LARGE DEVIATION ESTIMATES FOR CERTAIN HEAVY-TAILED DEPENDENT SEQUENCES ARISING IN RISK MANAGEMENT

by

JEFFREY F. COLLAMORE
Laboratory of Actuarial Mathematics
University of Copenhagen

(Joint work with ANDREA HÖING, Dept. Mathematics, ETH Zürich)

The classical Ruin Problem

Let $S_t =$ capital gain of an insurance co. by time t

capital outflow (claims) =
$$\sum_{i=1}^{N(t)} Z_i$$

capital inflow (premiums) = ct

$$\longrightarrow S_t = -\sum_{i=1}^{N(t)} Z_i + ct$$

Find $P{S_t \ ever < -u} = P{ruin}$ (Lundberg, '03).

Theorem (Cramér, '30). If $\{S_t\}$ has positive drift, "light-tailed" claim sizes, then

$$\mathbf{P}\left\{S_t < -u, \text{some } t\right\} \sim Ce^{-Ru} \text{ as } u \to \infty.$$

Some extensions:

(i) "Heavy-tailed" claims:

$$\mathbf{P}ig\{S_t<-u, \text{ some } tig\}\sim ilde{C}\int_u^\infty ar{F}_Z(s)ds.$$

(ii) Finite-time estimates for light tails (Arfwedsen'55):

$$\mathbf{P}\{\text{ruin }\underline{\text{before}}\text{ time }\tau u\}\sim \frac{D}{\sqrt{u}}e^{-uJ(\tau)}.$$

A modified ruin problem

Now consider discrete-time process,

$$S_n = \xi_1 + \dots + \xi_n,$$

where $\mathbf{E}\xi_i > 0$, and assume:

I. Subexponential claims ("heavy-tails").

$$\Longrightarrow \mathbf{E}\left[e^{\epsilon\xi_i}\right] = \infty$$
, all $\epsilon > 0$.

II. Positive barrier for ruin.

Ruin occurs if $S_n > u$, some $n \leq \delta u$.

Thus, finite-time ruin est. (cf. Arfwedsen).

III. Markov dependence in general state space:

$$\xi_i = f(X_i),$$

where:

- $f(\cdot)$ is a random function,
- $\{X_i\} \subset \mathbb{S}$ is a general (e.g. infinite) state M.C.

Motivating examples

I. Operational risk losses.

(E.g., back office errors at a bank.)

- "Claims" arrive at a Poisson rate.
- Claim sizes are heavy-tailed.
- Frequency of claims depends on traded *volume* in the stock market.

For example, if

 $X_i = \text{traded volume at time } i,$ then could model $\{X_i\}$ as pos.-drift AR(1) pr. (say).

Losses at time i:

$$\xi_i = f(X_i) = \sum_{j=1}^{N(X_i)} Z_{i,j},$$

where, for each i, $\{Z_{i,j}\}_{j>1}$ is i.i.d., heavy-tailed.

Study total loss by time n:

$$S_n = f(X_1) + \dots + f(X_n).$$

Related work (Rogers-Zane '05):

 $S_n = \text{price increase in high-freq. financial market;}$ $N(X_i) = \text{number of quotes (price changes) during interval } i$ (where $N(\cdot)$ is Poisson, Markov-dep.).

II. Financial losses (GARCH(1,1) model).

Log. returns on a stock:

$$R_i = \sigma_i Z_i$$
, for $Z_i \sim N(0, 1)$,

where

$$\sigma_i^2 = a_0 + b_1 \sigma_{i-1}^2 + a_1 R_{i-1}^2.$$

Motivation. Volatility shows:

Correlation with absolute log. returns (and previous volatility); Little correlation with actual log. returns (R_{i-1}) .

Set:
$$\sigma_i^2 = X_i$$
, $A_i = (b_1 + a_1 Z_{i-1}^2)$, $B_i = a_0$.

Then above model becomes:

$$(*) X_i = A_i X_{i-1} + B_i,$$

where $\{(A_i, B_i)\}$ is i.i.d., $\mathbf{E}[\log A_i] < 0$.

(*) is called a "stochastic recurrence equation."

Note:

 $\{X_i\}$ is a Markov chain on \mathbb{R} .

Consider:

$$S_n = X_1 + \dots + X_n.$$

(cf. Mikosch-Konstantinides '05).

General Problem

Now suppose

$$S_n = f(X_1) + \dots + f(X_n),$$

where:

- $f(\cdot)$ is a random function.
- $\{X_i\}$ is an underlying Markov chain (on \mathbb{R} , or \mathbb{S}).

Nummelin-Athreya-Ney regeneration method:

Assume $\{X_i\}$ satisfies:

Minorization.

(M)
$$h(x)\nu(A) \le P^k(x,A) \equiv \mathbf{P} \{X_{n+k} \in A | X_n = x\}.$$

Then:

- $\tau_i \equiv T_i T_{i-1}$ "inter-regen. times" <u>exist</u>, <u>i.i.d</u>.
- $U_i \equiv S_{T_{i+1}} S_{T_i}$ <u>i.i.d</u>.
- Probab. law of S_{T_i} is $\nu(\cdot)$.

Results

Objective: Determine

$$\mathbf{P}\left\{S_n > u, \text{ some } n \leq \delta u\right\},$$

where
$$S_n = f(X_1) + \cdots + f(X_n)$$
,

and $\mu \equiv \mathbf{E}_{\pi}[f(X)] > 0$ (positive drift).

Let
$$U \stackrel{d}{=} S_{T_{i+1}} - S_{T_i}$$
.

Assumptions:

(A1) U is subexponential.

(A2)
$$P\{U^{-} < -u\} = o(P\{U > u\}), u \to \infty.$$

(A3) Markov chain is geometrically recurrent, i.e.,

$$\mathbf{E}\left[e^{\epsilon(T_i+1-T_i)}\right]<\infty, \text{ some } \epsilon>0.$$

<u>**Thm.</u>** (C-H., '05). Assume M.C. satisfies (M), and (A1)-(A3) hold. Then</u>

$$\mathbf{P}\left\{S_n > u, \text{ some } n \leq \delta u\right\} \sim \frac{\delta u}{\mathbf{E}\tau} \cdot \mathbf{P}\left\{U > (1 - \delta\mu)u\right\}.$$

Characterizing exceedence over regeneration cycle

Case 1: Operational risk losses.

For this case,

$$S_n = f(X_1) + \dots + f(X_n),$$

where $f(X_i) = \sum_{i=1}^{N(X_i)} Z_{i,j}$.

Here, $N(x) \sim \mathsf{Poisson}(\lambda(x))$.

Assumption:

(A4)
$$\Lambda(\alpha) < \infty$$
, some $\alpha > 0$,

where

$$\Lambda(\alpha) = \lim_{n \to \infty} \frac{1}{n} \log \mathbf{E} \left[e^{\alpha(\lambda(X_1) + \dots + \lambda(X_n))} \right].$$

(Spectral radius, "Gärtner-Ellis limit.")

Means: the intensity process $\{\lambda(X_i)\}$ has light tails.

<u>Proposition 1</u> (C-H.,'05). Assume cond's. of prev. thm., and that (A4) holds. Then

$$\mathbf{P}\{U>u\}\sim \mathbf{E}\tau\mathbf{E}_{\pi}\left[\lambda(X)\right]\bar{F}_{Z}(u) \text{ as } u\to\infty.$$

Equiv.: $\mathbf{P}\{U>u\} \sim \mathbf{E}\tau\mathbf{P}_{\pi}\{f(X)>u\}.$

Case 2: Stochastic recurrence eqn's.

Here,

$$X_i = A_i X_{i-1} + B_i,$$
 and
$$S_n = X_1 + \dots + X_n.$$

Suppose: $\mathbf{E} [\log A_i] < 1 \ (A_i < 1 \ \text{"on average"}).$ Define:

$$\Lambda_A(\alpha) = \log \mathbf{E} \left[e^{\alpha \log A_i} \right],$$

(c.g.f. of log A); and let $\Lambda_B(\cdot) = \text{c.g.f.}$ of log B.

Assumptions:

(A5) $\Lambda_A(\kappa) = 0$ some $\kappa > 0$.

(A6) $\Lambda_A(\alpha)$, $\Lambda_B(\alpha)$ finite for $\alpha \in \mathfrak{N}(\kappa)$.

 $\underline{ extstyle extstyle$

$$\mathbf{P}\{U>u\}\sim Cu^{-\kappa} \text{ as } u\to\infty.$$

(Build-up of $\log A_i$'s over long interval of length $= \rho \cdot \log u$.)

Summarizing:

$$\Big| \mathbf{P} \Big\{ S_n > u, \text{ some } n \leq \delta u \Big\} \sim Cu \mathbf{P}_{\pi} \Big\{ f(X) > (1 - \delta \mu) u \Big\};$$

but C (and its derivation) is <u>different</u> in the two separate cases.

<u>Related extension</u> (cf. Mikosch-Konstantinides '05): In GARCH(1,1) case, but with neg. drift, consider

$$P\{S_n > u, \text{ some } n\} = P\{\text{ruin}\}.$$

Then a simple application of Prop. 2 yields

$$P\{\text{ruin}\} \sim Du^{-(\kappa-1)}, \quad u \to \infty.$$

Reference:

COLLAMORE, J. F. and HÖING, A. (2005). Small-time ruin for a financial process modulated by a Harris recurrent Markov chain. Submitted.

(Available from http://www.math.ku.dk/ \sim collamore/)