Shock models *

Allan Gut

Göteborg August 16, 2005

*Much of this is joint work with Jürg Hüsler

Two main cases

Systems break down because of

- *cumulative* effect of shocks;
- extreme individual shock.

Notation

- $\{X_k\}$ magnitude of shocks;
- $\{Y_k\}$ time between shocks;
- $\{(X_k, Y_k)\}$ i.i.d.;
- $S_n = \sum_{k=1}^n X_k$, $T_n = \sum_{k=1}^n Y_k$;
- Means, variances: $\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \ldots$

The cumulative case

 $u(t) = \min\{n : S_n > t\}, \quad t \ge 0.$ Lifetime/failure time: $T_{\nu(t)}$.

The extreme case

$$\tau(t) = \min\{n : X_n > t\}, \quad t \ge 0.$$

Lifetime/failure time: $T_{\tau(t)}$.

Stopping times behave differently

— however...

Failure times are Stopped Random Walks.

But first ... a general problem

Suppose

- ♦ $\{Y_n, n \ge 1\}$ arbitrary;
- $\diamond Y_n \to Y$ as $n \to \infty$;
- ♦ { $N(t), t \ge 0$ } positive integer valued;
- $\diamond N(t)
 ightarrow \infty$ as $t
 ightarrow \infty$;
- $\diamond \text{ in some sense,} \quad \stackrel{a.s.}{\to} \quad \stackrel{p}{\to} \quad \stackrel{r}{\to} \quad \stackrel{d}{\to}.$

What about

$$Y_{N(t)} \xrightarrow{a.s.} ? \xrightarrow{p} ? \xrightarrow{r} ? \xrightarrow{d} ? ? ?$$

Almost sure convergence

Proposition 1

Suppose

- ♦ $\{Y_n, n \ge 1\}$ arbitrary;
- $\diamond Y_n \stackrel{a.s.}{\rightarrow} Y$ as $n \to \infty$;
- ♦ $\{N(t), t \ge 0\}$ positive integer valued;
- $\diamond N(t) \stackrel{a.s.}{\to} \infty$ as $t \to \infty$.

Then

 $Y_{N(t)} \stackrel{a.s.}{\rightarrow} Y \quad \text{as} \quad t \rightarrow \infty.$

Proof

Union of two nullsets.

The central limit theorem

Proposition 2 — Anscombe (Rényi) Suppose

♦
$$\{X_k, k \ge 1\}$$
 i.i.d.;

 $\diamond \ E X = 0, \quad \text{Var} \ X = \sigma^2 < \infty;$

$$\diamond S_n = \sum_{k=1}^n X_k, \ n \ge 1;$$

$$\diamond \ rac{N(t)}{t} \stackrel{p}{
ightarrow} heta \quad ext{as} \quad t
ightarrow \infty \quad (0 < heta < \infty).$$

Then

$$rac{S_N(t)}{\sigma\sqrt{t heta}} \stackrel{d}{
ightarrow} N(0,1) \quad ext{as} \quad t
ightarrow \infty.$$

Proof CLT + Kolmogorov's inequality.

♣ {
$$(U_n^{(x)}, U_n^{(y)}), n \ge 1$$
} r.w.,

 \clubsuit i.i.d. increments $\{(X_k, Y_k), k \geq 1\},\$

♣ $\mu_y = E Y_1 > 0$, $\mu_x = E X_1$ exists.

First passage time process: $\tau(t) = \min\{n : U_n^{(y)} > t\}, \quad t \ge 0.$

Problem: What about

 $\{U_{\tau(t)}^{(x)}, t \ge 0\}$?

6

LLN for $U_{\tau(t)}^{(x)}$

$$\frac{U_{\tau(t)}^{(x)}}{t} \xrightarrow{a.s.} \frac{\mu_x}{\mu_y} \quad \text{as} \quad t \to \infty$$

CLT for
$$U_{\tau(t)}^{(x)}$$

If $\gamma^2 = \operatorname{Var}(\mu_y X_1 - \mu_x Y_1) > 0$, then
 $\frac{U_{\tau(t)}^{(x)} - \frac{\mu_x}{\mu_y} t}{\sqrt{\mu_y^{-3} \gamma^2 t}} \stackrel{d}{\to} N(0, 1)$ as $t \to \infty$.

Many applications Typically:

•
$$\{Y_k\}$$
 times,

• $\{X_k\}$ marks / rewards

Stopped random walks. Springer (1988).

Back to shocks ...

- $\ddagger \{X_k\}$ magnitude of shocks,
- \ddagger { Y_k } time between shocks,

$$I S_n = \sum_{k=1}^n X_k, \qquad T_n = \sum_{k=1}^n Y_k,$$

$$\ddagger \nu(t) = \min\{n : S_n > t\}.$$

Theorem 1
(i) If
$$\mu_x > 0$$
, and $|\mu_y| < \infty$, then
 $\frac{T_{\nu(t)}}{t} \stackrel{a.s.}{\to} \frac{\mu_y}{\mu_x}$ as $t \to \infty$.
(ii) If, in addition, $\gamma^2 > 0$, then
 $\frac{T_{\nu(t)} - \frac{\mu_y}{\mu_x}t}{\sqrt{\mu_x^{-3}\gamma^2 t}} \stackrel{d}{\to} N(0, 1)$ as $t \to \infty$.

•
$$x_F := \sup\{x : F(x) < 1\},$$

$$p_t = P(X_1 > t).$$

Stopping times:

$$\tau(t) = \min\{n : X_n > t\}, \quad t \ge 0.$$

Then, $\tau(t)$ geometric, mean $1/p_t$.

Theorem 2
If
$$p_t \to 0$$
 as $t \to x_F$, then
(i) $p_t \tau(t) \stackrel{d}{\to} \text{Exp}(1)$ as $t \to x_F$.
(ii) Suppose $|\mu_y| < \infty$. Then
 $p_t T_{\tau(t)} \stackrel{d}{\to} \mu_y \text{Exp}(1)$ as $t \to x_F$.

Proof

$$p_t T_{\tau(t)} = \frac{T_{\tau(t)}}{\tau(t)} \cdot p_t \tau(t) \xrightarrow{d} \mu_y \operatorname{Exp}(1)$$
$$(= \operatorname{Exp}(\mu_y) \quad \text{if} \quad \mu_y > 0).$$

Note:

No LLN for $\tau(t)$; no Anscombe.

Also

Weak convergence in $D[0,\infty)$.

Mixed shock models

The system breaks down when

- the cumulative shocks reach "some high" level
 or
- a single "large" shock appears

whichever comes first, viz., the system breaks down at

 $\min\{\nu(t),\tau(t)\}.$

$$\nu(t) = O(t) \qquad \tau(t) = O(1/p_t),$$

so that, necessary for nontrivial results:

- $\nu(t) \sim \tau(t)$,
- $x_F = \infty$.

Define λ_t , the θ/t -quantile: $P(X_1 > \lambda_t) = \theta/t$,

and set

$$\tau_{\lambda}(t) = \min\{n : X_n > \lambda_t\}, \quad t \ge 0.$$

The system breaks down at time

$$\kappa(t) = \min\{\nu(t), \tau_{\lambda}(t)\}.$$

Applications/examples

- Boxing. A knock-out may be caused by many small punches or a real big one.
- Rain in Uppsala. On August 17, 1997, Uppsala had extreme rain during one hour; the basement at home was flooded. A year later again, but due to rain, on and off, for some days. More generally: Flooding in rivers or dams.
- Fatigue, tenacity. A rope, a wire.
 Less generally: A coat hanger.
- Environmental damage. A factory may on and off leak poisonous waste products into a river killing the vegetation and the fish. Or: some catastrophy.
- Radioactivity. A variation on the previous example; many minor emissions or a sudden melt-down.

If
$$\mu_x > 0$$
, $|\mu_y| < \infty$, then

(a)
$$\frac{\kappa(t)}{t} \stackrel{d}{\to} Z$$
 as $t \to \infty$, where

$$\begin{cases} f_Z(y) = \theta e^{-\theta y}, \ 0 < y < 1/\mu_x, \\ P(Z = 1/\mu_x) = e^{-\theta/\mu_x}, \end{cases}$$

or, equivalently,

$$F_Z(y) = \begin{cases} 1 - e^{-\theta y}, & \text{for } 0 < y < 1/\mu_x, \\ 1, & \text{for } y \ge 1/\mu_x, \end{cases}$$

(b)
$$rac{T_{\kappa(t)}}{t} \stackrel{d}{
ightarrow} \mu_y Z$$
 as $t
ightarrow \infty$,

(c)
$$\frac{S_{\kappa(t)}}{t} \stackrel{d}{\to} \mu_x Z$$
 as $t \to \infty$,

(d)
$$\frac{X_{\kappa(t)}}{t} \xrightarrow{p} 0$$
 as $t \to \infty$.

Results for moments also exist.

Proposition 3

 $\{U_t, t \ge 0\}$ and $\{V_t, t \ge 0\}$. Suppose that

 $U_t \xrightarrow{p} a \in \mathbb{R} \quad \text{and} \quad V_t \xrightarrow{d} V \quad \text{as} \quad t \to \infty.$ Then, as $t \to \infty$,

$$P(\min\{U_t, V_t\} > y) \rightarrow \begin{cases} P(V > y), & \text{for } y < a, \\ 0, & \text{for } y > a, \end{cases}$$

and

$$P(\max\{U_t, V_t\} \le y) \to \begin{cases} 0, & \text{for } y < a, \\ P(V \le y), & \text{for } y > a. \end{cases}$$

Note: Point masses at y = a.

Comparing stopping times

For example, as $t \to \infty$:

$$\begin{split} & \frac{E \nu(t)}{t} \to \frac{1}{\mu_x}, \\ & \frac{E \tau_\lambda(t)}{t} \to \frac{1}{\theta}, \\ & \frac{E \kappa(t)}{t} \to \frac{1}{\theta} \left(1 - e^{-\theta/\mu_x}\right) \leq \begin{cases} & \frac{1}{\mu_x}, \\ & \frac{1}{\theta}. \end{cases} \end{split}$$

Note
$$\lim_{t\to\infty} E \kappa(t)/t$$
 smallest (of course).

In particular $\theta = \mu_x$:

$$= \mu_x:$$

$$\frac{E \nu(t)}{t} \sim \frac{E \tau_\lambda(t)}{t} \sim \frac{1}{\mu_x},$$

$$\frac{E \kappa(t)}{t} \sim \frac{1}{\mu_x} (1 - e^{-1}) \sim 0.632 \frac{1}{\mu_x}.$$

Comparing failure times

$$\begin{array}{rcl} \displaystyle \frac{E\,T_{\nu(t)}}{t} & \rightarrow & \frac{\mu_y}{\mu_x} & \text{as} \quad t \rightarrow \infty, \\ \\ \displaystyle \frac{E\,T_{\tau_\lambda(t)}}{t} & \rightarrow & \frac{\mu_y}{\theta} & \text{as} \quad t \rightarrow \infty, \\ \\ \displaystyle \frac{E\,T_{\kappa(t)}}{t} & \rightarrow & \frac{\mu_y}{\theta} (1 - e^{-\mu_y/\theta}) & \text{as} \quad t \rightarrow \infty. \end{array}$$

In particular $\theta = \mu_x$:

$$\frac{E T_{\nu(t)}}{t} \sim \frac{E T_{\tau_{\lambda}(t)}}{t} \sim \frac{\mu_y}{\mu_x},$$
$$\frac{E T_{\kappa(t)}}{t} \sim (1 - e^{-1}) \frac{\mu_y}{\mu_x} \approx 0.632 \frac{\mu_y}{\mu_x}.$$

18

More realistically

- ♡ "Minor shocks" have no long time effect;
- ♡ "Discount" of earlier shocks;
- \heartsuit Level varies as $t \nearrow$.
- Which necessitates limit theorems for
 - \heartsuit Delayed sums;
 - ♡ Windows;
 - \heartsuit with/without random size.

More general setup

• Delayed sums, lag sums, windows

$$S_{k,n} = \sum_{j=n-k+1}^{n} X_j, \quad 1 \le k \le n.$$

• Let
$$k_n \sim cn^{\gamma}$$
, $0 < \gamma < 1$. Consider $S_{k_n,n} = \sum_{j=n-k_n+1}^n X_j, \quad n \ge 1.$

• $\nu(t) = \min\{n : S_{k_n,n} > t\}, \quad t \ge 0.$

Note $T_{\nu(t)} = \text{time until failure,}$ $T_{k_{\nu(t)},\nu(t)} = \text{duration of the fatal window.}$

Strong laws as $t \to \infty$

$$\frac{k_{\nu(t)}}{t} \stackrel{a.s.}{\rightarrow} \frac{1}{\mu_x},$$

$$\frac{\nu(t)}{t^{1/\gamma}} \stackrel{a.s.}{\rightarrow} \frac{1}{(c\mu_x)^{1/\gamma}},$$

$$\frac{S_{k_{\nu(t)},\nu(t)}}{t} \stackrel{a.s.}{\rightarrow} 1,$$

$$\frac{S_{\nu(t)}}{t^{1/\gamma}} \stackrel{a.s.}{\rightarrow} \frac{\mu_x^{1-(1/\gamma)}}{c^{1/\gamma}},$$

$$\frac{T_{k_{\nu(t)},\nu(t)}}{t} \stackrel{a.s.}{\rightarrow} \frac{\mu_y}{\mu_x},$$

$$\frac{T_{\nu(t)}}{t^{1/\gamma}} \stackrel{a.s.}{\rightarrow} \frac{\mu_y}{(c\mu_x)^{1/\gamma}}$$

- Size of the fatal window $= \mathcal{O}(t)$;
- Total number of shocks at failure = $\mathcal{O}(t^{1/\gamma})$;
- Shock load of fatal window is $= \mathcal{O}(t)$;
- Complete shock load at failure = $\mathcal{O}(t^{1/\gamma})$;
- Duration of fatal window $= \mathcal{O}(t)$;
- Total lifetime = $\mathcal{O}(t^{1/\gamma})$.

Proofs follow the same technique Asymptotic normality also provable.

A further extension

Recall the *Extreme shock model*: One "very" large shock is fatal. What about "some" rather large shocks?

In addition to fatal/nonfatal shocks, introduce harmful shocks that weaken the system.

Let

$$t = \alpha_t(0) \ge \alpha_t(1) \ge \alpha_t(2) \ge \cdots \ge \beta_t.$$

A shock X is

	fatal,	if	X > t,
{	harmful, nonfatal,	if	$\beta_t < X < t,$
	(innocent,	if	$X < \beta_t.$

If X_i is harmful, nonfatal, then X_j , j > i is

 $\begin{cases} \text{fatal}, & \text{if } X_j > \alpha_t(1), \\ \text{harmful, nonfatal}, & \text{if } \beta_t < X_j < \alpha_t(1), \\ \text{innocent}, & \text{if } X < \beta_t. \end{cases}$

And so on.

With

 $L_t(n) = \#\{i \le n : X_i \ge \beta_t\}$ $(L_t(0) = 0),$ and

 $\tau(t) = \min\{n : X_n \ge \alpha_t(L_t(n-1))\},\$

one obtains

$$P(\tau(t) > m) = \sum_{j=0}^{m} {m \choose j} F^{m-j}(\beta_t) \times \prod_{k=0}^{j-1} \left(F(\alpha_t(k)) - F(\beta_t) \right).$$

Special cases

 $\alpha_t(k) = t \iff \text{nonfatal=harmless,}$ $\beta_t = t \iff \text{extreme model}$

Stopping asymptotics

Theorem 3 If $1 - F(\beta_t) \rightarrow 0$, and

$$\frac{1 - F(\alpha_t(k))}{1 - F(\beta_t)} \to c_k \quad \text{for} \quad k = 1, 2, \dots,$$

then

$$P\big((1-F(\beta_t))\tau(t)>z\big)\to \sum_{j\geq 0}e^{-z}\frac{z^j}{j!}\prod_{k=0}^{j-1}(1-c_k).$$

Theorem 4 If
$$1 - F(\alpha_t(\infty)) \to 0$$
, and
 $\frac{1 - F(\alpha_t(k))}{1 - F(\alpha_t(\infty))} \to_{(t \to \infty)} a_k \nearrow_{(k \to \infty)} 1$,
 $\frac{1 - F(\alpha_t(\infty))}{1 - F(\beta_t)} \to 0$,

then

$$P((1 - F(\alpha_t(\infty))\tau(t) > z) \rightarrow e^{-z}.$$

Lifetime asymptotics

Theorem 5 Suppose that $|\mu_y| < \infty$. Under conditions of Theorems 1 or 2,

$$p_t T_{\tau(t)} \xrightarrow{d} \mu_y Z \quad \text{as} \quad t \to \infty,$$

where Z is as in Theorem 3 or 4.

Set

$$\kappa(t) = \min(\nu(t), \tau(t)),$$

$$\kappa^*(t) = \max(\nu(t), \tau(t)).$$

Quantiles via

$$P(X_1 > u_t) = \theta t^{-1/\gamma},$$

for $u_t = \beta(t)$ and $\alpha_t(\infty)$, respectively.

Theorem 6

Under earlier conditions,

$$\kappa(t)/t^{1/\gamma} \stackrel{d}{\to} \min\{(1/c\mu_x)^{1/\gamma}, Z/\theta\},$$

and

$$\kappa^*(t)/t^{1/\gamma} \xrightarrow{d} \max\{(1/c\mu_x)^{1/\gamma}, Z/\theta\}.$$

Note

Thus, $\mathcal{O}(t^{1/\gamma})$ instead of $\mathcal{O}(t)$.