\mathbb{R}^l)$:

Similar: But the constants are different and we need a one-parameter family \mathcal{L}^{λ} of Lipschitz-Killing curvatures.

On general manifolds:

Assuming piecewise smooth basic form remains, but constants change.

• General representation:

$$\psi(M) = \sum_{j=0}^{N} c_j \mathcal{L}_j(M),$$

for additive, monotone, 'invariant' ψ

A Gaussian tube formula

- Gauss measure γ_k is the (product) measure induced on \mathbb{R}^k by k i.i.d. standard Gaussian random variables.
- Tube formula for WSM's in \mathbb{R}^k :

$$\gamma_k(\mathsf{Tube}(M,\rho)) = \gamma_k(M) + \sum_{j=1}^{\infty} \frac{\rho^j}{j!} \mathcal{M}_j^{(k)}(M)$$

• Example 1: $M = [u, \infty) \subset \mathbb{R}^1$

$$\mathcal{M}_{j}^{(1)}([u,\infty)) = H_{j-1}(u) \frac{e^{-u^{2}/2}}{\sqrt{2\pi}}.$$

where

$$H_n(x) = n! \sum_{j=0}^{\lfloor n/2 \rfloor} \frac{(-1)^j x^{n-2j}}{j! (n-2j)! 2^j}, \quad n \ge 0$$

$$H_{-1}(x) = \sqrt{2\pi} \Psi(x) e^{x^2/2},$$

• Example 2: $M = \mathbb{R}^k \setminus S_u(\mathbb{R}^k)$ hinges on calculations involving the χ_k^2 distribution, etc.

$$\overline{\sigma_c^2(f)}$$

Recall the Gaussian excursion problem:

$$\lim_{u \to \infty} \inf -u^{-2} \log \left| \mathbb{P} \left\{ \sup_{t \in M} f_t > u \right\} - \sum_{j=0}^{\dim M} \mathcal{L}_j(M) \rho_j(u) \right|$$

$$= \liminf_{u \to \infty} -u^{-2} \log \left| \mathbb{P} \left\{ \sup_{t \in M} f_t > u \right\} \right.$$
$$\left. - \mathbb{E} \left\{ \mathcal{L}_0 \left(A_u(M, f) \right) \right\} \right|$$

$$\geq \frac{1}{2} + \frac{1}{2\sigma_c^2(f)}.$$

$$\sigma_c^2(f)$$
: cont

• The critical radius, r_c , of a set M is the radius of the largest ball that can be rolled around ∂M so that, at each point, it touches ∂M only once.

• If $\varphi(M)$ has no boundary, then

$$\sigma_c^2(f) = (\cot(r_c))^2$$

- If $r_c = \pi/2$, then $\sigma_c^2 = 0$ and the error in the approximation is zero!
- If M is convex, f is isotropic (\Rightarrow no finite expansion) and monotone then

$$\sigma_c^2(f) = \operatorname{Var}\left(f''(t)\middle|f(t)\right)$$

$\sigma_c^2(f)$: In general

• Reproducing kernel Hilbert space \mathcal{H}_f is the space of functions on M satisfying

$$\langle f(s), C(t,s) \rangle_{\mathcal{H}} = f(t),$$

where the inner product is determined by the covariance function ${\cal C}$ via

$$\langle C(s,\cdot), C(t,\cdot) \rangle_{\mathcal{H}} = C(s,t),$$

• An orthonormal basis $\{\varphi_n\}$ for \mathcal{H} will always give a orthonormal expansion for f. i.e.

$$f_t = \sum_{n=1}^{\infty} \xi_n \varphi_n(t)$$

• THEOREM: In general, $\sigma_c^2(f)$ can be defined in terms of the critical radius of $S(\mathcal{H})$, the unit ball of the RKHS.

Orthogonal expansions

• Theorem: If $\{\varphi_n\}_{n\geq 1}$ is an orthonormal basis for the reproducing kernel Hilbert space of C then f has the L^2 -representation

$$f_t = \sum_{n=1}^{\infty} \xi_n \varphi_n(t)$$

where the $\{\xi_n\}_{n\geq 1}$ are i.i.d. N(0,1).

- Convergence: Sum converges uniformly $\iff f$ is continuous (w.p. 1).
- A crucial identity:

$$1 = C(t,t) = \operatorname{Var} f_t = \sum_{1}^{\infty} \varphi_j^2(t)$$

An observation:

$$X_t f_t = \sum_{n=1}^{\infty} \xi_n X_t \varphi_n(t)$$

where $X_t \in T_tM$, assuming that M is a differentiable manifold and $f_t \in C^1(M)$.

The rôle of the sphere

• An astounding consequence: If C is smooth enough every Gaussian process with expansion of order K, $\dim(M) \leq K < \infty$ can be rewritten on a subset of S^{K-1} via

$$t \equiv (\varphi_1(t),\ldots,\varphi_K(t))$$

$$f(t) \equiv f'(\varphi_1(t),\ldots,\varphi_K(t))$$
 and
$$f'(u) \triangleq \langle u,\xi \rangle$$

- Change of parameter space: From M to $\varphi(M) \in S^{K-1}$
- Covariance structure of f':

$$\mathbb{E}\left\{f'(u)f'(v)\right\} = \mathbb{E}\left\{\langle u, \xi \rangle \langle v, \xi \rangle\right\}$$
$$= \mathbb{E}\left\{\sum_{i} u_{i} \xi_{i} \sum_{j} v_{j} \xi_{j}\right\}$$
$$= \langle u, v \rangle$$

 Consequence: If the expansion is finite, one case covers all.

Suprema and tubes

Rewriting the canonical process:

$$f'_{u} \sim \sum_{n=1}^{K} \xi_{n} u_{n}$$

$$= \left(\sum_{n=1}^{K} \xi_{n}^{2}\right)^{1/2} \sum_{n=1}^{K} \frac{\xi_{n}}{\left(\sum_{n=1}^{K} \xi_{n}^{2}\right)^{1/2}} u_{n}$$

$$= \sqrt{\chi_{K}^{2}} \cdot \sum_{n=1}^{K} U_{n} u_{n}$$

for uniform U_n , independent of χ_K^2 .

Consequently:

$$\mathbb{P}\left\{\sup_{u\in M} f'_u \geq \lambda\right\}$$

$$= \int_0^\infty \mathbb{P}\left\{\sup_{u\in M} f'(u) > \lambda \middle| \chi_K^2 = x\right\} \phi_{\xi_K^2}(x) dx$$

$$= \int_0^\infty \mathbb{P}\left\{\sup_{u\in M} \langle U, u \rangle > \lambda \middle/ \sqrt{x}\right\} \phi_{\xi_K^2}(x) dx$$

ullet BUT, $\mathbb{P}\left\{\sup_{u\in M}\langle U,u\rangle>y\right\}$ is a tube volume!!

Back to non-canonical f

- For the canonical process on the sphere we now know that excursion probabilities are related to tube volumes
- By Weyl's tube formula these are related to Lipschitz-Killing curvatures
- The supremum of a non-canonical process over M is the same as the canonical process over $\varphi(M)$.
- To get an answer in terms of M, we need to carry back the Riemannian (Euclidean) structure of $\varphi(M)$ (i.e. of S^{K-1}) to M and so need smooth φ .
- Computation: The induced Riemannian metric that f' induces on M under the map φ^{-1} is given by

$$g(X_t, Y_t) = \sum_n X_t \varphi_n(t) \cdot Y_t \varphi_n(t)$$
$$= \mathbb{E} \{X_t f_t \cdot Y_t f_t\}$$

ie.technion.ac.il/Adler.phtml

.

www-stat.stanford.edu/~jtaylor

•

www.math.mcgill.ca/~keith