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Modelling extreme hot events using a non homogeneous Poisson process

Objectives

Objectives

Objective: to analyse the evolution of the extreme hot events; using an
’Excess over threshold’ approach to define those extreme events, we aim:

• To develop a statistical model for extreme hot events (based on
Extreme value properties) to answer questions such as: ’Are those
events changing in frequency or severity over time?’ or ’How that
changes depend on temperature evolution?’.

• To obtain medium and long term projections for the expected
evolution of the extreme hot events, using the fitted statistical
model and the temperature projection provided by a General
Circulation model.
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Data description

Data description
Daily summer maximum temperature series, Tx, from Zaragoza (Spain);
summer: June-July-August
Series record: 1951 to 2004
(Data from the Spanish National Meteorological Institute, INM.)
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Data description

Tx evolution: smooth of the summer daily series (lowess 30%).
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Data description

Tx evolution by month: smooth of the daily series, by month (lowess
30%)
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Data description

Tx evolution by month: smooth of the daily series, by month (lowess
30%)
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Data description

Tx evolution by month: smooth of the daily series, by month (lowess
30%)
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Part II

Analysis of extreme hot events
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2. A NHPP to model EHE occurrence
2.1 Justification of the model
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3. Modelling EHE severity
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1. Definition of extreme hot events

1. Definition of extreme hot events

’Excess over threshold’ approach: an EHE is defined as a run of
consecutive days with temperature values over an extreme threshold.
Selected threshold: 95th percentile of the summer temperature series
for the interval 1971-2000; Zaragoza: 37oC

We assign to each event:
- A point of occurrence (maximum intensity point)
- Three variables describing the event severity

L: the length of the spell
Ix: the maximum intensity over the threshold in the spell
Im: the mean intensity of the spell (accumulated
exceedances of Tx over the threshold /L)
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1. Definition of extreme hot events

Descriptive analysis of the observed EHE (157 events)

Decade Occurrence L Ix Im

Ann.Mean Ann.Max Mean P90 Mean P90 Mean P90

1951-60 1.2 3 1.4 2.7 1.3 3.0 1.1 2.2

1961-70 2.8 6 1.6 3.1 1.2 3.1 1.0 2.3

1971-80 2.1 3 1.4 2.8 0.8 1.6 0.6 1.6

1981-90 2.5 5 1.8 3.8 1.3 4.0 0.9 2.8

1991-00 3.9 7 1.9 3.0 1.3 2.5 1.0 1.8

2001-04 5.3 7 2.5 4.8 1.3 2.8 1.0 1.6

There is an increase in the EHE occurrence rate and length but not
in the intensity measures
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2.1 Justification of the model

2. A NHPP to model extreme hot event occurrence

2.1 Justification of the model

• EHE occurrence can be modelled by a point process: its likelihood
definition enables a simple formulation of the non stationarity of the
process (linked to the temperature evolution)

• Extreme value theory result: occurrence of excesses over increasing
thresholds converges to a Poisson process.

• Thus, EHE occurrence is modelled by a non homogeneous Poisson
process, NHPP, where points occur randomly in time at a variable
rate λ(t), that depends on influential variables z(t).

A NHPP with rate λ(t) on A ⊂ R is a point process with
independent increments, such that N(A), the number of events
occurring in set A, follows a Poisson(Λ(A)) distribution with
Λ(A) =

R
A

λ(t)dt, ∀A ⊂ A.
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2. A NHPP to model EHE occurrence

2.2 Estimating the model

2.2 Estimating the model

Intensity function of the PP: parametric expression λ(z(t), β) depending
on the possibly influential variables.

• Seasonal component

• Temperature information

• Link: log (occurrence rate must be positive)
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2. A NHPP to model EHE occurrence

2.2 Estimating the model

2.2 Estimating the model

Intensity function of the PP: parametric expression λ(z(t), β) depending
on the possibly influential variables.

• Seasonal component
Variables defining the part of an annual harmonic corresponding to
the summer months

cos(2πt), sin(2πt)

with t = 152/365, ..., 243/365

• Temperature information

• Link: log (occurrence rate must be positive)
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2. A NHPP to model EHE occurrence

2.2 Estimating the model

2.2 Estimating the model

Intensity function of the PP: parametric expression λ(z(t), β) depending
on the possibly influential variables.

• Seasonal component

• Temperature information

- Long term temperature signal: TTx = Tx smooth (lowess 30%)
- Semi-local temperature signal: Txm30 = Tx moving mean of the 15

previous and the 15 following days.
- Local temperature signal: Tx
- Quadratic temperature terms and seasonal-temperature interaction

terms.

• Link: log (occurrence rate must be positive)
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2. A NHPP to model EHE occurrence

2.2 Estimating the model

2.2 Estimating the model

Intensity function of the PP: parametric expression λ(z(t), β) depending
on the possibly influential variables.

• Seasonal component

• Temperature information

• Link: log (occurrence rate must be positive)

log(λ(t)) = β0 + β1 cos(2πt) + β2 sin(2πt) +

f 1(temperature variables; βi ) +

f 2(cos(2πt) temperature variables;βj) +

f 3(sin(2πt) temperature variables;βk)
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2. A NHPP to model EHE occurrence

2.2 Estimating the model

The model parameter estimation is performed by maximum likelihood.

- The likelihood function is derived taking into account the
independence and the Poisson distribution of the number of events
in every interval,

L(ti ;β) ' exp[−Λ(A;β)]
n∏

i=1

λ(ti ;β)

- The selection of the significant variables is based on the likelihood
ratio test.
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2. A NHPP to model EHE occurrence

2.2 Estimating the model

Fitted model resulting from the selection process:

log(λ(t)) = −15.0− 3.9 cos(2πt)− 1.3 sin(2πt) +

0.006TTx + 0.045Txm30

The EHE occurrence process shows a significant seasonal behaviour.

The temperature has a long term and semi-local linear effect.
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2. A NHPP to model EHE occurrence

2.2 Estimating the model

Poisson rate fitted for the observed time interval 1951-2004

Increasing trend towards higher occurrence rates
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2. A NHPP to model EHE occurrence

2.3 Checking the model

2.3 Checking the model

NHPP residuals
Procedure to check the validity of the model (Poisson character with the
specified time-dependent rate) based on two properties,

- A non homogeneous Poisson process in R can be made
homogeneous by applying a monotone transformation to the time
scale: if Π is a NHPP, the transformed process
Π1 = {E [N(A)];A ∈ Π} is an HPP of rate 1.

- The homogenous Poisson character can be checked by controlling
the exponential distribution of their inter-event distances di ; or,
equivalently, the standard uniform character of exp(−di ) .
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2. A NHPP to model EHE occurrence

2.3 Checking the model

Checking procedure

1. The observed NHPP is transformed to a HPP of rate 1 using the
previous property; thus, the original occurrence points ti are
transformed to

t∗i = E [(0, ti )] =

∫
(0,ti )

λ̂(t)dt

and distances di between consecutive points of the new process t∗i
are calculated.

2. The uniform behaviour of the sample exp(−di ) is checked using a
Kolmogorov-Smirnov goodness of fit test and a qqplot with a
confidence band based on the beta distribution of the ordered
uniform quantiles.
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2. A NHPP to model EHE occurrence

2.3 Checking the model

Empirical residuals

To specifically check the validity of the fitted linear predictor, we define
other kind of residuals.

Usual residuals (observed-fitted values) can not be defined since the
occurrence rates are not observed.

Alternative residuals: difference between an empirical daily
occurrence rate (calculated using observations of an interval tl of
length l around each day) and a fitted daily occurrence rate
(calculated as

∫
tl

λ̂(t)dt/l); we consider l = 3 months.
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2. A NHPP to model EHE occurrence

2.3 Checking the model

Results. NHPP residuals
Uniform qqplot with beta confidence bands

P-value of the Kolmogorov-Smirnov goodness of fit test: 0.48
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2. A NHPP to model EHE occurrence

2.3 Checking the model

Results. Empirical residuals
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3. Modelling EHE severity

3. Modelling EHE severity

To complete the description of the EHE, we model the three variables
describing their severity (L, Ix and Im) using adequate probability
distributions.

To allow these distributions to be dependent on influential variables, we
use Generalized Linear Models, GLM, selecting an adequate error
family for each case; the same variables used for the occurrence model
are considered again.
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3. Modelling EHE severity

Fitted models

Length (shifted Poisson): log(L) = −8.6 + 0.027TTx
Maximum Intensity (Gamma): log(Ix) = 5.9
Mean Intensity (Gamma): log(Im) = 2.2

L is affected by long term temperature; no seasonal behaviour

Distribution of the intensity variables remains stable in time; no
seasonal behaviour.
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Part III

Projecting EHE evolution in a climate change
scenario
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1. Objectives

1. Objectives

Objective: to project the EHE occurrence and length in a climate
change scenario using the previous fitted models and the output from a
general circulation model (GCM).
Reliable projections require two steps:

• In order to validate the methodology to be used, we analyse the
behaviour of the fitted model using the GCM projected temperature
for the observed interval 1951-2004.

• If this validation is satisfactory, we project the EHE for the future.



Modelling extreme hot events using a non homogeneous Poisson process

1. Objectives

1. Objectives

Objective: to project the EHE occurrence and length in a climate
change scenario using the previous fitted models and the output from a
general circulation model (GCM).
Reliable projections require two steps:

• In order to validate the methodology to be used, we analyse the
behaviour of the fitted model using the GCM projected temperature
for the observed interval 1951-2004.

• If this validation is satisfactory, we project the EHE for the future.



Modelling extreme hot events using a non homogeneous Poisson process

1. Objectives

1. Objectives

Objective: to project the EHE occurrence and length in a climate
change scenario using the previous fitted models and the output from a
general circulation model (GCM).
Reliable projections require two steps:

• In order to validate the methodology to be used, we analyse the
behaviour of the fitted model using the GCM projected temperature
for the observed interval 1951-2004.

• If this validation is satisfactory, we project the EHE for the future.



Modelling extreme hot events using a non homogeneous Poisson process

2. General Circulation Models

2. General Circulation Models

General circulation model: numerical model to simulate changes
in different climate signals, such as temperature, under possible
scenarios resulting from slow changes in atmospheric concentrations
of greenhouse-gases, etc.

Selected GCM: HadCM3 (Hadley Centre, 1998).
Area of the spatial grid at 45o lat.: 295km× 278km
IPCC data distribution center:

http://ipcc-ddc.cru.uea.ac.uk/

Selected scenario: A2, which represents a world with continuously
increasing population and regionally oriented economic growth.
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Area of the spatial grid at 45o lat.: 295km× 278km
IPCC data distribution center:

http://ipcc-ddc.cru.uea.ac.uk/

Selected scenario: A2, which represents a world with continuously
increasing population and regionally oriented economic growth.
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2. General Circulation Models

2.1 GCM data

2.1 GCM data

Output series from the GCM: monthly mean series of Tx from 1951 to
2050.
Input temperature variables of the statistical model: TTx and Txm30;
they are estimated from the monthly mean series of Tx provided by the
GCM.

- Output series from a GCM integrates the values over all the area
associated to a point of the spatial grid (heights varying from 100 to
2500m.).
Even if the evolution of the temperature can be considered
homogeneous over the area, the series for a point location has to be
scaled to fit the mean level of that location.
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2. General Circulation Models

2.1 GCM data

Smooth of monthly mean Tx: observed and projected series. Zaragoza

Tx mean smooth, JJA
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Mean level of the projected series is lower than the observed one
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2. General Circulation Models

2.1 GCM data

Scaling GCM series to fit the mean level

1. Selection of a time interval where the evolution of the observed and
simulated signals is parallel: 1971-2000.

2. GCM series is scaled in order to get that, in that time interval, both
series have the same mean value and standard deviation, in each
summer month.
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3. Validating the projection procedure

3. Validating the projection procedure

1. Validation of the temperature signal provided by the GCM for the
observed interval 1951-2004
Smooth of monthly mean Tx, observed and projected series

Tx mean smooth, JJA

Year

T
em

pe
ra

tu
re

1950 1960 1970 1980 1990 2000

26
28

30
32

34

Observed
Scaled HadCM3

Differences: the initial interval 1951-60 and from 1996, where only the
observed signal is increasing
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3. Validating the projection procedure

3. Validating the projection procedure

1. Validation of the temperature signal provided by the GCM: Smooth of
monthly mean Tx, observed and projected series

Tx mean smooth, June
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Tx mean smooth, July
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Tx mean smooth, August
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Differences by month: in June, the observed signal becomes steeper than
the fitted one from about 1996
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3. Validating the projection procedure

2. Validation of the EHE projection: we compare the observed number of
events and the number calculated from the fitted occurrence rate using
as input the GCM temperature for the observed interval 1951-2004, by
month and decade.

Fitted number (decade) Observed number (decade)

Decade June July August June July August

1951-60 3.1 27.1 14.2 1 9 2

1961-70 3.0 19.3 8.8 5 12 11

1971-80 2.0 15.3 10.2 0 13 8

1981-90 2.4 17.2 8.2 2 15 8

1991-2000 2.9 23.3 13.4 2 23 14

2001-04 1.4 7.0 5.6 8 8 5
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3. Validating the projection procedure

2. Validation of the EHE projection: we compare the observed number of
events and the number calculated from the fitted occurrence rate using
as input the GCM temperature for the observed interval 1951-2004, by
month and decade.

Fitted number (decade) Observed number (decade)

Decade June July August June July August
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1971-80 2.0 15.3 10.2 0 13 8

1981-90 2.4 17.2 8.2 2 15 8

1991-2000 2.9 23.3 13.4 2 23 14

2001-04 1.4 7.0 5.6 8 8 5

- Model able to reproduce the observed seasonal behaviour.

- Fitted numbers for the 50s are higher than the observed ones.

- The model reproduces satisfactorily the other rates; the only
discrepancy appears in June 2001-04.
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3. Validating the projection procedure

2. Validation of the EHE projection: we compare the observed number of
events and the number calculated from the fitted occurrence rate using
as input the GCM temperature for the observed interval 1951-2004, by
month and decade.

Fitted number (decade) Observed number (decade)

Decade June July August June July August

1951-60 3.1 27.1 14.2 1 9 2

1961-70 3.0 19.3 8.8 5 12 11

1971-80 2.0 15.3 10.2 0 13 8

1981-90 2.4 17.2 8.2 2 15 8

1991-2000 2.9 23.3 13.4 2 23 14

2001-04 1.4 7.0 5.6 8 8 5

- Model able to reproduce the observed seasonal behaviour.

- Fitted numbers for the 50s are higher than the observed ones.

- The model reproduces satisfactorily the other rates; the only
discrepancy appears in June 2001-04.

Origin of the discrepancies: bad GCM temperature projections
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4. EHE projection until 2050

4. EHE projection until 2050

GCM temperature projection

Smooth of monthly mean Tx: observed and projected series, 2050

Tx mean smooth, JJA
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Increasing evolution from 2030
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4. EHE projection until 2050

4.1 Projection of the EHE occurrence

4.1 Projection of the EHE occurrence

Mean values of the projected occurrence rate, by month and decade

Decade June July August

2001-10 0.387 2.209 1.337

2011-20 0.316 2.210 1.397

2021-30 0.342 2.255 1.878

2031-40 0.993 10.836 5.578

2041-50 1.063 12.766 5.026

Projection shows occurrence stability in the 3 first decades and a
significant increase for 2030-50

From 2030, projection for July is about 11 EHE; for scenario A2,
almost all days would be under extreme conditions
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4. EHE projection until 2050

4.2 Projection of EHE length

4.2 Projection of EHE length

To get projections of the EHE length, we use the fitted Poisson
distribution (intensity depending on the long term temperature signal).

Validation (comparison between observed and fitted values for
1951-2004)

Decade 1951-60 1961-70 1971-80 1981-90 1991-2000 2001-4

Fitted 1.7 1.6 1.5 1.6 1.7 1.7

Observed 1.4 1.6 1.4 1.8 1.9 2.5

Both fitted and observed values show an increasing evolution from
1971; only the mean length for 2001-04 is under-fitted.
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4. EHE projection until 2050

4.2 Projection of EHE length

Projection of the EHE length until 2050

Year

D
ay

s

1960 1980 2000 2020 2040
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5

2.
0

2.
5

3.
0

Decade 2001-10 2011-20 2021-30 2031-40 2041-50

Fitted 1.8 1.8 1.9 2.6 2.5

The main increase of the EHE length appears from 2030, following
the evolution of the simulated GCM temperature

For scenario A2: a length increase of almost 1 day in 2050
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Conclusions

• The fitted NHPP allows us to study the EHE ocurrence: their
seasonal behaviour and their evolution in time, through their
relationship with temperature.

Zaragoza: occurrence is related to long term and semi-local
temperature and has a seasonal behaviour inside the summer.
EHE severity: we do not find seasonal behaviour and only length
depends on temperature while intensity measures are stable in time.



Modelling extreme hot events using a non homogeneous Poisson process

• Combining the EHE statistical model with the GCM temperature
output provides an adequate projection procedure, given that the
GCM projections reproduce properly the temperature evolution.

In order to get more reliable results covering different possible future
situations, a wide range of projections under different scenarios and
using information from different GCMs should be provided.
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