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Introduction

Let X1, X2, . . . be i.i.d. random variables with d.f. F .

Let F be in the domain of attraction of an extreme value dis-

tribution, i.e. for some γ ∈ R (the extreme value index) and

sequences an and bn

lim
n→∞Fn(anx + bn) = exp{−(1 + γ)−1/γ} (1)

for all x with 1 + γx > 0.



In terms of the function

U := (1/(1− F ))←

the convergence (1) becomes

lim
t→∞

U(tx)− U(t)

a(t)
=

xγ − 1

γ
(2)

for some positive function a and all x > 0.



The most used estimators for γ are constructed as functionals

of (Xn−k,n, Xn−k+1,n, . . . , Xn,n)

and it is well known that they are consistent under (2) provided

k = k(n) →∞, k(n)/n → 0, as n →∞.

¨ Pickands estimator (Pickands 1975)

¨ maximum likelihood estimator (R. Smith 1987, Drees, de

Haan and Li 2002)

¨ moment estimator (Dekkers, Einmahl and de Haan 1989)



In order to get asymptotic normality it is very useful to work

under a somehow stronger condition than (2), the second order

condition (de Haan and Stadtmüller 1996, Drees 1998):

Suppose that there exists a positive or negative function A with

limt→∞A(t) = 0 such that for all x > 0

lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A(t)
=

1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
(3)

where ρ ≤ 0 is the second order parameter.



If (3) holds, the function |A| is regularly varying of order ρ that

is, the convergence in (2) is basically at a polynomial rate.

Under condition (3) one can prove that any of the mentioned

estimators is asymptotically normal provided
√

kA(n/k) = O(1),

n →∞, i.e., roughly speaking k(n) = O

(
n
1− 1

1−2ρ

)
.

A bias appears when
√

kA(n/k) → λ 6= 0

There is no asymptotic normality when
√

kA(n/k) →∞.



The asymptotic normality result follows relatively easily from the

following weighted approximation to the tail quantile function

valid under the second order condition (Drees 1998):

There exists a sequence of Brownian motions {Wn} such that

for a suitable choice of functions a0 and A0 (as in (3)) and for

each ε > 0

sup
0<s≤1

sγ+1/2+ε
∣∣∣∣
√

k


Xn−[ks],n −B0

(
n
k

)

a0

(
n
k

) − s−γ − 1

γ




−s−γ−1Wn(s)−
√

kA0

(n

k

)
Ψγ,ρ(s

−1)
∣∣∣∣

P−−→ 0, (4)



where

B0

(n

k

)
:=





U
(

n
k

)
if γ ≥ − 1

2

Xn,n +
a0

(
n
k

)

γ if γ < − 1
2

The term involving Wn accounts for the random limit and the

term involving Ψ accounts for the bias.



New results

Let us now look at what happens if the speed of convergence in

(2) is faster than polynomial, i.e., if

lim
t→∞ tα

(
U(tx)− U(t)

a(t)
− xγ − 1

γ

)
= 0 (5)

for all x and for all α > 0.

Rewriting (5) in a most convenient way we obtain, for γ 6= 0 and

for all x

U(tx)− U(t) = a(t)
xγ − 1

γ
+ o(t−α) (6)

for all α > 0.



Fix x, y > 0. We have

U(txy)− U(tx) = a(tx)
yγ − 1

γ
+ o(t−α)

U(txy)− U(t) = a(t)
(xy)γ − 1

γ
+ o(t−α)

U(tx)− U(t) = a(t)
xγ − 1

γ
+ o(t−α)

It follows that

a(tx)
yγ − 1

γ
− a(t)

(xy)γ − 1

γ
+ a(t)

xγ − 1

γ
= o(t−α)

and hence a(tx)− a(t)xγ = o(t−α) for any α > 0.



This can be written respectively as

a(tx)− a(t)

γ
− a(t)

xγ − 1

γ
= o(t−α) (7)

and
(tx)−γa(tx)− t−γa(t) = o(t−(α+γ)) (8)

Now look again at (6): U(tx)− U(t) = a(t) xγ−1
γ + o(t−α)

Combination with (7) yields

(
U(tx)− a(tx)

γ

)
−

(
U(t)− a(t)

γ

)
= o(t−α) (9)

for any α, x > 0.



It is convenient to use the following result (Ash, Erdös and Rubel

(1974)):

If f(tx) − f(t) = o(t−α), t → ∞, for some α > 0 and all x > 0,

then

C := lim
t→∞ f(t)

exists (finite) and

C − f(t) = o(t−α)

as t →∞.



If applied to (8): (tx)−γa(tx)− t−γa(t) = o(t−(α+γ)) we find

t−γa(t) → c0 and c0 − t−γa(t) = o(t−(α+γ))

as t →∞, for any α > 0.

In view of (2) the constant c0 can not be zero and, in fact, has

to be positive (since a is regularly varying with index γ). We find

a(t) = c0tγ + o(t−α), (10)

as t →∞, for any α > 0.



Similarly when applying the result of Ash, Erdös and Rubel

(1974) to (9):
(
U(tx)− a(tx)

γ

)
−

(
U(t)− a(t)

γ

)
= o(t−α)

we obtain

U(t)− a(t)

γ
→ d and U(t)− a(t)

γ
− d = o(t−α)

as t → ∞, for any α > 0. When combined with (10) it follows

that

U(t) = c1 + c0
tγ − 1

γ
+ o(t−α), (11)

as t →∞.



We now get the same expansion of U for γ = 0.

We have, for x > 0,

U(tx)− U(t)− a(t) logx = o(t−α)

which implies for x, y > 0

U(txy)− U(tx)− U(ty) + U(t) = o(t−α).

Hence for each y > 0 the function U(ty) − U(t) satisfies the

conditions of the result of Ash, Erdös and Rubel (1974).



It follows that for some c(y)

U(ty)− U(t)− c(y) = o(t−α) (12)

and so

U(ty)− U(t)

a(t)
=

c(y)

a(t)
+ o(t−α).

Since by (2) U(ty)−U(t)
a(t) converges to log y, it follows that c(y)/a(t) →

log y. Hence a(t) → co, t → ∞, with c0 > 0, and c(y) = c0 log y.



Then for y > 0, by (12)

U(ty)−U(t)−c0 log t = {U(ty)−c0 log(ty)}−{U(t)−c0 log(t)} = o(t−α)

and so by a second application of the result of Ash, Erdös and

Rubel (1974)

U(t) = c1 + c2 log t + o(t−α)

as t →∞, for any α > 0.

Now the following Theorem can be proved:



Theorem 1. Assume condition (5). There is a positive constant

c0 and a real constant c1 such that for each ε > 0 as n →∞

sup
0<s≤1

sγ+1/2+ε
∣∣∣∣
√

k




Xn−[ks],n −B
(

n
k

)

c0
(

n
k

)γ − s−γ − 1

γ


 − s−γ−1Wn(s)

∣∣∣∣
P−−→ 0

where {Wn} is a sequence of Brownian motions and

B
(n

k

)
:=





c1 + c0

(
n
k

)γ
−1

γ if γ ≥ − 1
2

Xn,n +
c0

(
n
k

)γ

γ if γ < − 1
2

provided there is a δ > 0 such that k = k(n) = o
(
n1−δ

)
, n →∞.



Remark 1. It follows that under (5) any of the mentioned es-

timators is asymptotically normal without bias provided k(n) =

o
(
n1−δ

)
, n →∞.

For the proof observe that

{
Xn−[ks],n

}
s

d
=

{
U

(
Yn−[ks],n

)}
s
.

where Y is standard Pareto, i.e. with d.f. 1− 1/x, x ≥ 1.



By the expansion of U that we have obtained it follows that

U
(
Yn−[ks],n

)
= c1 + c0

Y
γ

n−[ks],n − 1

γ
+ op

(
Y
−α

n−[ks],n

)
.

Hence

U
(
Yn−[ks],n

)
− c1

c0
(

n
k

)γ =
Y

γ

n−[ks],n − 1

γ
(

n
k

)γ +
(n

k

)−γ

Y
−α

n−[ks],n op(1) (13)

The main idea now is to use the version of (4) that corresponds

to the random variable Y
γ
.



For the error term we do the following: using a uniform bound

for the order statistics from Shorack and Wellner (1986)

max
0≤i≤n−1

n

i Yn−i,n

d−→ R ,

with R a finite positive random variable, we show that

(n

k

)−γ

Y
−α

n−[ks],n = Op

((n

k

)−(α+γ)

sα
)

for all α > 0.



Hence

Xn−[ks],n − c1

c0
(

n
k

)γ
d
=

Y
γ
n−[ks],n − 1

γ
(

n
k

)γ +
(n

k

)−(α+γ)

sα op(1) (14)

for all α > 0.



Example

Consider the mixture distribution F = p F1 + (1 − p)F2, with

0 < p < 1, where F1(t) = 1−1/t, t ≥ 1 and F2(t) = 1−e−t, t ≥ 0.

Then for α > 0

1

1− F (t)
= t + o(t−α), t →∞,

hence for α > 0

U(t) = t + o(t−α), t →∞,

and condition (11) holds.
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