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1. Motivation and Introduction

Motivation

Heavy-tailed models are quite useful in the most diversified
areas (insurance, economics, finance, telecommunications,
biostatistics,...) and the classical semi-parametric estimators
of extreme events’ parameters usually exhibit a reasonably
high bias for low thresholds, i.e., for large values of k, the
number of top o.s. used for the estimation.

Recently, new classes of reduced bias’ tail index estimators
have been introduced in the literature. The estimation of the
second order parameters in the bias at a level k1 larger than
k, the level at which we compute the tail index estimators,
enables keeping the asymptotic variance of the new estimators
equal to the asymptotic variance of the Hill estimator,

H(k) :=
k∑

i=1

Ui/k, Ui := i (lnXn−i+1:n − lnXn−i :n) , 1 ≤ i ≤ k.
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1. Motivation and Introduction

Here we deal with bias reduction techniques for heavy tails,
trying to improve the performance of the classical high
quantile estimators, strongly dependent on the tail index
estimation.

Main objectives of this presentation:

1 Introduce new classes of high quantiles’ estimators in the lines
of Gomes and Figueiredo (2003) and Matthys and Beirlant
(2003)

2 Prove their consistency and asymptotic normality under
appropriate conditions

3 Compare them with alternative ones through Monte Carlo
simulations
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1. Motivation and Introduction

Introduction
Definition 1: A model F is said to have a heavy right tail
whenever the maximum, linearly normalized, of an i.i.d. sample of
size n, converges weakly, as n →∞, towards the Extreme Value
d.f.,

EVγ(x) =

{
exp

(
−(1 + γx)−1/γ

)
, 1 + γx > 0 if γ 6= 0

exp(− exp(−x)), x ∈ R if γ = 0
,

with γ > 0. We write F ∈ DM (EVγ), with DM denoting domain of
attraction for maxima.

Let RVα denote the class of regularly varying functions with index
α, i.e., positive measurable functions g such that
lim

t→∞
g(tx)/g(t) = xα, for all x > 0.

For γ > 0, U(t) := F←(1− 1/t) = inf {x : F (x) ≥ 1− 1/t} and
F← the generalized inverse of the underlying model F ,

F ∈ DM (EVγ) ⇔ 1− F ∈ RV−1/γ ⇔ U ∈ RVγ .
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1. Motivation and Introduction

Main objective of this paper: Estimate a value χp such that
1− F (χp) = p, with p small, more specifically,

χp = U (1/p) , p = pn → 0, n pn → K , as n →∞, 0 ≤ K ≤ 1.

We shall assume to be working in Hall’s class of models,
where there exist γ > 0, ρ < 0, C > 0 and β 6= 0 such that

U(t) = Ctγ
(
1 + γ β tρ

ρ + o(tρ)
)

, as t →∞.

We are going to base inference on the largest k top o.s., i.e.,
we shall assume k to be intermediate,

k = kn →∞, k = o(n) as n →∞.

Possible semi-parametric quantile estimator:

Q
(p)bγ (k) := Xn−k:n

(
k

np

)bγ
(Weissman, 1978).



Comparison of semi-parametric reduced bias’ quantile estimators

1. Motivation and Introduction

Classical quantile estimator:

Q(p)
H

(k) := Xn−k:n

(
k

np

) kP
i=1

Ui/k

=: Xn−k:n

(
k

np

)H(k)

.

To derive the asymptotic non-degenerate behaviour of the
semi-parametric estimators, we assume

lim
t→∞

lnU(tx)− lnU(t)− γ ln x

A(t)
=

xρ − 1

ρ
, for all x > 0,

where A(·) is a function of constant sign near infinity, ρ ≤ 0 is
the second order parameter and |A| ∈ RVρ (Geluk and de
Haan, 1987).

We assume ρ < 0, and since we are working with models in
Hall’s class, the previous second order condition holds true
with A(t) = γ β tρ, and for an adequate k, we may guarantee
the asymptotic normality of the Hill estimator.



Comparison of semi-parametric reduced bias’ quantile estimators

1. Motivation and Introduction

Proposition 1 [de Haan and Peng, 1998]: We may write the
asymptotic distributional representation

H(k) :=
1

k

k∑
i=1

Ui
d
= γ +

γ Pk√
k

+
A(n/k)

1− ρ
(1 + op(1)),

Pk =
√

k
(∑k

i=1 Ei/k − 1
)
, with {Ei} standard exponential i.i.d.

r.v.’s. Consequently, if we choose a level k such that√
k A(n/k) → λ 6= 0, finite, as n →∞,

√
k (H(k)− γ) is

asymptotically normal, with a non-null bias given by λ/(1− ρ).

Most of the times, this type of estimates exhibit a strong bias
for moderate k and sample paths with very short stability
regions around the target value γ.

This problem has been recently addressed by several authors,
who consider the possibility of dealing with the bias term in
an appropriate way, building different new estimators, γ̂

R
(k)

say, the so-called second order reduced bias’ estimators.
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2. Second Order Reduced Bias’ Tail Index Estimators

Second Order Reduced Bias’ Tail Index Estimators

Definition 2: A tail index estimator γ̂
R
(k) is said to be a second

order reduced bias’ estimator if, for k intermediate, and under the
second order framework, we may write

γ̂
R
(k)

d
= γ +

σ
R

P
R

k√
k

+ op(A(n/k)),

with P
R

k an asymptotically standard normal r.v., σ
R

> 0 and A(·)
being again the function controlling the speed of convergence of
maximum values, linearly normalized, towards a non-degenerate
r.v. with d.f. EVγ .

Remark 1:
√

k (γ̂
R
(k)− γ) is asymptotically normal with a null

mean value even when
√

k A(n/k) → λ, finite, possibly non-null,
as n →∞.
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2. Second Order Reduced Bias’ Tail Index Estimators

Gomes and Figueiredo (2003) suggest the use of reduced bias’
tail index estimators in the quantile estimator functional
expression, in order to reduce also the dominant component of
the classical quantile estimator’s asymptotic bias.

Mathys and Beirlant (2003) try also to reduce the bias of the
classical quantile estimators, going directly into the second
order framework. With Yi :n, 1 ≤ i ≤ n, denoting the set of
ascending o.s. associated to a standard Pareto i.i.d. sample,

χp

Xn−k:n
=

U(1/p)

U (Yn−k:n)

p∼ aγ
n

(
1 + A(n/k)

aρ
n − 1

ρ

)
, an = k/(n pn).

For A(t) = γ β tρ, (γ̂, β̂, ρ̂) a suitable estimator of (γ, β, ρ), they
get

Q
(p)

bγ (k) := Xn−k:n

(
k

np

)
bγ

exp

(
γ̂ β̂

(n

k

)
bρ (k/(np))bρ − 1

ρ̂

)
.
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2. Second Order Reduced Bias’ Tail Index Estimators

It is known (Gomes and Figueiredo, 2003) that the use of a
reduced bias’ tail index estimator γ̂

R
provides better results

than the use of the classical Hill estimator H.

The obvious question that we shall try to answer both
theoretically and computationally, is the following:
Is it better to work with

1 the estimator Q
(p)bγ and a reduced bias estimator γ̂ ≡ γ̂

R

of γ,

2 the estimator Q
(p)bγ and a classical estimator of γ, like the

Hill estimator H(k),

3 or the estimator Q
(p)bγ and a reduced bias estimator γ̂

R
of

γ?
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2. Second Order Reduced Bias’ Tail Index Estimators

We shall use the second order reduced bias’ tail index
estimator from Gomes and Martins (2002). With the notation

sρ(k) =
1

k

k∑
i=1

(
i

k

)−ρ

and Sρ(k) = 1
k

∑k
i=1

(
i
k

)−ρ
Ui ,

we may write the “maximum likelihood” estimator for the tail
index γ in the form

M(k) ≡ Mbρ(k) := S0(k)− Sbρ(k)×
sbρ(k) S0(k)− Sbρ(k)

sbρ(k) Sbρ(k)− S2bρ(k)
.

Remark 2: This estimator attains the minimal asymptotic
variance in Drees’ class of functionals (Drees, 1998), given by
(γ(1− ρ)/ρ)2.
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2. Second Order Reduced Bias’ Tail Index Estimators

Notice that we may also write,

M(k) = S0(k)− β̂
bρ(k)

(n

k

)
bρ

S
bρ(k)

with

β̂
bρ(k) :=

(
k

n

)
bρ

s
bρ(k) S0(k)− S

bρ(k)

s
bρ(k) S

bρ(k)− S2bρ(k)
.

In the lines of the paper by Gomes et al. (2005), we shall
consider, for a suitable consistent estimator of the second
order parameter ρ-estimator, ρ̂, the β-estimator, β̂ ≡ β̂bρ(k1),
computed at

k1 = min(n − 1, [2n/ ln ln n]).

The estimate β̂ is then incorporated in M(k), and we get

M(k) ≡ M
bβ, bρ(k) := S0(k)− β̂

(n

k

)
bρ

S
bρ(k).
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2. Second Order Reduced Bias’ Tail Index Estimators

Proposition 2 [Gomes et al., 2005]: If the second order condition
holds, if k = kn is a sequence of intermediate positive integers, and
if
√

k A(n/k) → λ, finite and non necessarily null, as n →∞, then

√
k
(
Mβ, ρ(k)− γ

) d−→
n→∞

Normal
(
0, γ2

)
.

This same limiting behaviour holds true if we replace Mβ, ρ by
M bβ, bρ, provided that ρ̂− ρ = op(1) for every k-value on which we

base the tail index estimation, and we choose β̂ := β̂bρ(k1).

The M and M estimators have been plugged in Q and Q,

providing us with the estimators Q(p)
M

, Q(p)
M

, Q
(p)

M
and Q

(p)

M
,

respectively. These estimators require the estimation of the
shape second order parameter ρ.
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2. Second Order Reduced Bias’ Tail Index Estimators

Estimation of the Shape Second Order Parameters
We shall consider again particular members of the class of
estimators of ρ proposed in Fraga Alves et al. (2003). They
depend on the statistics:

T
(τ)
n (k) :=



�
M

(1)
n (k)

�τ
−
�
M

(2)
n (k)/2

�τ/2

�
M

(2)
n (k)/2

�τ/2
−
�
M

(3)
n (k)/6

�τ/3 if τ 6= 0

ln
�
M

(1)
n (k)

�
− 1

2
ln
�
M

(2)
n (k)/2

�
1
2

ln
�
M

(2)
n (k)/2

�
− 1

3
ln
�
M

(3)
n (k)/6

� if τ = 0

,

which converge towards 3(1− ρ)/(3− ρ), for any τ , whenever
the second order condition holds, k is intermediate and√

k A(n/k) →∞, as n →∞.
The ρ-estimators may thus be written as

ρ̂τ (k) ≡ ρ̂
(τ)
n (k) := min

(
0,

3(T
(τ)
n (k)− 1)

T
(τ)
n (k)− 3

)
.
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2. Second Order Reduced Bias’ Tail Index Estimators

Remark 3: Different theoretical and simulated results, together
with the use of these estimators in different reduced bias’
statistics, have led us to advise in practice the drawing of a few
sample paths of ρ̂τ (k), as functions of k, electing the value of τ
which provides higher stability for large k, by means of any
stability criterion, like the ones in Gomes and Figueiredo (2003)
and in Gomes and Pestana (2004).

The consideration of the level k1 seems to be an adequate
choice for the level k. The choice between the tuning
parameters τ = 0 and τ = 1, leads us to advise the
consideration of τ = 0 whenever ρ ∈ [−1, 0) and τ = 1 for the
region ρ ∈ (−∞,−1).

We shall denote generically ρ̂ any of these estimators. We use
β̂ = β̂bρ(k1). We shall use a subscript j to specify the value of

τ ≡ j , j = 0 or 1, writing ρ̂j , β̂j , Mj and M j .
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3. Asymptotic Behaviour of Reduced Bias’ High Quantile Estimators

Asymptotic Behaviour

For intermediate k, and with an := k/(npn), which, given the
conditions, goes to infinity as n →∞, we are here dealing with
semi-parametric p-quantile estimators of the type

Q
(p)bγ (k) := Xn−k:n a

bγ(k)
n

and

Q
(p)bγ (k) := Xn−k:n a

bγ(k)
n exp

(
γ̂(k) β̂

(n

k

)bρ abρn − 1

ρ̂

)
,

where γ̂(k) is any semi-parametric estimator of the tail index γ.

Directly from Theorem 3.1 in Gomes and Figueiredo (2003), we
may state:
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3. Asymptotic Behaviour of Reduced Bias’ High Quantile Estimators

Theorem 1: Under the second order framework, for intermediate

k, in Hall’s class of models, and whenever ln (n pn) = o
(√

k
)

, we

may write, with Pk , Wk and W k asymptotically standard normal
r.v.’s, and with Q̃ denoting either Q or Q,

√
k

ln an

(
Q̃(p)

H
(k)

χp
− 1

)
d
= γ Pk +

√
kA(n/k)

1− ρ
+ op

(√
k A(n/k)

)
,

√
k

ln an

(
Q̃(p)

M
(k)

χp
− 1

)
d
=

γ(1− ρ)

ρ
Wk + op

(√
k A(n/k)

)
√

k

ln an

(
Q̃(p)

M
(k)

χp
− 1

)
d
= γ W k + op

(√
k A(n/k)

)
.
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3. Asymptotic Behaviour of Reduced Bias’ High Quantile Estimators

In the proof, we get:

Q
(p)
bγ(k)(k)

χp
− 1

d
= (γ̂(k)− γ) ln an +

γ Bk√
k

+
A(n/k)

ρ
+ op(A(n/k)) (∗)

Q
(p)

bγ(k)(k)

χp
− 1

d
= (γ̂(k)− γ) ln an +

γ Bk√
k

+ op(A(n/k)). (∗∗)

Remark 4: If we compare (∗) and (∗∗) we notice that the main
contribution in terms of bias is provided by a possible bias of γ̂(k).

It thus seems obvious that, for the semi-parametric estimation
of a high quantile, it is better to use a reduced bias’ tail index
estimator than a classical tail index estimator.
Moreover, although the main contribution comes from the
first summand, we expect to get slightly better results when

we use Q
(p)bγ instead of Q

(p)bγ , due to that remaining summand
of the order of A(n/k) in (∗).
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4. Simulated Behaviour of High Quantile Estimators

Simulated Behaviour
For the estimation of the second order parameter ρ, and as
mentioned before, we have here used the value τ = 0 or τ = 1,
according as |ρ| ≤ 1 or |ρ| > 1, together with the level k1.

In Figures 1 and 2, we show, for p = 1/n and j = 0 or 1, the
simulated patterns of mean value, E [·], and root mean

squared error, RMSE [·], of Q(p)
H

(k)/χp, Q
(p)
Mj

(k)/χp,

Q
(p)

M j
(k)/χp, based thus on the Hill and the “maximum

likelihood” reduced bias’ estimators M and M. These
quotients will be denoted QH , QMj

and QM j
, respectively.

The notations QMj
and QM j

hold for the same quotients

associated with the estimator Q, dependent on Mj = Mbρj
and

M j = M bβj , bρj
, respectively.
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4. Simulated Behaviour of High Quantile Estimators

Figure 1: Simulated distributional behaviour of the estimators under study for an
underlying Frechet parent with γ = 1 (ρ = −1).
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4. Simulated Behaviour of High Quantile Estimators

Figure 2: Simulated distributional behaviour of the estimators under study for an
underlying Burr parent with γ = 1 and ρ = −0.5.
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5. A Case-study

Case-study: The analysis of the Euro-USA Dollar daily
exchange rates from 01/04/1999 till 12/14/2004.

Figure 3: The sample path of the ρ̂τ (left), as function of k, together
with the sample paths of the β-estimators, for τ = 0 and τ = 1 (right),
for the n+ = 748 positive log-returns.
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5. A Case-study

Note that the sample paths of the ρ-estimates associated to
τ = 0 and τ = 1 lead us to choose, on the basis of any
stability criterion for large k, the estimate associated to τ = 0.

From previous experience with this type of estimates, we
conclude that the underlying ρ-value is larger or equal to −1,
and the consideration of τ = 0 is then advisable.

The estimate of ρ is in this case ρ̂0 = −0.7, obtained at the
level k1 = 748. The associated β-estimator is β̂0 = 1.05.
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5. A Case-study

Figure 4: Estimates of the tail index γ provided by the estimators H, M
and M (left), and the corresponding quantile estimators χp, associated to
p = 0.001 (right), for the Daily Log-Returns of the Euro-USA Dollar.
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5. A Case-study

Regarding the tail index estimation, note that whereas the Hill
estimator is unbiased for the estimation of the tail index γ
when the underlying model is a strict Pareto model, it exhibits
a relevant bias when we have only Pareto-like tails, as
happens here.

The other estimators, which are “asymptotically unbiased”
reveal a smaller bias, and enable us to take a decision upon
the estimate of γ to be used, with the help of any stability
criterion or any heuristic procedure, like a largest run method
as the one described in the sequel.
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6. Some Overall Conclusions

Some Overall Conclusions

The obtained results lead us to strongly advise the use of the
quantile estimator Q, with the tail index estimator M(k), for
models with ρ = −1.

Anyway, the estimator Q, with the tail index estimator M(k),
does also exhibit an interesting performance, particularly for
all the simulated models with ρ 6= −1.

Remark 5: Note that, similarly to what has happened before with
the tail index estimation, the computation of both second order
parameters’ estimators, at the high value k1, enables us to work
with high quantiles’ estimators, with a mean squared error smaller
than the mean squared error of the classical estimator, for all k.
Those high quantile estimators are provided by the use in Q or Q
of the tail index estimator M.
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