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The classical Ruin Problem

Let St = capital gain of an insurance co. by time t

capital outflow (claims) =
N(t)∑

i=1

Zi

capital inflow (premiums) = ct

−→ St = −
N(t)∑

i=1

Zi + ct

Find P{St ever < −u} = P{ruin} (Lundberg, ’03).

Theorem (Cramér, ’30). If {St} has positive drift,

“light–tailed” claim sizes, then

P
{
St < −u, some t

}
∼ Ce−Ru as u →∞.

Some extensions:

(i) “Heavy–tailed” claims:

P
{
St < −u, some t

}
∼ C̃

∫ ∞
u

F̄Z(s)ds.

(ii) Finite-time estimates for light tails (Arfwedsen’55):

P{ruin before time τu} ∼ D√
u

e−uJ(τ).
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A modified ruin problem

Now consider discrete-time process,

Sn = ξ1 + · · ·+ ξn,

where Eξi > 0, and assume:

I. Subexponential claims (“heavy-tails”).

=⇒ E
[
eεξi

]
= ∞, all ε > 0.

II. Positive barrier for ruin.

Ruin occurs if Sn > u, some n ≤ δu.

Thus, finite-time ruin est. (cf. Arfwedsen).

III. Markov dependence in general state space:

ξi = f(Xi),

where:

• f(·) is a random function,

• {Xi} ⊂ S is a general (e.g. infinite) state M.C.
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Motivating examples

I. Operational risk losses.
(E.g., back office errors at a bank.)

• “Claims” arrive at a Poisson rate.

• Claim sizes are heavy-tailed.

• Frequency of claims depends on traded
volume in the stock market.

For example, if

Xi = traded volume at time i,

then could model {Xi} as pos.-drift AR(1) pr. (say).

Losses at time i:

ξi = f(Xi) =
N(Xi)∑

j=1

Zi,j,

where, for each i, {Zi,j}j≥1 is i.i.d., heavy-tailed.

Study total loss by time n:

Sn = f(X1) + · · ·+ f(Xn).

Related work (Rogers-Zane ’05):
Sn = price increase in high-freq. financial market;
N(Xi) = number of quotes (price changes) during

interval i (where N(·) is Poisson, Markov-dep.).

4



II. Financial losses (GARCH(1,1) model).
Log. returns on a stock:

Ri = σiZi, for Zi ∼ N(0,1),

where

σ2
i = a0 + b1σ2

i−1 + a1R2
i−1.

Motivation. Volatility shows:

Correlation with absolute log. returns
(and previous volatility);

Little correlation with actual log. returns (Ri−1).

Set: σ2
i = Xi, Ai = (b1 + a1Z2

i−1), Bi = a0.

Then above model becomes:

(∗) Xi = AiXi−1 + Bi,

where {(Ai, Bi)} is i.i.d., E [logAi] < 0.

(∗) is called a “stochastic recurrence equation.”

Note:

{Xi} is a Markov chain on R.

Consider:

Sn = X1+· · ·+Xn.

(cf. Mikosch–Konstantinides ’05).
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General Problem

Now suppose

Sn = f(X1) + · · ·+ f(Xn),

where:

• f(·) is a random function.

• {Xi} is an underlying Markov chain (on R, or S).

Nummelin-Athreya-Ney regeneration method:

Assume {Xi} satisfies:

Minorization.

(M) h(x)ν(A) ≤ P k(x, A) ≡ P
{
Xn+k ∈ A|Xn = x

}
.

Then:

• τi ≡ Ti − Ti−1 “inter-regen. times” exist, i.i.d.

• Ui ≡ STi+1
− STi

i.i.d.

• Probab. law of STi
is ν(·).
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Results

Objective: Determine

P {Sn > u, some n ≤ δu} ,

where Sn = f(X1) + · · ·+ f(Xn),

and µ ≡ Eπ [f(X)] > 0 (positive drift).

Let U
d
= STi+1

−STi
.

Assumptions:

(A1) U is subexponential.

(A2) P
{
U− < −u

}
= o (P {U > u}), u →∞.

(A3) Markov chain is geometrically recurrent, i.e.,

E
[
eε(Ti+1−Ti)

]
< ∞, some ε > 0.

Thm. (C-H., ’05). Assume M.C. satisfies (M), and

(A1)-(A3) hold. Then

P {Sn > u, some n ≤ δu} ∼ δu

Eτ
·P {U > (1− δµ)u} .
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Characterizing exceedence over regeneration cycle

Case 1: Operational risk losses.

For this case,

Sn = f(X1) + · · ·+ f(Xn),

where f(Xi) =
∑N(Xi)

i=1 Zi,j.

Here, N(x) ∼ Poisson(λ(x)).

Assumption:

(A4) Λ(α) < ∞, some α > 0,

where

Λ(α) = lim
n→∞

1

n
logE

[
eα(λ(X1)+···+λ(Xn))

]
.

(Spectral radius, “Gärtner-Ellis limit.”)

Means: the intensity process {λ(Xi)} has light tails.

Proposition 1 (C-H.,’05). Assume cond’s. of prev.

thm., and that (A4) holds. Then

P {U > u} ∼ EτEπ [λ(X)] F̄Z(u) as u →∞.

Equiv.: P {U > u} ∼ EτPπ {f(X) > u}.
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Case 2: Stochastic recurrence eqn’s.

Here,

Xi = AiXi−1 + Bi,

and Sn = X1 + · · ·+ Xn.

Suppose: E [logAi] < 1 (Ai < 1 “on average”).

Define:

ΛA(α) = logE
[
eα logAi

]
,

(c.g.f. of logA); and let ΛB(·) = c.g.f. of logB.

Assumptions:

(A5) ΛA(κ) = 0 some κ > 0.

(A6) ΛA(α), ΛB(α) finite for α ∈ N(κ).

Proposition 2 (C-H.,’05). Assume (A5) and (A6).

Then

P {U > u} ∼ Cu−κ as u →∞.

(Build-up of logAi’s over long

interval of length = ρ · logu.)
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Summarizing:

P
{
Sn > u, some n ≤ δu

}
∼ CuPπ

{
f(X) > (1−δµ)u

}
;

but C (and its derivation) is different in the two sep-

arate cases.

Related extension (cf. Mikosch-Konstantinides ’05):

In GARCH(1,1) case, but with neg. drift, consider

P {Sn > u, some n} = P{ruin}.
Then a simple application of Prop. 2 yields

P{ruin} ∼ Du−(κ−1), u →∞.
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