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1 - Introduction

Denote by F the heavy-tailed distribution function (df) of X, the common df of the i.i.d.
sample {Xi}

n
i=1, for which the extreme quantile

χp = χp(X) = F←(1 − p)

has to be estimated. Here F←(t) = inf{x : F (x) ≥ t}.

Classical estimators based on the largest o.s. from X
∼

:= (Xn:n, Xn−1:n, · · · , X1:n) ,

will be considered here, which involve Xn:n ≥ Xn−1:n ≥ · · · ≥ Xn−k:n, where Xn−k:n is
an intermediate order statistic (o.s.), i.e., k is an intermediate sequence of integers,

k = kn → ∞, kn/n → 0, as n → ∞. (1)

Moreover, we are mainly interested in the natural case

p = pn → 0, as n → ∞, such that npn → c ≥ 0. extreme quantile (2)
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Basic assumption for heavy-tailed distributions – semi-parametric approach:

F ∈ D(Gγ)γ>0,

Gγ(x) = exp(−(1 + γx)−1/γ), 1 + γx ≥ 0, γ ∈ R, G0(x) = exp(−e−x).

First order condition

F ∈ D(Gγ)γ>0 iff F ∈ RV−1/γ iff U ∈ RVγ,

U(t) := F←(1− 1/t), t ≥ 1;

that is,

lim
t→∞

1 − F (tx)

1 − F (t)
= x−1/γ iff lim

t→∞
U(tx)

U(t)
= xγ, for all x > 0

High Quantile–pn ⇛ χpn = U

(

1

pn

)

. (3)
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Second order condition

lim
t→∞

U(tx)/U(t) − xγ

A(t)
= xγxρ − 1

ρ
, (4)

for all x > 0, where A is a suitable chosen function of constant sign near infinity,
|A| ∈ RVρ, where ρ ≤ 0 is the second order parameter.

Notation:

RVα stands for positive measurable functions h: lim
t→∞

h(tx)/h(t) = xα, for all x > 0.

Hall’s class:

U(t) = Ctγ(1 + Dtρ + o(tρ)), ρ < 0, as t → ∞. (5)
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Classical semi-parametric estimator of a high quantile χp

Weissman-type estimator of χpn, (Weissman,1978)

χ̂W
pn

= χ̂W
pn

(X
∼

) = Xn−kn:n

(

kn

npn

)γ̂n

, (6)

with γ̂n = γ̂n(X
∼

) some consistent estimator of the tail parameter γ.

Classical semi-parametric estimators of the tail index γ
Hill estimator (Hill,1975) γ > 0

γ̂
H
n = γ̂

H
n (X
∼

) =
1

kn

kn
∑

i=1

log
Xn−i+1:n

Xn−kn:n

(7)

Moment estimator (Dekkers et al.,1989) γ ∈ R

γ̂
M
n = γ̂

M
n (X
∼

) = M
(1)
n + 1− 1

2

{

1− (M (1)
n )2

M
(2)
n

}−1

, (8)

with M (r)
n the r-Moment: M (r)

n = M (r)
n (X

∼
) = 1

kn

∑ kn
i=1

(

log
Xn−i+1:n
Xn−kn:n

)r

, for r = 1, 2, 3.
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Both estimators (7) and (8) are scale-invariant,

γ̂
H
n (δX

∼
)

d
=γ̂

H
n (X
∼

) and γ̂
M
n (δX

∼
)

d
=γ̂

M
n (X
∼

)

⇛ δ-scale transformations to the data do not interfere with their stochastic behaviour.

In what concerns the quantile Weissman-type estimator (6), for δ > 0,

χ̂
W
pn

(δX
∼

) = δXn−kn:n

(

kn

npn

) γ̂n
d
=δχ̂

W
pn

(X
∼

),

a desirable exact property for quantile estimators, under positive scale-transformations.

For λ-shift into the data: Y := X + λ, for λ ∈ R, we would like that

χ̂pn(Y
∼

)
d
=χ̂pn(X

∼
) + λ. (9)

⇛ Theoretical linear property for quantiles

χp(δX + λ) = δχp(X) + λ. (10)
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Fraga Alves and Araújo Santos (2004) have studied a first approach study to this problem; therein,

a simple modification of (6) has been proposed which enjoys the property (9) approximately.

Here we will present a class of extreme quantile-estimatores for which (9) holds exactly, pursuing

the empirical counterpart of theoretical linear property (10).

Consider first the sample of excesses over a random threshold Xni:n
:

X
∼

(i)
:=

(

Xn:n −Xni:n
, Xn−1:n −Xni:n

, · · · , Xni+1:n −Xni:n

)

, i = 1, 2.

• n1 := 1 for df’s with finite left endpoint xF := inf{x : F (x) > 0}
– threshold X1:n minimum

• n2 := [nq] + 1, 0 < q < 1, for df’s with finite or infinite left endpoint xF

– threshold X[nq]+1:n empirical quantile

• γ̂(i)
n any consistent estimator of the tail parameter γ, made location/scale invariant by using the

transformed sample X
∼

(i).

• Modified-Weissman estimator:

χ̃
(i)
pn

= (Xn−kn:n −Xni:n
) (kn/npn)

γ̂
(i)
n + Xni:n

, i = 1, 2. (11)
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2 - Tail index estimation with the sample of excesses

We propose to incorporate in the Modified-Weissman (11) quantile, estimators of tail parameter γ > 0,

via the sample of excesses X
∼

(i), i = 1, 2, which allows to obtain exactly the linear property (9).

Denote γ̂H(i)
n and γ̂M(i)

n , the Hill (7) and Moment (8) tail index estimators, as functions of the

transformed sample X
∼

(i), i = 1, 2; that is,

γ̂
H(i)
n := γ̂

H
n (X
∼

(i)
) and γ̂

M(i)
n := γ̂

M
n (X
∼

(i)
)

Asymptotic distributional representation for Hill and Moment estimators, using the sample of excesses?

BIAS? VARIANCE?

Notation: In the following χi , for i = 1, 2, denotes:

χ1 := xF – finite left endpoint of F χ2 := χ∗q – q-quantile of F : F (χ∗q) = q.

4th Conference on Extreme Value Analysis, Gothenburg, August 15-19, 2005 8



Theorem 1. (Modified-Hill) For k an intermediate sequence as in (1) and the validity of the second

order condition in (4), the asymptotic distributional representation

γ̂
H(i)
n

d
=γ +

σH√
k

Pk +
(

d1A(n/k) + d2

χi

U(n/k)

)

(1 + op(1))

holds, where Pk is an asymptotically standard normal r.v., σ2
H := γ2, d1 := 1

1−ρ and d2 := γ
γ+1.

Theorem 2. (Modified-Moment) For k an intermediate sequence as in (1)and the validity of the

second order condition in (4), the asymptotic distributional representation

γ̂
M(i)
n

d
=γ +

σM√
k

Rk +
(

c1A(n/k) + c2

χi

U(n/k)

)

(1 + op(1))

holds, with Rk is asymptotically standard normal, σ2
M := γ2 + 1, c1 := γ(1−ρ)+ρ

γ(1−ρ)2
and c2 :=

(

γ
γ+1

)2

.

Remark 1: Notice that

σ
2
M = σ

2
H + 1, c1 = d1 +

ρ

γ(1− ρ)2
and c2 = (d2)

2
;

consequently,

σM > σH, c1 < d1 and c2 < d2.
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Corollary 1: Since (4) holds, |A| ∈ RVρ, U ∈ RVγ and 3 cases must be considered:

let µ1, µ2, be finite and non-null constants.

• γ > −ρ:

γ̂
H(i)
n

d
=γ +

σH√
k

Pk + d1A(n/k)(1 + op(1))

γ̂
M(i)
n

d
=γ +

σM√
k

Rk + c1A(n/k)(1 + op(1))

if
√

kA (n/k)→ µ1, then

√
k

(

γ̂H(i)
n − γ

)

is asymptotically Normal(mean: µ1d1 , variance: σ2
H = γ2).

√
k

(

γ̂M(i)
n − γ

)

is asymptotically Normal(mean: µ1c1, variance: σ2
M = 1 + γ2).

• γ = −ρ:

if
√

kA (n/k)→ µ1 and
√

k/U (n/k)→ µ2, then

√
k

(

γ̂H(i)
n − γ

)

is asymptotically Normal(mean: µ1d1 + µ2d2χi , variance: σ2
H = γ2)

√
k

(

γ̂M(i)
n − γ

)

is asymptotically Normal(mean: µ1c1 + µ2c2χi , variance: σ2
M = 1 + γ2).
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• γ < −ρ:

γ̂
H(i)
n

d
=γ +

σH√
k

Pk + d2

χi

U(n/k)
(1 + op(1))

γ̂
M(i)
n

d
=γ +

σM√
k

Rk + c2

χi

U(n/k)
(1 + op(1))

if
√

k/U (n/k)→ µ2, then

√
k

(

γ̂H(i)
n − γ

)

is asymptotically Normal(mean: µ2d2χi , variance: σ2
H = γ2)

√
k

(

γ̂M(i)
n − γ

)

is asymptotically Normal(mean: µ2c2χi , variance: σ2
M = 1 + γ2).

Remark 2:

• If there is evidence that the underlying F is symmetric the random threshold should be chosen as

the empirical median; i.e., X[nq]+1:n = X[n/2]+1:n, since the theoretical median for the standard

model χ2 := χ∗q, q := 1/2, can be chosen to be zero, χ∗1/2 = 0.

• If there is evidence that the underlying F has finite left endpoint xF , the random threshold should

be chosen as the sample minimum; i.e., X1:n, since the theoretical left endpoint for the standard

model χ1 := xF , , can be chosen to be zero, xF = 0.
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3 - Reduced bias tail index estimators

In Gomes and Figueiredo (2002), several reduced bias tail index estimators have been considered, which

are based on the estimation of the second order parameter ρ and allows an asymptotic distributional

representation

γ̂n
d
=γ +

σγ√
k

Qk + op (A (n/k)) ,

with Qk standard normal.

Then it is achieved asymptotic normality for
√

k (γ̂n − γ) with null mean value,

not only when
√

kA (n/k)→ 0,

but also when
√

kA (n/k)→ µ, finite and non-null.

Other references: Gomes and Martins (2001), (2002) and Gomes and Caeiro (2002).

We have chosen the one which provides the smallest asymptotic variance for all values of ρ, the

so-called ML(maximum likelihood) estimator.
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The ML estimator:

In Hall’s class (5), the scaled log-spacings, Ui = i
[

ln
Xn−i+1:n
Xn−k:n

]

,1≤i≤k, are approximately exponential

with mean µi = γeD( i
n)−ρ

.

Based on the joint maximization of the log-likelihood of the Ui, in γ, D and ρ, they proposed the

Estimator for the tail index γ,

γ̂
ML
n := γ

ML(ρ̂)
n (X

∼
) =

1

k

k
∑

i=1

Ui −
( 1

k

k
∑

i=1

i
−ρ̂

Ui

) (
∑ k

i=1 i−ρ̂)(
∑ k

i=1 Ui)− k(
∑ k

i=1 i−ρ̂Ui)

(
∑ k

i=1 i−ρ̂)(
∑ k

i=1 i−ρ̂Ui)− k(
∑ k

i=1 i−2ρ̂Ui)

Estimator of the second order parameter ρ

We shall consider here an estimator of ρ proposed by Fraga Alves et. al.(2003), which depend on the

moments M (i)
n (k),i=1,2,3 through the statistic:

Tn := Tn,k(X
∼

) =

(

M (1)
n (k)

)

−
(

M (2)
n (k)/2

)1/2

(

M
(2)
n (k)/2

)1/2

−
(

M
(3)
n (k)/6

)1/3

The estimator of ρ is given by

ρ̂ := ρ̂n(X
∼

) = min
(

0,
3(Tn − 1)

Tn − 3

)

, with k = min(n− 1, [2n/ log log n])
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4 - High quantile estimation

Define the estimators of χpn defined in (3)

• as function of the original sample, X
∼

, inspired by (6):

– χ̂W
pn

:= Xn−kn:n

(

kn
npn

) γ̂H
n

– χ̂M
pn

:= Xn−kn:n

(

kn
npn

) γ̂M
n

• and as function of the sample of excesses over Xni:n
, X
∼

(i), inspired by (11):

– χ̃
(i)
pn,H := (Xn−kn:n −Xni:n

)
(

kn
npn

) γ̂
H(i)
n

+ Xni:n
, i = 1, 2.

– χ̃
(i)
pn,M := (Xn−kn:n −Xni:n

)
(

kn
npn

) γ̂
M(i)
n

+ Xni:n
, i = 1, 2.
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Theorem 3. In Hall’s class (5), for intermediate sequences kn that satisfy

log (npn)/
√

kn → 0, as n→∞,

with pn such that (2) holds, then

√
kn

σH log(kn/(npn))





χ̃
(i)
pn,H

χpn

− 1



 = Pk +
√

kn

(

d1A(n/k) + d2

χi

U(n/k)

)

(1 + op(1))

holds, where Pk is an asymptotically standard normal r.v., σ2
H := γ2, d1 := 1

1−ρ and d2 := γ
γ+1.

Moreover, for:

1. γ > −ρ and
√

knA(n/kn)→µ1, finite, as n→∞, then the mean value is µ1d1;

2. ρ < −γ and
√

kn/U(n/kn)→µ2, finite, as n→∞, then the mean value is µ2d2χi;

3. ρ = −γ,
√

knA(n/kn)→µ1, finite, and
√

kn/U(n/kn)→µ2, finite, as n → ∞, then the

mean value is µ1d1 + µ2d2χi.
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Theorem 4. In Hall’s class, for intermediate sequences kn that satisfy

log (npn)/
√

kn → 0, as n→∞,

with pn such that (2) holds, then

√
kn

σM log(kn/(npn))





χ̃
(i)
pn,M

χpn

− 1



 = Rk +
√

kn

(

c1A(n/k) + c2

χi

U(n/k)

)

(1 + op(1))

holds, Rk is asymptotically a standard normal r.v., σ2
M := γ2 +1, c1 := γ(1−ρ)+ρ

γ(1−ρ)2
and c2 :=

(

γ
γ+1

)2

.

Moreover, for:

1. γ > −ρ: and
√

knA(n/kn)→µ1, finite, as n→∞, then the mean value is µ1c1;

2. ρ < −γ and
√

kn/U(n/kn)→µ2, finite, as n→∞, then the mean value is µ2c2χi;

3. ρ = −γ,
√

knA(n/kn)→µ1, finite, and
√

kn/U(n/kn)→µ2, finite, as n → ∞, then the

mean value is µ1c1 + µ2c2χi.
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Observation: We define, as before, the

Modified-ML estimator as a function of the sample of excesses over a random threshold Xni:n
, i.e.,

χ̃
(i)
p,ML := (Xn−kn:n −Xni:n

)

(

kn

npn

) γ̂
ML(i)
n

+ Xni:n
, i = 1, 2,

γ̂
ML(i)
n := γ

ML(ρ̂)
n (X

∼
(i)

)

with

X
∼

(i) :=
(

Xn:n −Xni:n
, Xn−1:n −Xni:n

, · · · , Xni+1:n −Xni:n

)

,i=1,2 .

Theoretical properties for χ̃
(i)
pn,ML are still under study...
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5 - Simulation study

We will compare the exact performance of the following high quantile estimators, under shift-

transformations:

χ̂W
pn

, χ̂M
pn

, χ̃
(i)
pn,H, χ̃

(i)
pn,M , χ̃

(i)
pn,ML (i = 1, 2)

number of replicas N = 200;

sample size of X
∼

: n = 1000

X
∼

: Generated random variables as X ⌢ F and shifted as Yj = X + λj (j = 1, 2)

λ1 = −χ.75(X), if xF = 0; λ1 = χ.75(X), if xF = −∞;

λ2 = χ.01(X).

Estimation of high quantile χp = F←(0.999); p = 0.001

Means of N = 200 estimates and empirical Root Mean Squared Error (RMSE),

for (k = 6, · · · , 800).

4th Conference on Extreme Value Analysis, Gothenburg, August 15-19, 2005 18



Generalized Pareto Model (γ = 1; ρ = −1)

χ̂W
pn

, χ̂M
pn

, χ̃
(1)
pn,H, χ̃

(1)
pn,M , χ̃

(1)
pn,ML
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Generalized Pareto Model (γ = 1; ρ = −1)

χ̂W
pn

, χ̂M
pn

, χ̃
(1)
pn,H, χ̃

(1)
pn,M , χ̃

(1)
pn,ML
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Generalized Pareto Model (γ = 1; ρ = −1)

χ̂W
pn

, χ̂M
pn

, χ̃
(1)
pn,H, χ̃

(1)
pn,M , χ̃

(1)
pn,ML
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Burr Model (γ = 1; ρ = −2)

χ̂W
pn

, χ̂M
pn

, χ̃
(1)
pn,H, χ̃

(1)
pn,M , χ̃

(1)
pn,ML
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Burr Model (γ = 1; ρ = −2)

χ̂W
pn

, χ̂M
pn

, χ̃
(1)
pn,H, χ̃

(1)
pn,M , χ̃

(1)
pn,ML
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Burr Model (γ = 1; ρ = −2)

χ̂W
pn

, χ̂M
pn

, χ̃
(1)
pn,H, χ̃

(1)
pn,M , χ̃

(1)
pn,ML
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Burr Model (γ = 1; ρ = −0.5)

χ̂W
pn

, χ̂M
pn

, χ̃
(1)
pn,H, χ̃

(1)
pn,M , χ̃

(1)
pn,ML
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Burr Model (γ = 1; ρ = −0.5)

χ̂W
pn

, χ̂M
pn

, χ̃
(1)
pn,H, χ̃

(1)
pn,M , χ̃

(1)
pn,ML
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Burr Model (γ = 1; ρ = −0.5)

χ̂W
pn

, χ̂M
pn

, χ̃
(1)
pn,H, χ̃

(1)
pn,M , χ̃

(1)
pn,ML
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Cauchy Model (γ = 1; ρ = −2)

χ̂W
pn

, χ̂M
pn

, χ̃
(2)
pn,H, χ̃

(2)
pn,M , χ̃

(2)
pn,ML
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Cauchy Model (γ = 1; ρ = −2)

χ̂W
pn

, χ̂M
pn

, χ̃
(2)
pn,H, χ̃

(2)
pn,M , χ̃

(2)
pn,ML
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Cauchy Model (γ = 1; ρ = −2)

χ̂W
pn

, χ̂M
pn

, χ̃
(2)
pn,H, χ̃

(2)
pn,M , χ̃

(2)
pn,ML
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We also compare the exact performance of the following high quantile estimators:

χ̂POTML
pn

, χ̃
(i)
pn,ML (i = 1, 2)

number of replicas N = 200;

sample size of X
∼

: n = 1000

Estimation of high quantile χp = F←(0.999); p = 0.001

Means of N = 200 estimates and empirical Root Mean Squared Error (RMSE),

for (k = 6, · · · , 800).
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Burr Model (γ = 1; ρ = −0.5)

χ̃POTML
pn

, χ̃
(1)
pn,ML
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Burr Model (γ = 1; ρ = −2)

χ̃POTML
pn

, χ̃
(1)
pn,ML
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