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TwoO main cases

Systems break down because of
e cumulative effect of shocks:

e extreme individual shock.

Notation
e {X.} magnitude of shocks;
e {Y..}] time between shocks;
e {(Xy, V) iid.:
® Sn=>7_1 Xy, Tn = > p=1 Yk

e Means, variances: ug, py, 04,05, - . .



Models

The cumulative case

v(t) =min{n: S, >t}, t>0.

Lifetime/failure time: T, (1)

T he extreme case

7(t) = min{n : X, >t}, t>0.

Lifetime/failure time: T (1)

Stopping times behave differently
— however...
Failure times are Stopped Random Walks.



But first ... a general problem

Suppose

o {Yn, n > 1} arbitrary;

o Yn,—Y as n — oo;

o {N(t), t > 0} positive integer valued;

o N(t) 00 as t— oo;

a.s. D T d

& In some sense,

What about
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Almost sure convergence

Proposition 1
Suppose

o {Yn, n > 1} arbitrary;

o Yn Y as n— o0

o {N(t),t >0} positive integer valued;
o N(t) 3 o as t— oo.

T hen

Ynip =Y as t— oo,

Proof
Union of two nullsets.



T he central limit theorem

Proposition 2 — Anscombe (Rényi)
Suppose

o {X,, k>1} iid.;

o EX =0, VarX = o2 < oo

oNgt)pO as t— oo (0 <6 < 0).
Then

i]\v/%) dN(O,l) as  t — oo.
Proof

CLT + Kolmogorov’s inequality.



Two dimensions (with Svante Janson)

& (U Uy, n>1) rw.,
& i.i.d. increments {(Xg,Y.), k> 1},
o uy=LEFY >0, pur=FEX; exists.

& First passage time process:

r(t) = min{n: U >}, t>o0.

Problem:
What about

{UT(‘Z?), t>0}7



LLN for (%)

(1)
(z)

UT(t) 3 s as t— oo
t Py

()
CLT for UT(t)

If ~2=Var(uyX; —pzY1) >0, then

Ul by
T(t)3 gy Y N(,1) as t— oco.
Py~ 1

Many applications Typically:

o {Y;.} times,

e {X.} marks / rewards .....

Stopped random walks. Springer (1988).

Back to shocks ...
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Cumulative shocks

t {Xr} magnitude of shocks,

t {Y,} time between shocks,

fSn =S X Th=Y0, Y

f v(t) = min{n: Sy > t}.

Theorem 1

T
v(t) a.s. My 1St — 0.
t U
(ii) If, in addition, ~2 >0, then
W

4 N(0,1) as t— oo



Extreme shocks

b xp i=sup{z: F(x) < 1},

b pr = P(X1 >1).

b Stopping times:

7(t) = min{n : X, >t}, t>0.

Then, 7(t) geometric, mean 1/p;.

T heorem 2
If p+—0 as t—xp, then

() pir(t) % Exp(l) as t— ap.
(ii) Suppose |uy| < oco. Then

d
Ly = yExp(l) as t—azp.
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Cont’d

Proof
_ L d
pil(py = ey -7 () = py EXp(1)
(= Exp(uy) if py>0).
Note:

No LLN for 7(¢t); no Anscombe.

Also
Weak convergence in  D[0, c0).

11



Mixed shock models

The system breaks down when

e the cumulative shocks reach ‘“‘some high”
level or

e a single “large” shock appears

whichever comes first, viz.,

the system breaks down at

min{v(t), 7(t)}.
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However,

v(t) = O(1) 7(¢) = O(1/py),

so that, necessary for nontrivial results:

o v(t) ~ 7(t),

OLCF:OO.

Define )\¢, the 6/t-quantile:
P(X1>N) =0/t
and set
@) = min{n: X, >N}, t>0.

T he system breaks down at time

k(1) = min{v(t), m(t)}.
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Applications/examples ......

Boxing. A knock-out may be caused by
many small punches or a real big one.

Rain in Uppsala. On August 17, 1997,
Uppsala had extreme rain during one hour;
the basement at home was flooded. A ye-
ar later again, but due to rain, on and off,
for some days.

More generally: Flooding in rivers or dams.

Fatigue, tenacity. A rope, a wire.
Less generally: A coat hanger.

Environmental damage. A factory may
on and off leak poisonous waste products
into a river Killing the vegetation and the
fish. Or: some catastrophy.

Radioactivity. A variation on the pre-
vious example; many minor emissions or
a sudden melt-down.
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T heorem

If Uy > O, |,Uzy| < 00, then

(a)@iz as t— oo, Where

fz(y) = 6%, 0 <y < 1/pa,
{ P(Z =1/pz) = e ke,

or, equivalently,

1—e %, for 0<y<1/ug,

1, for y>1/uy,

Fy(y) = {
(b) “(t) q, uyZ as t— oo,

(c) “(t) 4 wZ  as  t — oo,

X
(d)y =28 %0 as t— oo,

Results for moments also exist.
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Basic tool

Proposition 3
{U;, t >0} and {V;, t > 0}.

Suppose that
Uy L aeR and V4V as

Then, as t — oo,

PV >y),

P(min{U, Vi} > y) — {O

and

O,

P(max{U;, V;} <y) — {p(v <)

Note: Point masses at y =a.

t — o0.

for
for

for
for
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y < a,
y > a,

y <a,
Yy > a.



Comparing stopping times

For example, as t — oo:

Ev(t) 1
t ,ux’
E 1y(t) \ 1
t 60’

Elﬁ:(t) . %(1 _6—9/,ug;) < {

t

|~ ;;‘,_l

Note
im0 Ek(t)/t smallest (of course).

In particular

Ev(t)  En@®) 1
t t ,be’

E x(t 1 1
P —(1-e1)~0632—.
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Comparing failure times

ET
v, B s ¢ oo,
4 M

BT ) Py o 4 o,
t 0

; 'uey(l—e_“y/e) as t — oo.

In particular

ET,@  Plow
t t Hx ’

(1—eHP% x 063284
t Lx M
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More realistically

O “*Minor shocks” have no long time effect;

O “Discount” of earlier shocks:

O Level varies as t .

Which necessitates limit theorems for

O Delayed sums;

O Windows;

O with/without random size.
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More general setup

e Delayed sums, lag sums, windows

n
Skm= Y, X, 1<k<n
j=n—k+1

o Let by, ~cn?, 0 <~ < 1. Consider

Skn,n: Z Xj, nZ 1.

Note
T, = time until failure,

Tky(t)’,/(t) = duration of the fatal window.
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Strong laws as ¢t — oo

ky(t)

a.s\.

t

v(t)

a.s.

t1/7

a.s.

a.s.

a.s.
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Interpretation

e Size of the fatal window = O(t);

e Total number of shocks at failure = O(t1/7);

e Shock load of fatal window is = O(t);

e Complete shock load at failure = (’)(tl/V);

e Duration of fatal window = O(%);

e Total lifetime = O(t1/7).

Proofs follow the same technique
Asymptotic normality also provable.
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A further extension

Recall the Extreme shock model:
One “very” large shock is fatal.
What about “some” rather large shocks?

In addition to fatal/nonfatal shocks,
introduce harmful shocks
that weaken the system.

Let

t=04(0) > (1) > a(2) > -+ > Bt
A shock X is

(fatal, if X >t
¢ harmful, nonfatal, if B <X <t,
Linnocent, if X < B
If X; is harmful, nonfatal, then Xj, 7 >1 s
(fatal, if X, > a(1),
¢ harmful, nonfatal, it G <X, <ay(1),
Linnocent, if X <G
And so on.
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Results

With
Li(n) =#{i<n:X; > 6} (LH(0) =0),
and
T(t) = min{n : Xn > ay(Li(n — 1))},

one obtains

m

P(r@®)>m) = Y ()F™I(6y)
j=0 J
7—1
x T (F(at(k)) = F(By))
k=0
Special cases
oar(k) =t «—— nonfatal=harmless,

Br=1t +«— extreme model
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Stopping asymptotics

Theorem 3 If 1-F(G8:)— 0, and

1 — F(eu(k)) _
]_—F(ﬁt) Ck for k=1,2,...,
then
2 I=1
P((A=F@B)T() > z) — > e "= T[] (1—cp).
720 " k=0

Theorem 4 If 1— F(at(c0)) — 0, and

1 — F(os(k))
1— F(oztt(oo)) o) W) b
1 — F(at(o0)) 5
1 — F(Bt) 7
then

P((l — F(a(00))7(t) > z> — e ~.
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Lifetime asymptotics

Theorem 5 Suppose that |uy| < oo.

Under conditions of Theorems 1 or 2,

Dt TT(t) 4, Wy Z aS  t — o0,

where Z is as in T heorem 3 or 4.
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MixXxing again

Set
k(t) = min(v(t),7(t)),
() = max((v(t),7(t)).
Quantiles via
P(X1>uw) = Qt_l/v,

for uy = B(t) and at(oc0), respectively.

Theorem 6
Under earlier conditions,

k() /Y7 S min{(1/cuz) '/, 2/6},
and

&*(2) /117 % max{ (1 /cpe) Y, Z/6}.

Note
Thus, O/ instead of O(t).
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