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Preliminaries
Let Z1, Z2, . . . be iid random variables with d.f. F . If F is subexpo-
nential (1− F regularly varying), then

P

(
n∑

i=1

Zi > u

)
∼ nP (Z1 > u) (∼ nu−αL(u)) .
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Preliminaries
Let Z1, Z2, . . . be iid random variables with d.f. F . If F is subexpo-
nential (1− F regularly varying), then

P

(
n∑

i=1

Zi > u

)
∼ nP (Z1 > u) (∼ nu−αL(u)) .

If N ∼ Po(λ) is independent of Z1, Z2, . . . , then

P

(
N∑

i=1

Zi > u

)
∼ E(N)P (Z1 > u) (∼ E(N)u−αL(u)) .
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Preliminaries
Let Z1, Z2, . . . be iid random variables with d.f. F . If F is subexpo-
nential (1− F regularly varying), then

P

(
n∑

i=1

Zi > u

)
∼ nP (Z1 > u) (∼ nu−αL(u)) .

If N ∼ Po(λ) is independent of Z1, Z2, . . . , then

P

(
N∑

i=1

Zi > u

)
∼ E(N)P (Z1 > u) (∼ E(N)u−αL(u)) .

”Sum is large because one term is large”
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Introduction
• Consider a d-dimensional stochastic process X = (Xt; t ∈ [0, 1]),

Xt = (X
(1)
t , . . . , X

(d)
t )′. Suppose X0 = 0.
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Introduction
• Consider a d-dimensional stochastic process X = (Xt; t ∈ [0, 1]),

Xt = (X
(1)
t , . . . , X

(d)
t )′. Suppose X0 = 0.

• A trajectory t 7→ Xt(ω) is said to be extreme if supt∈[0,1] ‖Xt(ω)‖
is large. That is, the process escapes from a large ball during [0, 1].
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(d)
t )′. Suppose X0 = 0.

• A trajectory t 7→ Xt(ω) is said to be extreme if supt∈[0,1] ‖Xt(ω)‖
is large. That is, the process escapes from a large ball during [0, 1].

• We are interested in describing the extreme trajectories of
(Xt; t ∈ [0, 1]) under the assumption of heavy tails (regular vari-
ation) of the underlying probability distributions.
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Introduction
• Consider a d-dimensional stochastic process X = (Xt; t ∈ [0, 1]),

Xt = (X
(1)
t , . . . , X

(d)
t )′. Suppose X0 = 0.

• A trajectory t 7→ Xt(ω) is said to be extreme if supt∈[0,1] ‖Xt(ω)‖
is large. That is, the process escapes from a large ball during [0, 1].

• We are interested in describing the extreme trajectories of
(Xt; t ∈ [0, 1]) under the assumption of heavy tails (regular vari-
ation) of the underlying probability distributions.

• Another objective is to determine the tail-behavior of some functional
h of the sample path of (Xt; t ∈ [0, 1]). That is, to find the decay of
P (h(X) > u) as u →∞.



c©Henrik Hult hh228@cornell.edu •First •Prev •Next •Last •Go Back •Goto Page •Find •Full Screen •Close •Quit

Why are we interested in these
questions?

• Heavy-tailed distributions appear naturally in insurance, finance,
telecommunications, climate, hydrology, etc.
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• Heavy-tailed distributions appear naturally in insurance, finance,
telecommunications, climate, hydrology, etc.

• The probability of extreme events are often of considerable in-
terest in applications: large insurance claims, large financial losses,
long service/queueing times, wind speeds, flooding, etc.
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• Functionals of sample paths (suprema, average) correspond nat-
urally to these events.
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Why are we interested in these
questions?

• Heavy-tailed distributions appear naturally in insurance, finance,
telecommunications, climate, hydrology, etc.

• The probability of extreme events are often of considerable in-
terest in applications: large insurance claims, large financial losses,
long service/queueing times, wind speeds, flooding, etc.

• Functionals of sample paths (suprema, average) correspond nat-
urally to these events.

• Understanding of the extreme sample paths can provide useful
information about the cause of extreme events and insights in the
estimation of the probability of such events.
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Regular variation
• A d-dimensional random vector X is regularly varying if there is
an α > 0 and a measure µ (on Rd

0) such that

uαL(u)P (u−1X ∈ · ) v→ µ(·), on Rd
0,

for some slowly varying function L. We write X ∈ RVα(L, µ)
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Regular variation
• A d-dimensional random vector X is regularly varying if there is
an α > 0 and a measure µ (on Rd

0) such that

uαL(u)P (u−1X ∈ · ) v→ µ(·), on Rd
0,

for some slowly varying function L. We write X ∈ RVα(L, µ)

• We say a measure (distribution) ν on Rd is regularly varying,
ν ∈ RVα(L, µ) if uαL(u)ν(u· ) v→ µ(·).
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Regular variation
• A d-dimensional random vector X is regularly varying if there is
an α > 0 and a measure µ (on Rd

0) such that

uαL(u)P (u−1X ∈ · ) v→ µ(·), on Rd
0,

for some slowly varying function L. We write X ∈ RVα(L, µ)

• We say a measure (distribution) ν on Rd is regularly varying,
ν ∈ RVα(L, µ) if uαL(u)ν(u· ) v→ µ(·).

• The measure µ has the representation

µ(dr, dθ) = c αr−α−1drσ(dθ).

σ is a probability measure on the unit sphere and is called the spectral
measure.
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Regular variation on D[0, 1]
• A stochastic process X = (Xt; t ∈ [0, 1]) is regularly varying on
D[0, 1], if

uαL(u)P (u−1X ∈ A) → m(A)

for A ⊂ D[0, 1], bounded away from 0 with m(∂A) = 0. (de Haan
and Lin, 2001)
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Regular variation on D[0, 1]
• A stochastic process X = (Xt; t ∈ [0, 1]) is regularly varying on
D[0, 1], if

uαL(u)P (u−1X ∈ A) → m(A)

for A ⊂ D[0, 1], bounded away from 0 with m(∂A) = 0. (de Haan
and Lin, 2001)

For continuous mappings h : D → E

uαL(u)P (h(u−1X) ∈ B) → m ◦ h−1(B)

for B ⊂ E.
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A stochastic integral

• Let X = (Xt; t ∈ [0, 1]), Xt = (X
(1)
t , . . . , X

(d)
t )′ be a multivariate

Lévy process (we take a càdlàg version) and Y = (Yt; t ∈ [0, 1]) a
predictable càglàd process.
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• Let X = (Xt; t ∈ [0, 1]), Xt = (X
(1)
t , . . . , X

(d)
t )′ be a multivariate

Lévy process (we take a càdlàg version) and Y = (Yt; t ∈ [0, 1]) a
predictable càglàd process.

We consider the stochastic integral (Y ·X) where

(Y ·X)t =
(∫ t

0
Y (1)

s dX (1)
s , . . . ,

∫ t

0
Y (d)

s dX (d)
s

)′
.
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A stochastic integral

• Let X = (Xt; t ∈ [0, 1]), Xt = (X
(1)
t , . . . , X

(d)
t )′ be a multivariate

Lévy process (we take a càdlàg version) and Y = (Yt; t ∈ [0, 1]) a
predictable càglàd process.

We consider the stochastic integral (Y ·X) where

(Y ·X)t =
(∫ t

0
Y (1)

s dX (1)
s , . . . ,

∫ t

0
Y (d)

s dX (d)
s

)′
.

• We will approximate the extreme trajectories of (Y ·X) when X is
a regularly varying Lévy process with index α > 0 and Y has ’lighter
tails’ than X.
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Assumptions
• The Lévy process X is regularly varying in the sense that the Lévy
measure ν ∈ RVα(L, µ); i.e.

uαL(u)ν(u· ) v→ µ(·) on B(Rd
0).
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Assumptions
• The Lévy process X is regularly varying in the sense that the Lévy
measure ν ∈ RVα(L, µ); i.e.

uαL(u)ν(u· ) v→ µ(·) on B(Rd
0).

(Equivalently, X1 ∈ RVα(L, µ)).
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Assumptions
• The Lévy process X is regularly varying in the sense that the Lévy
measure ν ∈ RVα(L, µ); i.e.

uαL(u)ν(u· ) v→ µ(·) on B(Rd
0).

(Equivalently, X1 ∈ RVα(L, µ)).

• The càglàd process Y satisfies the moment condition

E( sup
t∈[0,1]

‖Yt‖α+δ) < ∞,

for some δ > 0.
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Intuition
• By the Lévy-Itô decomposition the stochastic integral can then be
written as

(Y ·X)t = (Y · X̃)t︸ ︷︷ ︸
α + δ moment finite

+

Nt∑
k=1

Yτk
Zk︸ ︷︷ ︸

tail decays like u−α

, Yτk
⊥ Zk.

X̃ has bounded jumps, Zk ∈ RVα(L, λ−1µ), ‖Zk‖ ≥ 1, and N Po-
process with intensity λ = ν{x : ‖x‖ ≥ 1}.
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X̃ has bounded jumps, Zk ∈ RVα(L, λ−1µ), ‖Zk‖ ≥ 1, and N Po-
process with intensity λ = ν{x : ‖x‖ ≥ 1}.

• Moment condition on Y and independence ⇒ Yτk
Zk regularly

varying with index α (Breiman)
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Intuition
• By the Lévy-Itô decomposition the stochastic integral can then be
written as

(Y ·X)t = (Y · X̃)t︸ ︷︷ ︸
α + δ moment finite

+

Nt∑
k=1

Yτk
Zk︸ ︷︷ ︸

tail decays like u−α

, Yτk
⊥ Zk.

X̃ has bounded jumps, Zk ∈ RVα(L, λ−1µ), ‖Zk‖ ≥ 1, and N Po-
process with intensity λ = ν{x : ‖x‖ ≥ 1}.

• Moment condition on Y and independence ⇒ Yτk
Zk regularly

varying with index α (Breiman)

• Sum is large because one of the Zk’s is large.
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Simulated stochastic integral

Simulated stochastic integral of (Y ·X) where X is a Compound Pois-
son process with Cauchy-distributed jumps and intensity λ = 100 and
Yt =

√
‖Xt−‖. Out of 1000 simulations the trajectory with larges

suprema is plotted.
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Main results
• An extreme trajectory may be approximated by a simple step func-
tion;
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Main results
• An extreme trajectory may be approximated by a simple step func-
tion; given that supt ‖(Y ·X)t‖ is large we may approximate

t 7→ (Y ·X)t ≈ t 7→ Yτ∆Xτ1[τ,1](t), t ∈ [0, 1],

where τ is the time of the biggest jump of X.
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Main results
• An extreme trajectory may be approximated by a simple step func-
tion; given that supt ‖(Y ·X)t‖ is large we may approximate

t 7→ (Y ·X)t ≈ t 7→ Yτ∆Xτ1[τ,1](t), t ∈ [0, 1],

where τ is the time of the biggest jump of X.

• Formally: for all ε > 0,

P (d(u−1(Y ·X), u−1Yτ∆Xτ1[τ,1]) > ε | ‖(Y ·X)‖∞ > u) → 0,

as u → ∞ and d is the complete J1-metric on the space of càdlàg
functions.
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Regular variation on D[0, 1]
• The process (Y ·X) is regularly varying on D[0, 1], i.e.

uαL(u)P (u−1(Y ·X) ∈ A) → m(A)

for A ⊂ D[0, 1], bounded from 0 with m(∂A) = 0.



c©Henrik Hult hh228@cornell.edu •First •Prev •Next •Last •Go Back •Goto Page •Find •Full Screen •Close •Quit

Regular variation on D[0, 1]
• The process (Y ·X) is regularly varying on D[0, 1], i.e.

uαL(u)P (u−1(Y ·X) ∈ A) → m(A)

for A ⊂ D[0, 1], bounded from 0 with m(∂A) = 0.

• The limit measure is given by

m(B) = E(µ{x ∈ Rd
0 : xYV 1[V,1] ∈ B}),

where V ∼ Unif(0, 1) is independent of Y.
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Regular variation on D[0, 1]
• The process (Y ·X) is regularly varying on D[0, 1], i.e.

uαL(u)P (u−1(Y ·X) ∈ A) → m(A)

for A ⊂ D[0, 1], bounded from 0 with m(∂A) = 0.

• The limit measure is given by

m(B) = E(µ{x ∈ Rd
0 : xYV 1[V,1] ∈ B}),

where V ∼ Unif(0, 1) is independent of Y.

I.o.w. we have the approximation in distribution (on D[0, 1])

(Y ·X)· ≈ YV Z1[V,1](·).
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Continuous Mappings
• For a regularly varying stochastic process X

uαL(u)P (u−1X ∈ A) → m(A).
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Continuous Mappings
• For a regularly varying stochastic process X

uαL(u)P (u−1X ∈ A) → m(A).

• The measure m describes the extreme behavior of the process X.
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Continuous Mappings
• For a regularly varying stochastic process X

uαL(u)P (u−1X ∈ A) → m(A).

• The measure m describes the extreme behavior of the process X.

• The support of m determines the possible extreme trajectories of
the process X.



c©Henrik Hult hh228@cornell.edu •First •Prev •Next •Last •Go Back •Goto Page •Find •Full Screen •Close •Quit

Continuous Mappings
• For a regularly varying stochastic process X

uαL(u)P (u−1X ∈ A) → m(A).

• The measure m describes the extreme behavior of the process X.

• The support of m determines the possible extreme trajectories of
the process X.

• We can derive a mapping theorem: for a mapping h : D → E with
m(Disch) = 0 and s.t. h−1(A) bounded from 0 for all bounded
A ∈ B(E),

uαL(u)P (h(u−1X) ∈ A) → m ◦ h−1(A).
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Consequences
For fixed t > 0, d = 1, and Y ≥ 0 a.s.,

(i) P ((Y ·X)t > u) ∼ E
(∫ t

0
Y α

s ds
)
ν(u,∞).
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Consequences
For fixed t > 0, d = 1, and Y ≥ 0 a.s.,

(i) P ((Y ·X)t > u) ∼ E
(∫ t

0
Y α

s ds
)
ν(u,∞).

(ii) P ( sup
s∈[0,t]

(Y ·X)s > u) ∼ E
(∫ t

0
Y α

s ds
)
ν(u,∞).
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Consequences
For fixed t > 0, d = 1, and Y ≥ 0 a.s.,

(i) P ((Y ·X)t > u) ∼ E
(∫ t

0
Y α

s ds
)
ν(u,∞).

(ii) P ( sup
s∈[0,t]

(Y ·X)s > u) ∼ E
(∫ t

0
Y α

s ds
)
ν(u,∞).

(iii) lim
u→∞

P (sups∈[0,t](Y ·X)s > u)

P ((Y ·X)t > u)
= 1.
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Motivation
Consider the asymptotics of P ((Y · X)t > u) as u → ∞ where the
Lévy measure ν ∈ RV(α, µ).
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Motivation
Consider the asymptotics of P ((Y · X)t > u) as u → ∞ where the
Lévy measure ν ∈ RV(α, µ).
We have

uαL(u)P ((Y ·X)t > u) = uαL(u)P (u−1(Y ·X) ∈ π−1
t (1,∞))



c©Henrik Hult hh228@cornell.edu •First •Prev •Next •Last •Go Back •Goto Page •Find •Full Screen •Close •Quit

Motivation
Consider the asymptotics of P ((Y · X)t > u) as u → ∞ where the
Lévy measure ν ∈ RV(α, µ).
We have

uαL(u)P ((Y ·X)t > u) = uαL(u)P (u−1(Y ·X) ∈ π−1
t (1,∞))

→ E
(
µ{x ∈ (0,∞] : YV x1[V,1](t) ∈ (1,∞)}

)
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Motivation
Consider the asymptotics of P ((Y · X)t > u) as u → ∞ where the
Lévy measure ν ∈ RV(α, µ).
We have

uαL(u)P ((Y ·X)t > u) = uαL(u)P (u−1(Y ·X) ∈ π−1
t (1,∞))

→ E
(
µ{x ∈ (0,∞] : YV x1[V,1](t) ∈ (1,∞)}

)
= E[(YV 1[V,1](t))

α]µ(1,∞)
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Motivation
Consider the asymptotics of P ((Y · X)t > u) as u → ∞ where the
Lévy measure ν ∈ RV(α, µ).
We have

uαL(u)P ((Y ·X)t > u) = uαL(u)P (u−1(Y ·X) ∈ π−1
t (1,∞))

→ E
(
µ{x ∈ (0,∞] : YV x1[V,1](t) ∈ (1,∞)}

)
= E[(YV 1[V,1](t))

α]µ(1,∞)

=

∫ t

0
E(Y α

s )dsµ(1,∞).
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Motivation
Consider the asymptotics of P ((Y · X)t > u) as u → ∞ where the
Lévy measure ν ∈ RV(α, µ).
We have

uαL(u)P ((Y ·X)t > u) = uαL(u)P (u−1(Y ·X) ∈ π−1
t (1,∞))

→ E
(
µ{x ∈ (0,∞] : YV x1[V,1](t) ∈ (1,∞)}

)
= E[(YV 1[V,1](t))

α]µ(1,∞)

=

∫ t

0
E(Y α

s )dsµ(1,∞).

Since uαL(u)ν(u,∞) → µ(1,∞) we obtain

P ((Y ·X)t > u) ∼
∫ t

0
E(Y α

s )ν(u,∞), as u →∞.


