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Mapping the Brain




® A result 70 years in the making: Under

the model
f(t) : M — R is smooth, Gaussian
E{f(®)} = 0.

E{f?()} = o° = 1.
C(s,t) E{f(s)f(t)} is known.
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® THEOREM: For piecewise C2 Whitney
stratified manifolds M embedded in C3
ambient manifolds M, and with convex
support cones
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The main Gaussian result

® EXxcursion sets

Au(F, M) & {te M:f@) > u}

® T he result:
dimM

S Li(M)pi(w) = E{Lo(Au(f, M))}

j=0

® where

. w2
pj(w) = (2m)"UTD2H; 1 (w)e™ 2

® H; is the j5-th Hermite polynomial

[n/2] (_1)jxn—2j
— I
Hn(m) n: j;o j! (n — Qj)! >J

H_1(x) = emz/Q/OOe_xQ/Qdac

T

® The L;(M) are the Lipschitz-Killing
curvatures of M



Non-Gaussian processes

® rl1(¢),..., f*(t) i.i.d. Gaussian satisfying
all the assumptions in force until now

® I : R* — R twice differentiable defines
A
@ £ F(FA®,... 5 ®)

® Examples of F':

zk: 5 r1vk—1 mZ?w%
Ly, )
RN O3 £ D isuis -

® T he result:

E{£;(Au(f, M))}

:dimg_j [j+l

> ]<2w>—j/2cj+z<M>M§“ (D)

where

Dy = F~([u,00))
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We cannot avoid geometry

® [ he result:

dim M—j 4 . .
> [J ) ]<2w>—3/2£j+z<M> M (Dp,)
[=0

Dpy = F7([u,00))
Lipschitz-Killing curvatures L;,
Whitney stratified manifolds M,
Gaussian Minkowski functionals Mgk)

® In dimension 1, with f stationary:

M [0, T]
£O(Au) — jlf(o)>u +
o {t c[0,T]: f(t) =u, f'(t) > o}

L1(Ay) = M {te[0,T]: f(t) > u}
Lo(M) = 1
Ly(M) = T

But the /\/ll(k) remain!



Lipschitz-Killing curvatures: 1

® The ‘tube’ in RY of radius p around an
N dimensional M, (N < N') is

Tube(M,p) 2 {te M:d(t M) < p)

® For nice (e.g. convex) M, the volume
of Tube(M,p) is, for p < rL.(M), given
by Weyl’'s tube formula,

N
)
Ayt (Tube(M,p)) = > wyr_jp" IL;(M)
7=0
® The £j can be defined via the tube
formula

® The £j are intrinsic



Two examples:

® The solid ball BN(T):

AN (Tube (BN(T), p))
= (T+p)wy

so that

(¥ = (N
—J

® The sphere SN=1(T) = Sp(RN):
Tube (SY~U(T), p) = BY(T + p) - BY(T - p)
yields

L, (SN—l(T)) — Q(N) YN

7 WN—;

if N—1—7 is even, and O otherwise.

® Note the scaling in T



Fundamental nature of Lj

Let ¢» be a real valued function on nice sets
in RN which is

e Invariant under rigid motions.

e Additive, in that

Y (M1 U M) =1 (My) + ¢ (Mp) — vy (M1 N Mp)

e Monotone, in that

My C My = o (M1) <y (Mo).

Then
N
Y (M) = ) cjLi(M),
j=0
where cq, ..., cy are non-negative (¢-dependent)

constants.



Lo: The Euler characteristic

® M c RY is nice and “triangulisable”

® o, is the number of k-dimensional sim-
plices in the triangulation

o ag = number of vertices

o a1 = number of lines

o ap = number of “full’ simplices

® Ly(M) = Euler characteristic of M is

o(A) = ag—a1+ -+ (=1)%y
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Whitnhey stratified manifolds

® \WSM's can be written as

dim M
M = |J oM
k=0
with rules about glueing strata.

l @
® Piecewise smooth manifolds are WSM's
which have convex support cones
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Riemannian manifolds

® Riemannian metrics. For each t € T,
gt . TitM xTyM — R

IS linear, positive definite, symmetric.
® (X, Xt) =0 <— X;=0

® (M,g) is called a Riemannian manifold

® g is NOT a metric, but 74 is:

1) = inf L
TQ(S ) CGDl([OI,r?I_];M)(S,t) (C)

L(c)

Jio oy Vor(e D@

and D'([0, 1]; M), ;) contains all piece-
wise C1 maps ¢ : [0,1] — M with
c(0) = s, ¢(1) =t.

® T he canonical Gaussian metric:

gt(Xt, Yz) = E{Xif, Yif(t)}
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Riemannian curvature

Curvature operator:

Curvature tensor:,
R(X,Y,Z,W) = g(R(X,Y)Z, W)

Second fundamental form S
S(X,Y) & VY - VxY = Py (VxY)

Scalar second fundamental form S, If v
IS a unit normal vector field on M, The
scalar second fundamental form of M in
M for v is

A

Su(X,Y) g (S(X,Y),v)

Shape operator §: Defined by

§(SV(X)7Y) — SI/(X7 Y)
forY e T(M), maps T(M) — T(M)
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Lipschitz-Killing curvatures II

1: The general case of LK measures:

L;(M,A)
N 1] L
_ _(j—i)/2 C(N —j,j—1i—2m)
J;.(QW) 2 1yl (== 2m)]
T T:0;M ( pm Aj—i—.Qm
8 /ajMﬂA /S(Ttale) A (R SVN_] )

XUy, m(=vN—j) HN—j—1(dvn_;)H;(dt)

2: M embedded in R! with Euclidean metric:
L;(M,A)

N
= > (2m) U0~ j,j - )

j=i
1 T;0;M [ oj—i
— Tt (S
o Jsny G NS
Xﬂm(_n)Hl—j—l(dn)Hj(dt)

3: Lipschitz-Killing curvatures:
L;(M) = L;(M,M).
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Tube formulae

® On R!:
M C R! a piecewise smooth manifold.
For p < pe(M,R})

N .
Hy (Tube(M, p)) = Y p'tw_; £;(M)
1=0

® On the sphere Sy (RY):
Similar: But the constants are different
and we need a one-parameter family LA
of Lipschitz-Killing curvatures.

® On general manifolds:
Assuming piecewise smooth basic form
remains, but constants change.

® General representation:
N

Y (M) = ) ciL;(M),

J=0
for additive, monotone, ‘invariant’ ¢
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A Gaussian tube formula

® Gauss measure v, is the (product) mea-
sure induced on RF by k i.i.d. standard
Gaussian random variables.

® Tube formula for WSM's in RX:

w(Tube(M.p) = (D) + 3 ZMP )
j=17"

® Example 1: M = [u, ) C R1

MG ([, 00)) = Hja(w)=

where

[n/2] (_1)jxn—2j

Hp(xz) = nl! - n >
(@) j;o jln—212 7

H ((z) = V2nw(z)e® /2

® Example 2: M = RF\ Su(R*) hinges
on calculations involving the x2 distri-

bution, etc.
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o2(f)

® Recall the Gaussian excursion problem:

liminf —u =2 log |IP {sup fr > u}

dim M
S £j<M>pj<u>|

7=0

= |liminf —u 2 log |IP’{sup fr > u}
U0 teM

“E{Lo (Au(M, f))}|

= 27T 202(f)
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o2(f): cont

® T he critical radius, r., of a set M is
the radius of the largest ball that can
be rolled around OM so that, at each
point, it touches OM only once.

® If (M) has no boundary, then

a2(f) = (cot(re))?

® If r. = 7/2, then ¢2 = 0 and the error
in the approximation is zero!

® If M is convex, f is isotropic (= no fi-
nite expansion) and monotone then

o2(f) = Var(f'(®)|f®))
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o2(f): In general

® Reproducing kernel Hilbert space Hf IS
the space of functions on M satisfying

(f(s), C(t,8))n = F(b),

where the inner product is determined
by the covariance function C via

<C(87')7 C(t7)>H — C<87t>7

® An orthonormal basis {pn} for H will
always give a orthonormal expansion for

f. i.e.
Jt = Z Enton (1)
n=1

® THEOREM: In general, ¢2(f) can be
defined in terms of the critical radius of
S(H), the unit ball of the RKHS.
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Orthogonal expansions

® Theorem: If {¢Yn},>1 is an orthonor-
mal basis for the reproducing kernel
Hilbert space of C then f has the LZ2-
representation

Jt = Z Enn(t)

n=1

where the {&n},>1 are i.i.d. N(O,1).

® Convergence: Sum converges uniformly
< f is continuous (w.p. 1).

® A crucial identity:

1= Oty = Varf = Y @2(0)
1

® An observation:

Xtft = Z En Xepon (1)

n=1
where X; € 1M, assuming that M
is a differentiable manifold and f; €

cl(m).
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The role of the sphere

® An astounding consequence: If C is
smooth enough every Gaussian process
with expansion of order K, dim(M) <
K < oo can be rewritten on a subset of
SE-1 yvia

t = (p1(1),..., o))
F@) = fe1(t),...,er(t))
and
flw) & (u6)

® Change of parameter space: From M
to p(M) € sE-1

® Covariance structure of f’:

E{f'(w)f'(v)} = E{(u,&(v,)}
= E{Zuzfz Z’Ujﬁj}
= <u,fvz> j
® Consequence: If the expansion is finite,

one case covers all.
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Suprema and tubes

® Rewriting the canonical process:

K
/
fu ~ E fnun
n=1

K 1/2 g ¢
57%, " Un
(nzz:l ) nzz:l (ZTIL(:]. 5%) 1/2

K
\/ X%{' Z Un un
n=1

for uniform Uy, independent of x2..

® Consequently:

P{sup f{bz/\}

ueM

— /OOOIP{sup f'(uw) > A‘x% = SL’} cbg%{(x) dx

ueM

o
— / IP’{SUD(U,u) >)\/\/5} g2 () dx
0 ueM K
® BUT, P{sup,cym(U,u) >y} is a tube
volumel!
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Back to non-canonical f

For the canonical process on the sphere
we now know that excursion probabili-
ties are related to tube volumes

By Weyl's tube formula these are re-
lated to Lipschitz-Killing curvatures

The supremum of a non-canonical pro-
cess over M is the same as the canonical
process over o(M).

To get an answer in terms of M, we
need to carry back the Riemannian
(Euclidean) structure of (M) (i.e. of
SE=1) to M and so need smooth .

Computation: The induced Riemannian
metric that f’ induces on M under the
map ¢~ 1 is given by

g(X¢,Yr) = ZXtSOn(t) - Yion (1)

= E{Xift Yife}
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