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T he classical Ruin Problem

Let Sy = capital gain of an insurance co. by time ¢

N(t)
capital outflow (claims) = ) Z;
i=1
capital inflow (premiums) = ct
N(t)
—Si=—-)> Z;+ct
i=1

Find P{S; ever < —u} = P{ruin} (Lundberg, '03).

Theorem (Cramér, '30). If {S;} has positive drift,
“light—tailed” claim sizes, then

P{St < —u,some t} ~ Ce 1% as 4 — oo.

Some extensions:

(i) “Heavy—tailed” claims:
. [0 _
P{St < —u, some t} ~ C/ Fz(s)ds.
u
(ii) Finite-time estimates for light tails (Arfwedsen’'55):

D
P{ruin before time tu} ~ eI (7).

N



A modified ruin problem

Now consider discrete-time process,

Sn =2~&81 + -+ &n,
where E&;, > 0, and assume:

I. Subexponential claims ( “heavy-tails”).

— E [eegi] = oo, all e > 0.

II. Positive barrier for ruin.

Ruin occurs if S, > u, some n < Ju.

Thus, finite-time ruin est. (cf. Arfwedsen).

III. Markov dependence in general state space:

& = f(Xy),

where:
e f(-) is a random function,

e {X,;} CS is a general (e.g. infinite) state M.C.



Motivating examples

I. Operational risk losses.
(E.g., back office errors at a bank.)

e ''Claims” arrive at a Poisson rate.
e Claim sizes are heavy-tailed.

e Frequency of claims depends on traded
volume in the stock market.

For example, if

X; = traded volume at time 1,
then could model {X;} as pos.-drift AR(1) pr. (say).

L osses at time z:

N(X;)

L=f(X0) = D> Zij

=1
where, for each i, {Z; ;},;>1 is i.i.d., heavy-tailed.

Study total loss by time n:

Related work (Rogers-Zane '05):

Sy, = price increase in high-freq. financial market;

N(X;) = number of quotes (price changes) during
interval i (where N(-) is Poisson, Markov-dep.).




II. Financial losses (GARCH(1,1) model).
Log. returns on a stock:

Ri = UiZiv for Zi ~ N(O, 1),
where
0? =ag+bio? 1 +a1R? 1.

Motivation. Volatility shows:

Correlation with absolute log. returns
(and previous volatility);
Little correlation with actual log. returns (R;_1).

Set: 0i2 = X, A; = (bl + CL1ZZ-2_1), B; = ap.

Then above model becomes:

(%) X; = A; X1 + By,

where {(A4;,B;)} isi.i.d., E[log A;] < O.

(%) is called a “stochastic recurrence equation.”

Note:

{X;} is a Markov chain on R.

Consider:

Sn = X1+ +Xpn.
(cf. Mikosch—Konstantinides '05).




General Problem

Now suppose

Sn = f(X1)+ -+ f(Xn),
where:

e f(-) is a random function.

e {X;} is an underlying Markov chain (on R, or S).

Nummelin-Athreya-Ney regeneration method.

Assume {X;} satisfies:

Minorization.

(M) h(z)v(A) < PF(z, A) =P {Xn_|_k € Al X, = a:} .

Then:

o 7, =T, -1, 1 "“inter-regen. times"” exist, i.i.d.

® UZ = STi-|—1 — STi l.i.d.

e Probab. law of St is v(-).



Results

Objective: Determine

P {Sn > u, some n < du},
where S, = f(X1) 4+ - + f(Xn),
and u = Ex [f(X)] > 0 (positive drift).

Assumptions:

(A1) U is subexponential.
(A2) P{U_ < —u} =o(P{U > u}), u— oo.
(A3) Markov chain is geometrically recurrent, i.e.,

E [eE(TZ’H_TZ’)} < 0o, some € > 0.

Thm. (C-H., '05). Assume M.C. satisfies (M), and
(A1)-(A3) hold. Then

0
P {Sn > u, Somengéu}NE—u~P{U>(1—5,u)u}.
T




Characterizing exceedence over regeneration cycle

Case 1: Operational risk losses.
For this case,

Sn = f(X1) + -+ f(Xn),

where | £(x;) = 7V

1=

X;)
1 Zi,j-

Here, N(z) ~ Poisson(\(x)).

Assumption:

(A4) N(a) < oo, some a > 0,

where 1
/\(a) = |lim —log E [ea(A(Xl)‘l‘"‘)\(Xn))} )
n—oo n

(Spectral radius, “Gartner-Ellis limit.”)
Means: the intensity process {A(X;)} has light tails.

Proposition 1 (C-H.,’05). Assume cond’s. of prev.
thm., and that (A4) holds. Then

P{U > u} ~ ETE; [M(X)] Fz(u) as u — oo.

Equiv.: P{U > u} ~ ETP; {f(X) > u}.



Case 2: Stochastic recurrence eqgn’s.
Here,

Xi = AiX;_1+ B,

and Sp,

X144 Xn.

Suppose: E[logA4;] <1 (4; <1 “on average”).
Define:

Aag(a) = logE [eo"og AZ} ,

(c.g.f. of log A); and let Ag(-) = c.g.f. of log B.

Assumptions:

(A5) A 4(k) =0 some k > 0.
(A6) A 4(a), ANg(a) finite for a € N(k).

Proposition 2 (C-H.,'05). Assume (A5) and (A6).
T hen

P{U >u} ~Cu™ " as u — oo.

(Build-up of log A;'s over long
interval of length = p-logu.)



Summarizing:

P{Sn > u, some n < 5u} ~ C’uPﬂ{f(X) > (1—5u)u};

but C (and its derivation) is different in the two sep-
arate cases.

Related extension (cf. Mikosch-Konstantinides '05):
In GARCH(1,1) case, but with neg. drift, consider

P {Sn > u, some n} = P{ruin}.
Then a simple application of Prop. 2 yields

P{ruin} ~ Du~ Dy .
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