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Mapping the Brain

2



• A result 70 years in the making: Under

the model

f(t) : M → R is smooth, Gaussian

E{f(t)} ≡ 0.

E{f2(t)} ≡ σ2 = 1.

C(s, t)
∆
= E{f(s)f(t)} is known.

P

{
sup
t∈M

ft > u

}

≈ e−u
2/2

n∑

j=0

Cju
α−j + o

(
e−u

2(1+η)/2
)

• THEOREM: For piecewise C2 Whitney

stratified manifolds M embedded in C3

ambient manifolds M̃, and with convex

support cones

lim inf
u→∞ −u−2 log

∣∣∣∣∣∣
P −

dimM∑

j=0

Lj(M)ρj(u)

∣∣∣∣∣∣

≥ 1

2
+

1

2σ2
c (f)

.
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The main Gaussian result

• Excursion sets

Au(f,M)
∆
= {t ∈M : f(t) ≥ u}

• The result:

dimM∑

j=0

Lj(M)ρj(u) = E {L0(Au(f,M))}

• where

ρj(u) = (2π)−(j+1)/2Hj−1(u)e
−u2

2

• Hj is the j-th Hermite polynomial

Hn(x) = n!
bn/2c∑

j=0

(−1)jxn−2j

j! (n− 2j)! 2j

H−1(x) = ex
2/2

∫ ∞

x
e−x

2/2 dx

• The Lj(M) are the Lipschitz-Killing

curvatures of M
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Non-Gaussian processes

• f1(t), . . . , fk(t) i.i.d. Gaussian satisfying

all the assumptions in force until now

• F : R
k → R twice differentiable defines

f(t)
∆
= F

(
f1(t), . . . , fk(t)

)

• Examples of F :

k∑

1

x2i ,
x1

√
k − 1

(
∑k

2 x
2
i )

1/2
,

m
∑n

1 x
2
i

n
∑n+m
n+1 x2i

• The result:

E

{
Lj(Au(f,M))

}

=
dimM−j∑

l=0

[
j + l
l

]
(2π)−j/2Lj+l(M)M(k)

l

(
DF,u

)

where

DF,u = F−1([u,∞))
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We cannot avoid geometry

• The result:

dimM−j∑

l=0

[
j + l
l

]
(2π)−j/2Lj+l(M)M(k)

l

(
DF,u

)

DF,u = F−1([u,∞))

Lipschitz-Killing curvatures Lj,
Whitney stratified manifolds M ,

Gaussian Minkowski functionals M(k)
j

• In dimension 1, with f stationary:

M = [0, T ]

L0(Au) =
�

f(0)>u +

#
{
t ∈ [0, T ] : f(t) = u, f ′(t) > 0

}

L1(Au) = λ1 {t ∈ [0, T ] : f(t) ≥ u}
L0(M) = 1

L1(M) = T

But the M(k)
l remain!
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Lipschitz-Killing curvatures: I

• The ‘tube’ in R
N ′

of radius ρ around an

N dimensional M , (N ≤ N ′) is

Tube(M,ρ)
∆
= {t ∈M : d(t,M) ≤ ρ}

• For nice (e.g. convex) M , the volume

of Tube(M,ρ) is, for ρ < r′c(M), given

by Weyl’s tube formula,

λN ′ (Tube(M,ρ)) =
N∑

j=0

ωN ′−jρ
N ′−jLj(M)

• The Lj can be defined via the tube

formula

• The Lj are intrinsic
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Two examples:

• The solid ball BN(T ):

λN
(
Tube

(
BN(T ), ρ

))

= (T + ρ)NωN

=
N∑

j=0

(N
j

)
T jρN−jωN

=
N∑

j=0

ωN−jρ
N−j(N

j

)
T j

ωN
ωN−j

.

so that

Lj
(
BN(T )

)
=

(N
j

)
T j

ωN
ωN−j

.

• The sphere SN−1(T ) ≡ ST (RN):

Tube
(
SN−1(T ), ρ

)
= BN(T + ρ) −BN(T − ρ)

yields

Lj
(
SN−1(T )

)
= 2

(N
j

) ωN
ωN−j

T j

if N − 1 − j is even, and 0 otherwise.

• Note the scaling in T !
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Fundamental nature of Lj

Let ψ be a real valued function on nice sets

in R
N which is

• Invariant under rigid motions.

• Additive, in that

ψ (M1 ∪M2) = ψ (M1) + ψ (M2) − ψ (M1 ∩M2)

• Monotone, in that

M1 ⊆M2 ⇒ ψ (M1) ≤ ψ (M2) .

Then

ψ (M) =
N∑

j=0

cjLj(M),

where c0, . . . , cN are non-negative (ψ-dependent)

constants.
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L0: The Euler characteristic

• M ⊂ RN is nice and “triangulisable”

• αk is the number of k-dimensional sim-

plices in the triangulation

◦ α0 = number of vertices

◦ α1 = number of lines

.

............................

◦ αk = number of “full” simplices

• L0(M) ≡ Euler characteristic of M is

ϕ(A) = α0 − α1 + · · · + (−1)dαN
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Whitney stratified manifolds

• WSM’s can be written as

M =
dimM⋃

k=0

∂kM

with rules about glueing strata.

• Piecewise smooth manifolds are WSM’s

which have convex support cones
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Riemannian manifolds

• Riemannian metrics. For each t ∈ T ,

gt : TtM × TtM → R

is linear, positive definite, symmetric.

• gt(Xt, Xt) = 0 ⇐⇒ Xt = 0

• (M, g) is called a Riemannian manifold

• g is NOT a metric, but τg is:

τg(s, t) = inf
c∈D1([0,1];M)(s,t)

L(c)

L(c) =

∫

[0,1]

√
gt(c

′, c′)(t) dt

and D1([0,1];M)(s,t) contains all piece-

wise C1 maps c : [0,1] → M with

c(0) = s, c(1) = t.

• The canonical Gaussian metric:

gt(Xt, Yt)
∆
= E {Xtf, Ytf(t)}
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Riemannian curvature

• Curvature operator:

R(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ].

• Curvature tensor:,

R(X, Y,Z,W ) = g(R(X, Y )Z,W )

• Second fundamental form S

S(X, Y )
∆
= ∇̂XY −∇XY = P⊥

TM

(
∇̂XY

)

• Scalar second fundamental form Sν If ν

is a unit normal vector field on M , The

scalar second fundamental form of M in

M̂ for ν is

Sν(X, Y )
∆
= ĝ (S(X, Y ), ν)

• Shape operator S: Defined by

ĝ(Sν(X), Y ) = Sν(X, Y )

for Y ∈ T (M), maps T (M) → T (M)

.
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Lipschitz-Killing curvatures II

1: The general case of LK measures:

Li(M,A)

=
N∑

j=i

(2π)−(j−i)/2
bj−i2 c∑

m=0

C(N − j, j − i− 2m)

(−1)mm! (j − i− 2m)!

×
∫

∂jM∩A

∫

S(Tt∂jM⊥)
TrTt∂jM

(
R̂mŜj−i−2m

νN−j

)

× � NtM(−νN−j) HN−j−1(dνN−j)Hj(dt)

2: M embedded in R
l with Euclidean metric:

Li(M,A)

=
N∑

j=i

(2π)−(j−i)/2C(l− j, j − i)

×
∫

∂jM∩A

∫

S(Rl−j)

1

(j − i)!
TrTt∂jM(Sj−iη )

× �
N̂tM

(−η)Hl−j−1(dη)Hj(dt)

3: Lipschitz-Killing curvatures:

Lj(M) = Lj(M,M).
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Tube formulae

• On R
l:

M ⊂ Rl a piecewise smooth manifold.

For ρ < ρc(M,Rl)

Hl (Tube(M,ρ)) =
N∑

i=0

ρl−iωl−iLi(M)

• On the sphere Sλ(R
l):

Similar: But the constants are different

and we need a one-parameter family Lλ
of Lipschitz-Killing curvatures.

• On general manifolds:

Assuming piecewise smooth basic form

remains, but constants change.

• General representation:

ψ (M) =
N∑

j=0

cjLj(M),

for additive, monotone, ‘invariant’ ψ
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A Gaussian tube formula

• Gauss measure γk is the (product) mea-

sure induced on Rk by k i.i.d. standard

Gaussian random variables.

• Tube formula for WSM’s in Rk:

γk(Tube(M,ρ)) = γk(M) +
∞∑

j=1

ρj

j!
M(k)

j (M)

• Example 1: M = [u,∞) ⊂ R
1

M(1)
j ([u,∞)) = Hj−1(u)

e−u
2/2

√
2π

.

where

Hn(x) = n!
bn/2c∑

j=0

(−1)jxn−2j

j! (n− 2j)! 2j
, n ≥ 0

H−1(x) =
√

2πΨ(x) ex
2/2,

• Example 2: M = Rk \ Su(Rk) hinges

on calculations involving the χ2
k distri-

bution, etc.
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σ2
c (f)

• Recall the Gaussian excursion problem:

lim inf
u→∞ −u−2 log

∣∣∣∣P
{
sup
t∈M

ft > u

}

−
dimM∑

j=0

Lj(M)ρj(u)

∣∣∣∣

= lim inf
u→∞ −u−2 log

∣∣∣∣P
{
sup
t∈M

ft > u

}

−E {L0 (Au(M, f))}
∣∣∣∣

≥ 1

2
+

1

2σ2
c (f)

.
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σ2
c (f): cont

• The critical radius, rc, of a set M is

the radius of the largest ball that can

be rolled around ∂M so that, at each

point, it touches ∂M only once.

• If ϕ(M) has no boundary, then

σ2
c (f) = (cot (rc))

2

• If rc = π/2, then σ2
c = 0 and the error

in the approximation is zero!

• If M is convex, f is isotropic (⇒ no fi-

nite expansion) and monotone then

σ2
c (f) = Var

(
f ′′(t)

∣∣∣f(t)
)
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σ2
c (f): In general

• Reproducing kernel Hilbert space Hf is

the space of functions on M satisfying

〈f(s), C(t, s)〉H = f(t),

where the inner product is determined

by the covariance function C via

〈C(s, ·), C(t, ·)〉H = C(s, t),

• An orthonormal basis {ϕn} for H will

always give a orthonormal expansion for

f . i.e.

ft =
∞∑

n=1

ξnϕn(t)

• THEOREM: In general, σ2
c (f) can be

defined in terms of the critical radius of

S(H), the unit ball of the RKHS.
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Orthogonal expansions

• Theorem: If {ϕn}n≥1 is an orthonor-

mal basis for the reproducing kernel

Hilbert space of C then f has the L2-

representation

ft =
∞∑

n=1

ξnϕn(t)

where the {ξn}n≥1 are i.i.d. N(0,1).

• Convergence: Sum converges uniformly

⇐⇒ f is continuous (w.p. 1).

• A crucial identity:

1 = C(t, t) = Varft =
∞∑

1

ϕ2
j (t)

• An observation:

Xtft =
∞∑

n=1

ξnXtϕn(t)

where Xt ∈ TtM , assuming that M

is a differentiable manifold and ft ∈
C1(M).
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The rôle of the sphere

• An astounding consequence: If C is

smooth enough every Gaussian process

with expansion of order K, dim(M) ≤
K <∞ can be rewritten on a subset of

SK−1 via

t ≡ (ϕ1(t), . . . , ϕK(t))

f(t) ≡ f ′ (ϕ1(t), . . . , ϕK(t))

and

f ′(u) ∆
= 〈u, ξ〉

• Change of parameter space: From M

to ϕ(M) ∈ SK−1

• Covariance structure of f ′:

E

{
f ′(u)f ′(v)

}
= E {〈u, ξ〉〈v, ξ〉}
= E

{ ∑

i

uiξi
∑

j

vjξj
}

= 〈u, v〉

• Consequence: If the expansion is finite,

one case covers all.
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Suprema and tubes

• Rewriting the canonical process:

f ′u ∼
K∑

n=1

ξnun

=




K∑

n=1

ξ2n




1/2 K∑

n=1

ξn
(∑K

n=1 ξ
2
n

)1/2
un

=
√
χ2
K ·

K∑

n=1

Un un

for uniform Un, independent of χ2
K.

• Consequently:

P

{
sup
u∈M

f ′u ≥ λ

}

=

∫ ∞

0
P

{
sup
u∈M

f ′(u) > λ
∣∣∣χ2
K = x

}
φξ2K

(x) dx

=

∫ ∞

0
P

{
sup
u∈M

〈U, u〉 > λ/
√
x

}
φξ2K

(x) dx

• BUT, P {supu∈M〈U, u〉 > y} is a tube

volume!!
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Back to non-canonical f

• For the canonical process on the sphere

we now know that excursion probabili-

ties are related to tube volumes

• By Weyl’s tube formula these are re-

lated to Lipschitz-Killing curvatures

• The supremum of a non-canonical pro-

cess over M is the same as the canonical

process over ϕ(M).

• To get an answer in terms of M , we

need to carry back the Riemannian

(Euclidean) structure of ϕ(M) (i.e. of

SK−1) to M and so need smooth ϕ.

• Computation: The induced Riemannian

metric that f ′ induces on M under the

map ϕ−1 is given by

g(Xt, Yt) =
∑

n
Xtϕn(t) · Ytϕn(t)

= E {Xtft · Ytft}
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