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Preliminaries

Let Z,, Zy, ... be iid random variables with d.f. F. If F' is subexpo-
nential (1 — F regularly varying), then

P (i: Z; > u) ~nP(Zy > u) (~ nun U GaNe

1=1
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Let Z,, Zy, ... be iid random variables with d.f. F. If F' is subexpo-
nential (1 — F regularly varying), then

1=1

P (i: Z; > u) ~nP(Zy > u) (~ nun U GaNe

If N ~ Po(A) is independent of Z3, Z,, ..., then

P <§Nj 7 u> ~ E(NYP(Z, > uw)  (~ B(N)uL(u)).
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Preliminaries

Let Z,, Zy, ... be iid random variables with d.f. F. If F' is subexpo-
nential (1 — F regularly varying), then

P (i: Z; > u) ~nP(Zy > u) (~ nun U GaNe

1=1

If N ~ Po(A) is independent of Z3, Z,, ..., then

P <§Nj 7 u> ~ E(NYP(Z, > uw)  (~ B(N)uL(u)).

”Sum is large because one term is large”
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Introduction

e Consider a d-dimensional stochastic process X = (Xy;t € [0, 1]),
e (Xt(l), AN ,Xt(d))’. Suppose X, = 0.
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Introduction

e Consider a d-dimensional stochastic process X = (Xy;t € [0, 1]),
e (Xt(l), AN ,Xt(d))’. Suppose X, = 0.

e A trajectory t — X,(w) is said to be extreme if sup,c( y || Xe(w)]|
is large. That is, the process escapes from a large ball during [0, 1].

e We are interested in describing the extreme trajectories of
(X4t € [0,1]) under the assumption of heavy tails (regular vari-
ation) of the underlying probability distributions.

e Another objective is to determine the tail-behavior of some functional

h of the sample path of (X;;¢t € [0,1]). That is, to find the decay of
P(h(X) > u) as u — o0.
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e Heavy-tailed distributions appear naturally in insurance, finance,
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Why are we interested in these
questions?

e Heavy-tailed distributions appear naturally in insurance, finance,
telecommunications, climate, hydrology, etc.

e The probability of extreme events are often of considerable in-
terest in applications: large insurance claims, large financial losses,
long service/queueing times, wind speeds, flooding, etc.

e Functionals of sample paths (suprema, average) correspond nat-
urally to these events.

e Understanding of the extreme sample paths can provide useful

information about the cause of extreme events and insights in the
estimation of the probability of such events.
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Regular variation

e A d-dimensional random vector X is regularly varying if there is
an « > 0 and a measure p (on R%) such that

wL{u)P(u™'X € - ) 2 pu(-), on Rd,

for some slowly varying function L. We write X € RV (L, )
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an « > 0 and a measure p (on R%) such that
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e We say a measure (distribution) v on R? is regularly varying,
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Regular variation

e A d-dimensional random vector X is regularly varying if there is
an « > 0 and a measure p (on R%) such that

wL(u)P(u™'X € - ) % u(-), on Rdy,
for some slowly varying function L. We write X € RV (L, )

e We say a measure (distribution) v on R? is regularly varying,

v € RV, (L, p) if u*L(w)v(u- ) = p(-).
e The measure p has the representation
p(dr,df) = car " 'dro(df).

o is a probability measure on the unit sphere and is called the spectral
measure.
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Regular variation on D)0, 1]

e A stochastic process X = (Xt € [0,1]) is regularly varying on
Do, 1], if

w*L(u)P(u™'X € A) - m(A)
for A € D|0, 1], bounded away from 0 with m(0A) = 0. (de Haan
and Lin, 2001)
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Regular variation on D)0, 1]

e A stochastic process X = (Xt € [0,1]) is regularly varying on
Do, 1], if
w*L(u)P(u™'X € A) - m(A)

for A € D|0, 1], bounded away from 0 with m(0A) = 0. (de Haan
and Lin, 2001)

For continuous mappings A : D — [E
u*L(u)P(h(u"'X) € B) —» mo h™'(B)
for B C E.
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A stochastic integral

o Let X = (X5t € [0,1]), X; = (Xt(l), N0 ,Xt(d))’ be a multivariate
Lévy process (we take a cadlag version) and Y = (Y4t € [0,1]) a
predictable caglad process.

©Henrik Hult hh228@cornell.edu



A stochastic integral

o Let X = (X5t € [0,1]), X; = (Xtm, N0 ,Xt(d))’ be a multivariate
Lévy process (we take a cadlag version) and Y = (Y4t € [0,1]) a
predictable caglad process.

We consider the stochastic integral (Y - X) where

t t )
Be ), — ( / YOIx® / Y;d>dX§d>).
0 0

©Henrik Hult hh228@cornell.edu



A stochastic integral

o Let X = (X5t € [0,1]), X; = (Xtm, N0 ,Xt(d))’ be a multivariate
Lévy process (we take a cadlag version) and Y = (Y4t € [0,1]) a
predictable caglad process.

We consider the stochastic integral (Y - X) where

t t )
Be ), — ( / YOIx® / Y;d>dX§d>).
0 0

e We will approximate the extreme trajectories of (Y - X) when X is
a regularly varying Lévy process with index o > 0 and Y has ’lighter
tails’ than X.
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Assumptions

e The Lévy process X is regularly varying in the sense that the Lévy
measure v € RV, (L, p); i.e.

wL(u)v(u) < p(-) on B(RY).
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Assumptions

e The Lévy process X is regularly varying in the sense that the Lévy
measure v € RV, (L, p); i.e.

wL(u)v(u) < p(-) on B(RY).

(Equivalently, X; € RV, (L, i)).

e The caglad process Y satisfies the moment condition

E(sup |[Y:]|**) < oo,
t€[0,1]

for some 0 > 0.
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Intuition

e By the Lévy-Ito decomposition the stochastic integral can then be
written as

BEX), = (Y -X), + ) Y. Z; S

o + § moment finite k=1

tail decays like u=®

X has bounded jumps, Zy € RVa(L,A"'p), ||Zx]] > 1, and N Po-
process with intensity A = v{x : ||x|| > 1}.
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Intuition

e By the Lévy-Ito decomposition the stochastic integral can then be
written as

BEX), = (Y -X), + ) Y. Z; S

o + § moment finite k=1

tail decays like u=®

X has bounded jumps, Zy € RVa(L,A"'p), ||Zx]] > 1, and N Po-
process with intensity A = v{x : ||x|| > 1}.

e Moment condition on Y and independence = Y, Zj; regularly
varying with index a (Breiman)

e Sum is large because one of the Z;’s is large.

©Henrik Hult hh228@cornell.edu



Simulated stochastic integral
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Simulated stochastic integral of (Y - X') where X is a Compound Pois-
son process with Cauchy-distributed jumps and intensity A = 100 and
Y; = || Xi_||. Out of 1000 simulations the trajectory with larges
suprema is plotted.
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Main results

e An extreme trajectory may be approximated by a simple step func-
tion;
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Main results

e An extreme trajectory may be approximated by a simple step func-
tion; given that sup, |[(Y - X);|| is large we may approximate

t— (Y ° X)t ~ Tl YTAXTl[TJ](t), = [O, 1],

where 7 is the time of the biggest jump of X.
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Main results

e An extreme trajectory may be approximated by a simple step func-
tion; given that sup, |[(Y - X);|| is large we may approximate

t— (Y ° X)t ~ Tl YTAXTl[TJ](t), = [0, 1],

where 7 is the time of the biggest jump of X.

e Formally: for all € > 0,
Pd(u™(Y - X),u 'Y AX 1) > e | (Y - X)||oo > u) — 0,

as u — oo and d is the complete J;-metric on the space of cadlag
functions.
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Regular variation on D0, 1|
e The process (Y - X) is regularly varying on D|0, 1], i.e.
u*L(u)P(u™(Y - X) € A) — m(A)
for A C D[0, 1], bounded from 0 with m(9A) = 0.
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where V' ~ Unif(0, 1) is independent of Y.
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Regular variation on D0, 1|
e The process (Y - X) is regularly varying on D[0, 1], i.e.
u*L(u)P(u™(Y - X) € A) —» m(A)
for A C D[0, 1], bounded from 0 with m(9A) = 0.
e The limit measure is given by
m(B) = E(u{x € R% : xYy 1y, € B}),
where V' ~ Unif(0, 1) is independent of Y.

[.o.w. we have the approximation in distribution (on D[0, 1])

©Henrik Hult hh228@cornell.edu



Continuous Mappings

e For a regularly varying stochastic process X

u*L(u)P(u'X € A) — m(A).
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Continuous Mappings

e For a regularly varying stochastic process X

u*L(u)P(u'X € A) — m(A).

e The measure m describes the extreme behavior of the process X.

e The support of m determines the possible extreme trajectories of
the process X.

e We can derive a mapping theorem: for a mapping h : D — [E with
m(Disc;,) = 0 and s.t. h™'(A) bounded from 0 for all bounded
A€ B(E),

u*L(uw)P(h(uX) € A) » moh 1(A).
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Consequences
For fixedt > 0,d=1,and Y > 0 a.s.,

DN C (- X), > ) ~ E( /0 t Yso‘ds)y(u, 50).
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Consequences
For fixedt > 0,d=1,and Y > 0 a.s.,

DN C (- X), > ) ~ E( /O t Yso‘ds)y(u, 50).

(@)  P(sup (Y - X), > u) ~ E( /0 t y;ads)y(u, 50).

s€[0,t]

©Henrik Hult hh228@cornell.edu



Consequences
For fixedt > 0,d=1,and Y > 0 a.s.,

DN C (- X), > ) ~ E( /O t des)y(u, 50).

(@)  P(sup (Y - X), > u) ~ E( /0 t y;ads)y(u, 50).

s€[0,t]

e R e
u—00 P((Y-X)t >u)
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Motivation

Consider the asymptotics of P((Y - X); > u) as u — oo where the
Lévy measure v € RV(a, ).
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Motivation

Consider the asymptotics of P((Y - X); > u) as u — oo where the
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We have
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Motivation

Consider the asymptotics of P((Y - X); > u) as u — oo where the
Lévy measure v € RV(a, ).
We have

S L(w)P((Y - X); > u) = v*L{u)Plu~" (¥ - X € {INCE

— E(,u{a? € (0, 00| : Yzl tReNe OO)})
= E[(Yy1y(t))|u(1, 0o)

t
— [ BE)dsu(1, o)
0
Since u*L(u)v(u, 00) — w(1, 0o) we obtain

P(Y - X), > u) N/O BERL o0 s o0
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