Reduced Bias Semi-parametric Quantile Estimators with a Linear-type Property

Maria Isabel Fraga Alves

University of Lisbon, Faculty of Science, DEIO and CEAUL, Portugal

Maria Ivette Gomes

University of Lisbon, Faculty of Science, DEIO and CEAUL, Portugal

Paulo Araújo Santos

Santarém Polytechnic, College of Business, Portugal

- 1 Introduction
- 2 Tail index estimation with the sample of excesses
- 3 Reduced bias tail index estimators
- 4 High quantile estimation
- **5** Simulation study

1 - Introduction

Denote by F the heavy-tailed distribution function (df) of X, the common df of the i.i.d. sample $\{X_i\}_{i=1}^n$, for which the extreme quantile

$$\chi_p = \chi_p(X) = F^{\leftarrow}(1-p)$$

has to be estimated. Here $F^{\leftarrow}(t) = \inf\{x : F(x) \ge t\}$.

Classical estimators based on the largest o.s. from $X:=(X_{n:n},X_{n-1:n},\cdots,X_{1:n})$, will be considered here, which involve $X_{n:n}\geq X_{n-1:n}\geq \cdots \geq X_{n-k:n}$, where $X_{n-k:n}$ is an intermediate order statistic (o.s.), i.e., k is an intermediate sequence of integers,

$$k = k_n \to \infty, \quad k_n/n \to 0, \quad \text{as } n \to \infty.$$
 (1)

Moreover, we are mainly interested in the natural case

$$p = p_n \to 0$$
, as $n \to \infty$, such that $np_n \to c \ge 0$. extreme quantile (2)

Basic assumption for heavy-tailed distributions – semi-parametric approach:

$$F \in D(G_{\gamma})_{\gamma > 0},$$

$$G_{\gamma}(x) = \exp(-(1+\gamma x)^{-1/\gamma}), 1+\gamma x \ge 0, \gamma \in \mathbb{R}, G_0(x) = \exp(-e^{-x}).$$

First order condition

$$F \in D(G_{\gamma})_{\gamma > 0}$$
 iff $\overline{F} \in RV_{-1/\gamma}$ iff $U \in RV_{\gamma}$,

$$U(t) := F^{\leftarrow}(1 - 1/t), t \ge 1;$$

that is,

$$\lim_{t \to \infty} \frac{1 - F(tx)}{1 - F(t)} = x^{-1/\gamma} \quad \text{iff} \quad \lim_{t \to \infty} \frac{U(tx)}{U(t)} = x^{\gamma}, \text{ for all } x > 0$$

High Quantile-
$$p_n \Rightarrow \chi_{p_n} = U\left(\frac{1}{p_n}\right)$$
. (3)

Second order condition

$$\lim_{t \to \infty} \frac{U(tx)/U(t) - x^{\gamma}}{A(t)} = x^{\gamma} \frac{x^{\rho} - 1}{\rho},\tag{4}$$

for all x > 0, where A is a suitable chosen function of constant sign near infinity, $|A| \in RV_{\rho}$, where $\rho \leq 0$ is the second order parameter.

Notation:

 RV_{α} stands for positive measurable functions h: $\lim_{t\to\infty} h(tx)/h(t) = x^{\alpha}$, for all x>0.

Hall's class:

$$U(t) = Ct^{\gamma}(1 + Dt^{\rho} + o(t^{\rho})), \quad \rho < 0, \quad \text{as} \quad t \to \infty.$$
 (5)

Classical semi-parametric estimator of a high quantile χ_p

Weissman-type estimator of χ_{p_n} , (Weissman, 1978)

$$\hat{\chi}_{p_n}^W = \hat{\chi}_{p_n}^W(X) = X_{n-k_n:n} \left(\frac{k_n}{np_n}\right)^{\hat{\gamma}_n}, \tag{6}$$

with $\hat{\gamma}_n = \hat{\gamma}_n(X)$ some consistent estimator of the tail parameter γ .

Classical semi-parametric estimators of the tail index γ Hill estimator (Hill,1975) $\gamma>0$

$$\hat{\gamma}_n^H = \hat{\gamma}_n^H(X) = \frac{1}{k_n} \sum_{i=1}^{k_n} \log \frac{X_{n-i+1:n}}{X_{n-k_n:n}}$$
(7)

Moment estimator (Dekkers et al.,1989) $\gamma \in \mathbb{R}$

$$\hat{\gamma}_n^M = \hat{\gamma}_n^M(X) = M_n^{(1)} + 1 - \frac{1}{2} \left\{ 1 - \frac{(M_n^{(1)})^2}{M_n^{(2)}} \right\}^{-1}, \tag{8}$$

with $M_n^{(r)}$ the r-Moment: $M_n^{(r)} = M_n^{(r)}(X) = \frac{1}{k_n} \sum_{i=1}^{k_n} \left(\log \frac{X_{n-i+1:n}}{X_{n-k_n:n}} \right)^r$, for r = 1, 2, 3.

Both estimators (7) and (8) are scale-invariant,

$$\hat{\gamma}_n^H(\delta X) \stackrel{d}{=} \hat{\gamma}_n^H(X)$$
 and $\hat{\gamma}_n^M(\delta X) \stackrel{d}{=} \hat{\gamma}_n^M(X)$

 \Rightarrow δ -scale transformations to the data do not interfere with their stochastic behaviour.

In what concerns the quantile Weissman-type estimator (6), for $\delta > 0$,

$$\hat{\chi}_{p_n}^W(\delta X) = \delta X_{n-k_n:n} \left(\frac{k_n}{np_n}\right)^{\hat{\gamma}_n} \stackrel{d}{=} \delta \hat{\chi}_{p_n}^W(X),$$

a desirable exact property for quantile estimators, under positive scale-transformations.

For λ -shift into the data: $Y := X + \lambda$, for $\lambda \in \mathbb{R}$, we would like that

$$\hat{\chi}_{p_n}(Y) \stackrel{d}{=} \hat{\chi}_{p_n}(X) + \lambda. \tag{9}$$

⇒ Theoretical linear property for quantiles

$$\chi_p(\delta X + \lambda) = \delta \chi_p(X) + \lambda. \tag{10}$$

Fraga Alves and Araújo Santos (2004) have studied a first approach study to this problem; therein, a simple modification of (6) has been proposed which enjoys the property (9) approximately.

Here we will present a class of extreme quantile-estimatores for which (9) holds exactly, pursuing the empirical counterpart of theoretical linear property (10).

Consider first the sample of excesses over a random threshold $X_{n_i:n}$:

$$X^{(i)} := (X_{n:n} - X_{n_i:n}, X_{n-1:n} - X_{n_i:n}, \dots, X_{n_i+1:n} - X_{n_i:n}), \quad i = 1, 2.$$

• $n_1 := 1$ for df's with finite left endpoint $x_F := \inf\{x : F(x) > 0\}$

 $-threshold X_{1:n} minimum$

- $n_2 := [nq] + 1$, 0 < q < 1, for df's with finite or infinite left endpoint x_F $threshold X_{[nq]+1:n} empirical quantile$
- $\hat{\gamma}_n^{(i)}$ any consistent estimator of the tail parameter γ , made location/scale invariant by using the transformed sample $X^{(i)}$.
- Modified-Weissman estimator:

$$\tilde{\chi}_{pn}^{(i)} = (X_{n-k_n:n} - X_{n_i:n}) (k_n/np_n)^{\hat{\gamma}_n^{(i)}} + X_{n_i:n}, \quad i = 1, 2.$$
(11)

2 - Tail index estimation with the sample of excesses

We propose to incorporate in the Modified-Weissman (11) quantile, estimators of tail parameter $\gamma > 0$, via the sample of excesses $X^{(i)}$, i = 1, 2, which allows to obtain exactly the linear property (9).

Denote $\hat{\gamma}_n^{H(i)}$ and $\hat{\gamma}_n^{M(i)}$, the Hill (7) and Moment (8) tail index estimators, as functions of the transformed sample $X^{(i)}$, i=1,2; that is,

$$\hat{\gamma}_n^{H(i)} := \hat{\gamma}_n^H(X^{(i)})$$
 and $\hat{\gamma}_n^{M(i)} := \hat{\gamma}_n^M(X^{(i)})$

Asymptotic distributional representation for Hill and Moment estimators, using the sample of excesses?

BIAS? VARIANCE?

Notation: In the following χ_i , for i = 1, 2, denotes:

$$\chi_1 := x_F$$
 - finite left endpoint of F $\qquad \qquad \chi_2 := \chi_q^*$ - q -quantile of F : $F(\chi_q^*) = q$.

Theorem 1. (Modified-Hill) For k an intermediate sequence as in (1) and the validity of the second order condition in (4), the asymptotic distributional representation

$$\hat{\gamma}_n^{H(i)} \stackrel{d}{=} \gamma + \frac{\sigma_H}{\sqrt{k}} P_k + \left(d_1 A(n/k) + d_2 \frac{\chi_i}{U(n/k)} \right) (1 + o_p(1))$$

holds, where P_k is an asymptotically standard normal r.v., $\sigma_H^2 := \gamma^2$, $d_1 := \frac{1}{1-\rho}$ and $d_2 := \frac{\gamma}{\gamma+1}$.

Theorem 2. (Modified-Moment) For k an intermediate sequence as in (1) and the validity of the second order condition in (4), the asymptotic distributional representation

$$\hat{\gamma}_n^{M(i)} \stackrel{d}{=} \gamma + \frac{\sigma_M}{\sqrt{k}} R_k + \left(c_1 A(n/k) + c_2 \frac{\chi_i}{U(n/k)} \right) (1 + o_p(1))$$

holds, with R_k is asymptotically standard normal, $\sigma_M^2 := \gamma^2 + 1$, $c_1 := \frac{\gamma(1-\rho)+\rho}{\gamma(1-\rho)^2}$ and $c_2 := \left(\frac{\gamma}{\gamma+1}\right)^2$.

Remark 1: Notice that

$$\sigma_M^2 = \sigma_H^2 + 1$$
, $c_1 = d_1 + \frac{\rho}{\gamma(1-\rho)^2}$ and $c_2 = (d_2)^2$;

consequently,

$$\sigma_M > \sigma_H$$
, $c_1 < d_1$ and $c_2 < d_2$.

Corollary 1: Since (4) holds, $|A| \in RV_{\rho}$, $U \in RV_{\gamma}$ and 3 cases must be considered: let μ_1, μ_2 , be finite and non-null constants.

 $\bullet \ \gamma > -\rho$:

$$\hat{\gamma}_{n}^{H(i)} \stackrel{d}{=} \gamma + \frac{\sigma_{H}}{\sqrt{k}} P_{k} + d_{1} A(n/k) (1 + o_{p}(1))$$

$$\hat{\gamma}_{n}^{M(i)} \stackrel{d}{=} \gamma + \frac{\sigma_{M}}{\sqrt{k}} R_{k} + c_{1} A(n/k) (1 + o_{p}(1))$$

if $\sqrt{k}A(n/k) \rightarrow \mu_1$, then

$$\sqrt{k} \left(\hat{\gamma}_n^{H(i)} - \gamma \right)$$
 is asymptotically Normal(mean: $\mu_1 d_1$, variance: $\sigma_H^2 = \gamma^2$). $\sqrt{k} \left(\hat{\gamma}_n^{M(i)} - \gamma \right)$ is asymptotically Normal(mean: $\mu_1 c_1$, variance: $\sigma_M^2 = 1 + \gamma^2$).

 \bullet $\gamma = -\rho$:

if
$$\sqrt{k}A\left(n/k\right) \to \mu_1$$
 and $\sqrt{k}/U\left(n/k\right) \to \mu_2$, then
$$\sqrt{k}\left(\hat{\gamma}_n^{H(i)} - \gamma\right) \text{ is asymptotically Normal(mean: } \mu_1d_1 + \mu_2d_2\chi_i \text{ , variance: } \sigma_H^2 = \gamma^2)$$

$$\sqrt{k}\left(\hat{\gamma}_n^{M(i)} - \gamma\right) \text{ is asymptotically Normal(mean: } \mu_1c_1 + \mu_2c_2\chi_i \text{ , variance: } \sigma_M^2 = 1 + \gamma^2).$$

 $\bullet \ \gamma < -\rho$:

$$\hat{\gamma}_{n}^{H(i)} \stackrel{d}{=} \gamma + \frac{\sigma_{H}}{\sqrt{k}} P_{k} + d_{2} \frac{\chi_{i}}{U(n/k)} (1 + o_{p}(1))$$

$$\hat{\gamma}_{n}^{M(i)} \stackrel{d}{=} \gamma + \frac{\sigma_{M}}{\sqrt{k}} R_{k} + c_{2} \frac{\chi_{i}}{U(n/k)} (1 + o_{p}(1))$$

if $\sqrt{k}/U(n/k) \to \mu_2$, then

$$\sqrt{k}\left(\hat{\gamma}_n^{H(i)} - \gamma\right)$$
 is asymptotically Normal(mean: $\mu_2 d_2 \chi_i$, variance: $\sigma_H^2 = \gamma^2$)

$$\sqrt{k}\left(\hat{\gamma}_n^{M(i)} - \gamma\right)$$
 is asymptotically Normal(mean: $\mu_2 c_2 \chi_i$, variance: $\sigma_M^2 = 1 + \gamma^2$).

Remark 2:

- If there is evidence that the underlying F is symmetric the random threshold should be chosen as the empirical median; i.e., $X_{[nq]+1:n} = X_{[n/2]+1:n}$, since the theoretical median for the standard model $\chi_2 := \chi_q^*$, q := 1/2, can be chosen to be zero, $\chi_{1/2}^* = 0$.
- If there is evidence that the underlying F has finite left endpoint x_F , the random threshold should be chosen as the sample minimum; i.e., $X_{1:n}$, since the theoretical left endpoint for the standard model $\chi_1 := x_F$, can be chosen to be zero, $x_F = 0$.

3 - Reduced bias tail index estimators

In Gomes and Figueiredo (2002), several reduced bias tail index estimators have been considered, which are based on the estimation of the second order parameter ρ and allows an asymptotic distributional representation

$$\hat{\gamma}_n \stackrel{d}{=} \gamma + \frac{\sigma_{\gamma}}{\sqrt{k}} Q_k + o_p \left(A \left(n/k \right) \right),$$

with Q_k standard normal.

Then it is achieved asymptotic normality for $\sqrt{k} (\hat{\gamma}_n - \gamma)$ with null mean value,

not only when
$$\sqrt{k}A(n/k) \to 0$$
, but also when $\sqrt{k}A(n/k) \to \mu$, finite and non-null.

Other references: Gomes and Martins (2001), (2002) and Gomes and Caeiro (2002).

We have chosen the one which provides the smallest asymptotic variance for all values of ρ , the so-called **ML(maximum likelihood)** estimator.

The ML estimator:

In Hall's class (5), the scaled log-spacings, $U_i = i \left[\ln \frac{X_{n-i+1:n}}{X_{n-k:n}} \right], 1 \le i \le k$, are approximately exponential with mean $\mu_i = \gamma e^{D(\frac{i}{n})^{-\rho}}$.

Based on the joint maximization of the log-likelihood of the U_i , in γ , D and ρ , they proposed the Estimator for the tail index γ ,

$$\hat{\gamma}_n^{ML} := \gamma_n^{ML(\hat{\rho})}(X) = \frac{1}{k} \sum_{i=1}^k U_i - \left(\frac{1}{k} \sum_{i=1}^k i^{-\hat{\rho}} U_i\right) \frac{(\sum_{i=1}^k i^{-\hat{\rho}})(\sum_{i=1}^k i^{-\hat{\rho}})(\sum_{i=1}^k i^{-\hat{\rho}} U_i) - k(\sum_{i=1}^k i^{-\hat{\rho}} U_i)}{(\sum_{i=1}^k i^{-\hat{\rho}})(\sum_{i=1}^k i^{-\hat{\rho}} U_i) - k(\sum_{i=1}^k i^{-\hat{\rho}} U_i)}$$

Estimator of the second order parameter ρ

We shall consider here an estimator of ρ proposed by Fraga Alves et. al.(2003), which depend on the moments $M_n^{(i)}(k)$, i=1,2,3 through the statistic:

$$T_n := T_{n,k}(X) = \frac{\left(M_n^{(1)}(k)\right) - \left(M_n^{(2)}(k)/2\right)^{1/2}}{\left(M_n^{(2)}(k)/2\right)^{1/2} - \left(M_n^{(3)}(k)/6\right)^{1/3}}$$

The estimator of ρ is given by

$$\hat{\rho} := \hat{\rho}_n(X) = \min\left(0, \frac{3(T_n - 1)}{T_n - 3}\right), \text{ with } k = \min(n - 1, [2n/\log\log n])$$

4 - High quantile estimation

Define the estimators of χ_{pn} defined in (3)

• as function of the **original sample**, X, inspired by (6):

$$- \hat{\chi}_{p_n}^W := X_{n-k_n:n} \left(\frac{k_n}{np_n}\right)^{\hat{\gamma}_n^H}$$

$$- \hat{\chi}_{p_n}^M := X_{n-k_n:n} \left(\frac{k_n}{np_n}\right)^{\hat{\gamma}_n^M}$$

• and as function of the sample of excesses over $X_{n_i:n}$, $X_{n_i:n}^{(i)}$, inspired by (11):

$$- \tilde{\chi}_{p_n,H}^{(i)} := (X_{n-k_n:n} - X_{n_i:n}) \left(\frac{k_n}{np_n}\right)^{\hat{\gamma}_n^{H(i)}} + X_{n_i:n}, \quad i = 1, 2.$$

$$- \tilde{\chi}_{p_n,M}^{(i)} := (X_{n-k_n:n} - X_{n_i:n}) \left(\frac{k_n}{np_n}\right)^{\hat{\gamma}_n^{M(i)}} + X_{n_i:n}, \quad i = 1, 2.$$

Theorem 3. In Hall's class (5), for intermediate sequences k_n that satisfy

$$\log(np_n)/\sqrt{k_n} \to 0$$
, as $n \to \infty$,

with p_n such that (2) holds, then

$$\frac{\sqrt{k_n}}{\sigma_H \log(k_n/(np_n))} \left(\frac{\tilde{\chi}_{p_n,H}^{(i)}}{\chi_{p_n}} - 1 \right) = P_k + \sqrt{k_n} \left(d_1 A(n/k) + d_2 \frac{\chi_i}{U(n/k)} \right) (1 + o_p(1))$$

holds, where P_k is an asymptotically standard normal r.v., $\sigma_H^2 := \gamma^2$, $d_1 := \frac{1}{1-\rho}$ and $d_2 := \frac{\gamma}{\gamma+1}$.

Moreover, for:

- 1. $\gamma > -\rho$ and $\sqrt{k_n}A(n/k_n) \to \mu_1$, finite, as $n \to \infty$, then the mean value is $\mu_1 d_1$;
- 2. $\rho < -\gamma$ and $\sqrt{k_n}/U(n/k_n) \to \mu_2$, finite, as $n \to \infty$, then the mean value is $\mu_2 d_2 \chi_i$;
- 3. $\rho = -\gamma$, $\sqrt{k_n}A(n/k_n) \to \mu_1$, finite, and $\sqrt{k_n}/U(n/k_n) \to \mu_2$, finite, as $n \to \infty$, then the mean value is $\mu_1 d_1 + \mu_2 d_2 \chi_i$.

Theorem 4. In Hall's class, for intermediate sequences k_n that satisfy

$$\log(np_n)/\sqrt{\overline{k_n}} \to 0$$
, as $n \to \infty$,

with p_n such that (2) holds, then

$$\frac{\sqrt{k_n}}{\sigma_M \log(k_n/(np_n))} \left(\frac{\tilde{\chi}_{p_n,M}^{(i)}}{\chi_{p_n}} - 1 \right) = R_k + \sqrt{k_n} \left(c_1 A(n/k) + c_2 \frac{\chi_i}{U(n/k)} \right) (1 + o_p(1))$$

holds, R_k is asymptotically a standard normal r.v., $\sigma_M^2 := \gamma^2 + 1$, $c_1 := \frac{\gamma(1-\rho)+\rho}{\gamma(1-\rho)^2}$ and $c_2 := \left(\frac{\gamma}{\gamma+1}\right)^2$.

Moreover, for:

- 1. $\gamma > -\rho$: and $\sqrt{k_n}A(n/k_n) \to \mu_1$, finite, as $n \to \infty$, then the mean value is μ_1c_1 ;
- 2. $\rho < -\gamma$ and $\sqrt{k_n}/U(n/k_n) \to \mu_2$, finite, as $n \to \infty$, then the mean value is $\mu_2 c_2 \chi_i$;
- 3. $\rho = -\gamma$, $\sqrt{k_n}A(n/k_n) \to \mu_1$, finite, and $\sqrt{k_n}/U(n/k_n) \to \mu_2$, finite, as $n \to \infty$, then the mean value is $\mu_1c_1 + \mu_2c_2\chi_i$.

Observation: We define, as before, the

Modified-ML estimator as a function of the sample of excesses over a random threshold $X_{n_i:n}$, i.e.,

$$\tilde{\chi}_{p,ML}^{(i)} := (X_{n-k_n:n} - X_{n_i:n}) \left(\frac{k_n}{np_n}\right)^{\hat{\gamma}_n^{ML(i)}} + X_{n_i:n}, \quad i = 1, 2,$$

$$\hat{\gamma}_n^{ML(i)} := \gamma_n^{ML(\hat{
ho})}(X_{\sim}^{(i)})$$

with

$$X^{(i)} := (X_{n:n} - X_{n_i:n}, X_{n-1:n} - X_{n_i:n}, \cdots, X_{n_i+1:n} - X_{n_i:n}),_{i=1,2}.$$

Theoretical properties for $\tilde{\chi}_{p_n,ML}^{(i)}$ are still under study...

5 - Simulation study

We will compare the exact performance of the following high quantile estimators, under shift-transformations:

$$\hat{\chi}_{p_n}^W, \, \hat{\chi}_{p_n}^M, \, \tilde{\chi}_{p_n,H}^{(i)}, \, \tilde{\chi}_{p_n,M}^{(i)}, \, \tilde{\chi}_{p_n,ML}^{(i)} \quad (i=1,2)$$

number of replicas N = 200;

sample size of X: n = 1000

X: Generated random variables as $X \sim F$ and shifted as $Y_j = X + \lambda_j$ (j = 1, 2)

$$\lambda_1 = -\chi_{.75}(X)$$
, if $x_F = 0$; $\lambda_1 = \chi_{.75}(X)$, if $x_F = -\infty$;

$$\lambda_2 = \chi_{.01}(X).$$

Estimation of high quantile $\chi_p = F^{\leftarrow}(0.999); p = 0.001$

Means of N=200 estimates and empirical Root Mean Squared Error (RMSE), for $(k=6,\cdots,800)$.

Generalized Pareto Model ($\gamma = 1; \rho = -1$)

Generalized Pareto Model ($\gamma = 1; \rho = -1$)

$$\hat{\chi}_{p_n}^W, \hat{\chi}_{p_n}^M, \tilde{\chi}_{p_n,H}^{(1)}, \tilde{\chi}_{p_n,M}^{(1)}, \tilde{\chi}_{p_n,ML}^{(1)}$$

Generalized Pareto Model ($\gamma = 1; \rho = -1$)

$$\overline{\hat{\chi}_{p_n}^W, \hat{\chi}_{p_n}^M, \, \tilde{\chi}_{p_n,H}^{(1)}}, \, \overline{\tilde{\chi}_{p_n,M}^{(1)}, \, \tilde{\chi}_{p_n,ML}^{(1)}}$$

$$\overline{\hat{\chi}_{p_n}^W, \hat{\chi}_{p_n}^M, \, \tilde{\chi}_{p_n,H}^{(1)}}, \, \overline{\chi}_{p_n,M}^{(1)}, \, \overline{\chi}_{p_n,ML}^{(1)}$$

$$\overline{\hat{\chi}_{p_n}^W, \hat{\chi}_{p_n}^M, \, \tilde{\chi}_{p_n,H}^{(1)}}, \, \overline{\tilde{\chi}_{p_n,M}^{(1)}, \, \tilde{\chi}_{p_n,ML}^{(1)}}$$

Cauchy Model ($\gamma = 1; \rho = -2$)

Cauchy Model ($\gamma = 1; \rho = -2$)

$$\widehat{\chi}_{p_n}^W, \, \widehat{\chi}_{p_n}^M, \, \widetilde{\chi}_{p_n,H}^{(2)}, \, \overline{\widetilde{\chi}_{p_n,M}^{(2)}}, \, \widetilde{\chi}_{p_n,ML}^{(2)}$$

Cauchy Model ($\gamma = 1; \rho = -2$)

We also compare the exact performance of the following high quantile estimators:

$$\hat{\chi}_{p_n}^{POTML}, \ \tilde{\chi}_{p_n,ML}^{(i)} \ \ (i=1,2)$$

number of replicas N = 200;

sample size of
$$X: n = 1000$$

Estimation of high quantile $\chi_p = F^{\leftarrow}(0.999); p = 0.001$

Means of N=200 estimates and empirical Root Mean Squared Error (RMSE), for $(k=6,\cdots,800)$.

$$\tilde{\chi}_{p_n}^{POTML}$$
, $\tilde{\chi}_{p_n,ML}^{(1)}$

$$\tilde{\chi}_{p_n}^{POTML}$$
, $\tilde{\chi}_{p_n,ML}^{(1)}$

References

Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989). A moment estimator for the index of an extreme-value distribution. *Ann. Statist.* 17, 1833-1855.

Fraga Alves, M.I., Gomes, M.I. and L. de Haan (2003) A new class of semi-parametric estimators of the second order parameter, *Portugaliae Mathematica*, vol.60, Fasc.2. 193–213.

Fraga Alves, M.I. and Araújo Santos, P. (2004) Extreme Quantiles Estimation with Shifted Data From Heavy Tails, Nota e Comunicações CEAUL 11/2004.

Gomes, M.I. and Figueiredo, F. (2002) Bias Reduction in risk modelling: semi-parametric quantile estimation, (to appear in *Test*).

Gomes, M.I. and Martins, M. (2002). "Asymptotically Unbiased" Estimators of the Tail Index Based on External Estimation of the Second Order Parameter. *Extremes* **5**:1, 5-31.

Hall, P. (1982). On some Simple Estimates of an Exponent of Regular Variation. J. R. Statist. Soc. 44, no. 1, 37-42.

Hill, B.M. (1975). A Simple General Approach to Inference about the Tail of a Distribution. *Ann. Statist.* 3, no. 5, 1163-1174.

Weissman, I. (1978). Estimation of Parameters and Large Quantiles Based on the k Largest Observations. J.A.S.A., 73, 812-815.