Validation of the Ledford & Tawn Model

Holger Drees Peter Müller

University of Hamburg

Extreme Value Analysis
Gothenburg, August 15-19, 2005
Outline

The Ledford & Tawn Model of Extremal Dependence

Estimation in the Ledford & Tawn Model

Validation of the Ledford & Tawn Model

Case Study: Medical Claims
Modelling Dependence

\((X, Y), (X_i, Y_i)\) \(\mathbb{R}^2\)-valued, iid with d.f. \(F\)

\(F_1(x) := F(x, \infty), \quad F_2(y) := F(\infty, y)\) assumed continuous in right tail

Example: \((X, Y)\) claim sizes in two lines of business of insurance company

We assume that marginal df’s modelled using univariate extreme value statistics

To model dependence structure standardize margins to uniform df:

\[U := 1 - F_1(X), \quad V := 1 - F_2(Y) \]

Aim: Model df of \((U, V)\) (survival copula) on neighborhood of origin
Basic Model Assumption

\[P\left(\frac{U}{t} < x, \frac{V}{t} < y \mid U < t, V < t\right) = \frac{P\{U < tx, V < ty\}}{P\{U < t, V < t\}} \xrightarrow{t \downarrow 0} c(x, y) \]

uniformly on \{(x, y) \mid \max(x, y) = 1\} for some non-degenerate function \(c\)

Consequences:

- \(c\) homogeneous of order \(1/\eta\) for some \(\eta \in (0, 1]\):

\[
c(sx, sy) = \lim_{t \downarrow 0} \frac{P\{U < tsx, V < tsy\}}{P\{U < t, V < t\}} = \lim_{t \downarrow 0} \frac{P\{U < tsx, V < tsy\}}{P\{U < ts, V < ts\}} \cdot \frac{P\{U < ts, V < ts\}}{P\{U < t, V < t\}} = c(x, y) \cdot c(s, s) = c(x, y) \cdot s^{1/\eta}
\]

- \(t \mapsto P\{U < t, V < t\}\) regularly varying at 0 with exponent \(1/\eta\)
Coefficient of Tail Dependence η

- If $\eta < 1$, then for some slowly varying function l

$$P(U < t \mid V < t) = \frac{P\{U < t, V < t\}}{t} = t^{1/\eta - 1} l(t) \xrightarrow{t \downarrow 0} 0$$

i.e., *asymptotic independence*

- Roughly speaking

$\eta = 1$: asymptotic dependence

$\eta \in (1/2, 1)$: positive dependence, vanishes asymptotically

$\eta = 1/2$: independence

$\eta \in (0, 1/2)$: negative dependence, vanishes asymptotically
Scaling Law

In the Ledford & Tawn model the following scaling law holds:

\[
\frac{P\{U < tx, V < ty\}}{P\{U < x, V < y\}} \approx t^{1/\eta}
\]

for small \(x, y\), because

\[
\frac{P\{U < tx, V < ty\}}{P\{U < x, V < x\}} \approx c(t, ty/x) = t^{1/\eta}c(1, y/x)
\]

\[
\frac{P\{U < x, V < y\}}{P\{U < x, V < x\}} \approx c(1, y/x)
\]
Scaling Law

More generally: For sets A nearby origin

$$\frac{P\{(U, V) \in tA\}}{P\{(U, V) \in A\}} \approx t^{1/\eta}$$

Blowing up set A by factor t increases probability by factor $t^{1/\eta}$.
Estimating the Coefficient of Tail Dependence

survival function $1 - F_T$ of

$$T_i := \min \left(\frac{1}{U_i}, \frac{1}{V_i} \right)$$

is regularly varying with exp. $-1/\eta$, since $P\{T_i > t\} = P\{U_i < 1/t, V_i < 1/t\}$.

Approximate U_i, V_i with

$$\hat{U}_i := 1 - \frac{R_i^X}{n + 1}, \quad \hat{V}_i := 1 - \frac{R_i^Y}{n + 1}$$

and apply Hill estimator to $m = m_n$ largest order statistics of $\hat{T}_i := \min \left(\frac{1}{\hat{U}_i}, \frac{1}{\hat{V}_i} \right)$.

Draisma et al. (2004): asympt. normality, if $m_n \to \infty$ not too fast, c smooth.
Graphical Tools

\[
\frac{P\{U < tx, V < ty\}}{P\{U < x, V < y\}} \approx t^{1/\eta}
\]
for small \(x, y\).

Hence

\[
\frac{1}{\eta} \log t \approx \log \frac{P\{U < tx, V < ty\}}{P\{U < x, V < y\}} \approx \log \frac{\sum_{i=1}^n 1\{\hat{U}_i < tx, \hat{V}_i < ty\}}{\sum_{i=1}^n 1\{\hat{U}_i < x, \hat{V}_i < y\}},
\]

i.e. points

\[
\left(\log t, \log \frac{\sum_{i=1}^n 1\{\hat{U}_i < tx, \hat{V}_i < ty\}}{\sum_{i=1}^n 1\{\hat{U}_i < x, \hat{V}_i < y\}} \right)
\]

approximately on line through origin with slope \(1/\eta\), independent of \((x, y)\).
Planar Log-Log-Plot

Points

\[
\left(z_j, \log t_j, \log \frac{\sum_{i=1}^{n} 1 \{ \hat{U}_i < t_jx_j, \hat{V}_i < t_jy_j \})}{\sum_{i=1}^{n} 1 \{ \hat{U}_i < x_j, \hat{V}_i < y_j \}) \right)
\]

should approximately lie on plane \((z, u) \mapsto (z, u, u/\eta)\) where

\[
x_0 = \frac{1}{T_{n-m_n+1:n}}
\]

(i.e., consider region used for estimation of \(\eta\))
Planar Log-Log-Plot

\[(U_j^i, V_j^i) = (t_j x_j, t_j y_j)\]

\[z_j = \text{length of } (x_j, y_j)\]
Planar Log-Log-Plot

Which deviations from plane are significant?
Confidence Intervals

Under asymptotic independence and further conditions:

Estimated deviation from plane

$$\log \frac{\sum_{i=1}^{n} \mathbb{1}\{\hat{U}_i < tx, \hat{V}_i < ty\}}{\sum_{i=1}^{n} \mathbb{1}\{\hat{U}_i < x, \hat{V}_i < y\}} - \frac{1}{\hat{\eta}_n} \log t$$

approximately distributed according to $\mathcal{N}(0, m_n^{-1}\sigma_{x,y,t}^2)$ with

$$\sigma_{x,y,t}^2 = \frac{t^{-1/\eta} - 1}{(F_T^{-1}(1 - m_n/n))^{1/\eta}} c(x, y) - \frac{\log^2 t}{\eta^2}$$

\sim test whether deviation of single point of plot is significant

Graphical tool: Use colors to indicate p-values
Data

Claim sizes of US health insurer in 1991
- X_i: hospital
- Y_i: other

Claims reported only if $X_i + Y_i \geq 25\,000$ ($\$\$)$
\implies 92\,750$ claims

If interested in dependence structure for $(X, Y) \in [25\,000, \infty)^2$, then suffices to consider only (X_i, Y_i) with $\max(X_i, Y_i) \geq 25\,000$
\implies $n = 62\,822$ claims
Standardize Marginal Distributions

\[(X_i, Y_i)\]

\[(\hat{U}_i, \hat{V}_i) = \left(1 - \frac{R_i^X}{n+1}, 1 - \frac{R_i^Y}{n+1}\right)\]
Estimate η

\begin{align*}
\text{Hill plot} & \quad \text{Hill } qq - plot \text{ with } 95\%-\text{confidence intervals} \\
\eta \approx 0.713 \quad (0.693, 0.733) & \quad m = 5000 \quad \sim \hat{\eta}_n \approx 0.713
\end{align*}
Model Check

test at 5%-level rejects model for 3.6% of points
Beware!

Due to standardization with marginal df’s \(\eta \) and \(c \) do not depend only on large \(X, Y \)!

Similar analysis based on \((X_i, Y_i) \in [25\,000, \infty)^2\) (i.e., \(\min(X_i, Y_i) \geq 25\,000 \)) yields

\[\hat{\eta}_n \approx 0.58 \quad ([0.55, 0.62]) \]

Difference to above estimate \(\hat{\eta}_n \approx 0.713 \) is statistically significant!

Also estimators for \(c \) show statistically significant differences...
Estimates of c

\[
\hat{c}_n(x, y) := \frac{\sum_{i=1}^{n} 1 \{ \hat{U}_i < xk/n, \hat{V}_i < yk/n \}}{\sum_{i=1}^{n} 1 \{ \hat{U}_i < k/n, \hat{V}_i < k/n \}}
\]

black: $\max(X_i, Y_i) \geq 25000$

red: $\min(X_i, Y_i) \geq 25000$
Asymptotic Normality of Deviation

If

\[\sup_{(x,y): \max(x,y) = 1} \left| \frac{P\{U < tx, V < ty\}}{P\{U < t, V < t\}} - c(x, y) \right| = O(q_1(t)) \]

asymptotic independence holds

\[m_n \to \infty \text{ such that } \sqrt{m_n q_1} \left(\frac{1}{F_T^{-1}(1 - m_n/n)} \right) \to 0 \]

\[c \text{ partially differentiable,} \]

then for \(k_n := n \frac{1}{F_T^{-1}(1 - m_n/n)} \) and \(\tilde{\sigma}_{x,y,t}^2 = \frac{t^{-1/\eta - 1}}{c(x, y)} - \frac{\log^2 t}{\eta^2} \) one has

\[\sqrt{m_n} \left(\log \frac{\sum_{i=1}^n 1_{\{\hat{U}_i < tx_1k_n/n, \hat{V}_i < ty_1k_n/n\}}}{\sum_{i=1}^n 1_{\{\hat{U}_i < x_1k_n/n, \hat{V}_i < y_1k_n/n\}}} - \frac{1}{\hat{\eta}_n} \log t \right) \to \mathcal{N}(0, \tilde{\sigma}_{x,y,t}^2) \]
Idea of Proof

Proof is based on approximations of certain empirical processes.

In particular (Draisma et al. (2004)):

\[
m_n^{1/2} \left(\sum_{i=1}^n \mathbb{1} \{ \hat{U}_i \leq \frac{kx}{n}, \hat{V}_i \leq \frac{ky}{n} \} \right) \rightarrow W(x, y)
\]

weakly in \(D[0, \infty)^2 \), where \(W \) is a centered Gaussian process with

\[
\text{Cov} \left(W(x_1, y_1), W(x_2, y_2) \right) = c \left(\min(x_1, x_2), \min(y_1, y_2) \right)
\]

under asymptotic independence.
Idea of Proof

\[m_n(\hat{\eta}_n - \eta) = \int_0^1 \eta t^{-(\eta+1)} W(t^{\eta}, t^{\eta}) (t^{\eta} dt - \varepsilon_1(dt)) + o_P(1) \]

\[\sim \sqrt{m_n} \left(\log \frac{\sum_{i=1}^n \mathbb{1} \{ \hat{U}_i < tx_1 k/n, \hat{V}_i < ty_1 k/n \}}{\sum_{i=1}^n \mathbb{1} \{ \hat{U}_i < x_1 k/n, \hat{V}_i < y_1 k/n \}} - \frac{1}{\hat{\eta}_n} \log t \right) \]

\[= \sqrt{m_n} \left(\frac{W(tx_1, ty_1)}{c(tx_1, ty_1)} - \frac{W(x_1, y_1)}{c(x_1, y_1)} + \frac{\log t}{\eta} \int_0^1 \eta t^{-(\eta+1)} W(t^{\eta}, t^{\eta}) (t^{\eta} dt - \varepsilon_1(dt)) \right) + o_P(1) \]