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Introduction. Two-step regression quantiles. Consider the linear
regression model

Yi=6+x,B+e, i=1,...,n (1)
with observations Yi,...,Y,, independent errors eq,...,e,, identically
distributed according to an unknown distribution function F'; x,;
(i1, -, xip) is the vector of covariates, ¢ = 1,...,n, and B =
(B1,--.,53), and B* = (By,3') are unknown parameters.

The regression a-quantile B;(a) = (Buo(@), Bui(a), ..., Bup(@)),

0 < a < 1, is a solution of the minimization

Z pe(Y; — by — x/b) := min
i=1 X




with respect to (bg, by, ...,b,) € IRPT', where x! is the i-th row of X
and po(z) = |z|{ad[z > 0]+ (1 — a)I[z < 0]}, = € R'. Let Fy(z) be
the distribution function of e; — F~1(a), and denote 1), the right-hand
derivative of pq, i.e. ¥o(z) = a — Iz < 0], z € IR.

Then the R-estimator of 3, generated by the score function

o) = Vo (F u) =a—Iu<al, 0<u<1

is asymptotically equivalent to B(c) (see Jureckov4 (1977)). In this special
case the dependence of ¢, on the unknown F' disappears. The R-estimator

can be calculated by means of minimization of Jaeckel’s measure of rank
dispersion (Jaeckel (1972)):

~~

B,r = argming . ppD,,(b),  where (2)

Da(b) = 3 (¥ - Xib)o <R"i(nY+‘1Xb)) .

1=1

Hence, under some conditions on F' and X,

n2||B,g = Bu(@)]l = 0p(1) asn — 0. 3)




K. Knight (personal communication) has just proved that 8,z and 3,,(a)
are even the second order asymptotically equivalent. Having estimated 3
by R-estimate 3, 5, we can further consider the minimization

Y " oY = b= X|B,) := min (4)
1=1

with respect to b € IR!. Its solution, denoted as Bno, is the [naj-th order
statistic of the residuals Y; — ngnR, ¢ = 1,...,n. Jureckovd and Picek
(2005) showed that B0 is a consistent estimate of By + F ~1(a), asymptot-
ically normally distributed, and the variance of its asymptotic distribution
concides with that of the sample a-quantile in the location model. Similar
results hold also in the linear autoregressive model.
This procedure can be also modified to obtain an estimate of the extreme
error F., in the linear regression model (1) or in the linear AR model. It
can be obtained under the following restriction on the matrix X :

max ||x;|| = O (n%_‘s) as n— 00, 0< 4 < 3.

1<i<n
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Actually, let E,., be the maximum of the residuals,
En:n — maX{Yl - X?anR7 sy Yn — X;LBTLR}

calculated with respect to a suitable R-estimate Bn r of B, generated by
a score-generating function ¢, independent of n. Then FE,,., is a consistent
estimate of F,., + By and has the following properties:

(1) |Enn - En:n - /8()| = (t)p(n—5) as n — OQ.

(ii) If F" belongs to the domain of attraction of the Gumbel distribution,
then

P{nf(6)Bun o - &) <t} > (=), 6= F7 (1- ).

n

(iii) If F" belongs to the domain of attraction of the Fréchet distribution
and 1 — F(x) = 7™ L(x), m > 0, with a slowly varying function L, then

lim IP {ﬁ;l(ﬁnm — Bo) < t} = exp {—t_m} , t>0.

n—00
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Figure 1: Histogram of nf(&y)(Enn — &), n = 500, plotted against
the Gumbel density; standard normal errors (E,., is based on

residuals with respect to BnR, a=0.75)
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Extreme regression quantiles and extreme R-estimators.
Smith (1994) was the first who considered an estimator that we today
call the extreme regression quantile of model (1), and found its asymp-
totic distribution under heavy-tailed distribution F' and under some con-
ditions on the x;. Such estimators were later considered by Portnoy and
Jureckové (1999), Knight (2001) and Chernozhukov (2005) (among oth-
ers), who derived various forms of the asymptotic distributions under other
distributions of errors and under different regularity conditions.

Jureckové and Picek (2005) also proposed a two-step extreme regression
quantile as a special case, starting with a special R-estimator of the slopes.
The two-step extreme quantile even coincides with the ordinary extreme
regression quantile. Because the ranks are invariant to the shift, the initial
R-estimator automatically estimates only the slope parameters in model
(1). Hence, the two-step version enables to consider the slope and intercept
components separately, and it turns out that the ”extreme” R-estimator of
the slope components even estimates the slope parameters consistently for

some distributions of the errors.

The mazimal regression quantile B;(l) is a solution of the minimization:
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n

w2 (¥ = b0 = xib) ®)

1=1
where 7 = max(z,0) denotes the positive part of . The minimization
(5) can be alternatively described as any solution to the linear program:

n
min by + x;b
beR,beRP Z_Zl{ 0+ x;b}
st.Y; <by+xb,i=1,...,n.
IfY ",z =0, j =1,...,p, then we minimize only by subject to the
restrictions. .
Consider the R-estimate 3, 5 of 3 generated by the score function

en(u)=1-2—JTu<1-1] 0<u<1 (6)

with the approximate rank scores

an(i):gon< i )zf[izn]—l, i=1....n )

n+1 n




Let R,i(%,b) be the rank of the r681dua1 Y;—x/b among Y1 —x}b,...,Y,—

xb,beR, i=1,...,n. Then ,BnR can be defined as the minimizer of
the Jaeckel (1972) measure of the rank dispersion; in this special case the
Jaeckel measure takes on the form

Du(b) = 303 - by (F2L22)) ®)

1=1 n+ 1
— max {Y ( )_(n)/b} — Yn = (YZ — (Xi — )_(n)/b)n:n — Yn,

1<z<n

Hence, BnR minimizes the extreme residual (Y; — (x; — X,,)'b)y., with
respect to b € IRP. Moreover, if we define 37 as

B = max{Y; = xBp, 1 <i <n} (9)

then B\ar + X’,/B\ZR is the maximum of {Y; — (x; — )‘()’BZR, 1<i<n} It
follows from (9) that

—~ /\+ .
By +x.8.r>Y;, i=1,...,n (10)
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while for some i the inequality converts in an equality, hence 8 + X',z

is minimized subject to the restriction (10). Hence, the two-step maxi-
/

. . > 51 . . .
mal regression quantile (ﬁar ,B,r ) coincides with the extreme regression

quantile defined in (6).

—~

Under some distributions of ey, ..., e,, the R-estimator 3, can be even
a consistent, asymptotically normal estimate of the slope components 3;
actually, we can show it e.g. under the following conditions:

(A1) ey,...,e, are iid. with d.f. F and density f that is absolutely
continuous and has finite Fisher’s information, and

fim nf(6,) = 0, £ = F"! (1 - 1) | (11)

n—oo n

(A2) Density f belongs to the domain of attraction of the Gumbel distri-
bution with the distribution function G(t) = exp {—e™*} .

(A3) The triangular array of p-dimensional vectors {Xy1, . .., Xpn }, -, sat-
isfies either of the following two conditions:

(A3.a) {x,1,...,X,,} are known p-dimensional vectors satisfying
9




. 1« _ iy
nh_)rr;o D, = D where D, = - Zl(xm — X)) (X — X) (12)

and D is a positive definite p X p matrix. Moreover,

nh_)rr;o 1r£1iaé>% n" (Xpi — %) D, (% — X,) = 0 and

max ||x; — X|| = Oy(1) as n — oo. (13)
1<i<n
(A3.b) {x,1,-..,Xu,} are independent p-dimensional random vectors,
independent of errors ey, ..., e,, possessing finite moments up to order 3,

identically distributed with distribution function H,,. We assume that
FE(x,)=0i=1,...,n;, n=1,2,...,
1 n
— Z XniX: = Qp 2, Q, a positive definite p X p matrix,
n
i=1

and lim H,(z) = H(z), z € IR?, (14)

n—00
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where H is a continuous p-dimensional distribution function.

Denote k, = (nf(£,))"!. Then &, | 0 as n — oco. Let R;(kn ) be the
rank of e; — k,x/b among e; — Kk, x|b,..., e, — kK, X, b, @ =1,.
Consider the vector of linear rank statistics

n

Sn(b) =) (x; — Xp)an(Rni(knb)). (15)
i=1
The following theorem gives the asymptotic distribution of ,/B\ZR ;

Theorem 1. Let B:R be the R-estimator of 3 defined by the mini-
mization of D,(b) in (8). Then
(i) Under the conditions (A1), (A2) and (A3.a), the sequence of

o~
random vectors {'n, f(&)(B,.r — ,3)} admits the asymptotic represen-
tation, as n — 00,

nf(€) (Bur— B) = D'S.(0) + 0,(1) (16)

= D>t = %) [a2(Rai(0), 1= D) + 0p(1) [= Oy(1)
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where for j =1,...,nand 0 < a <1

0, 7 < na,
ai(,a0) =4 j—na, na<j<na+l, (17)
1L, na+1 < j,

are Hajek’s rank scores (Hajek (1965)). Hence, nf(ﬁn)(,/B\ZR — ) has

asymptotic p-dimensional normal distribution N,(0,D™1).
(ii) Under the conditions (A1), (A2), (A3.b), the asymptotic distri-
bution function of the sequence of random vectors

nf(gn)Qn(B:L_R T :6) (18)

coincides with the limiting distribution function H of {(xp1, ..., %np)'},
defined in (14).
Remark. Notice that (16) implies that nf(£,) (B:R — ,3) asymp-

totically coincides with the least squares estimator of the vector
(nI[R,1(0) = nl,...,nl[R,,(0) = n])’ in the linear model with the
j=1,...p

design matrix |(zi — ;)] -

9
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Some ideas leading to the results: Let a,(7, f), 1 < i < n be the
locally and asymptotically optimal rank scores for distribution f :

a,(t, f :E{— , t=1...,n 19
(2, f) F(U) (19)
where U,1 < ... < U,., are the order statistics corresponding to the

sample from the uniform R(0, 1) distribution. Under (A1), (A2),

f(z) fl(z)  ['(z)
— R R ~ ..., hence 20
= F@) ~ o)~ o) 20
an(n, f)

lim kpan(n, f) = lim =1 (21)

n—00 n—00 fn,f(F_l(l — %))
by unimodality and Jenssen inequality. By Jureckova and Milhaud (2003),

P, {(Ru1(k,b), ..., Run(K,b)) = (11, ..., 70)}

— % 1 %/ﬂ;nb/ Z(xi — X)an(rs, f)(1 + o(ky))
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for any permutation (r1,...,7,), as n — oo.
Investigating the moments of R,;(0) and R,;(k,b), we conclude that, as
n — 00,

sup [|Sp(b) —S,(0) + D,b|| = 0,(1) (22)
Ibll<C

where the convergence is uniform in b because S,,(b) is a gradient of a con-
vex function Y (Y; — x!b)a,(Rni(knb)) (see Heiler and Willers (1988))

or Pollard (1990). Inserting b — n f (ﬁn)(B:R — ) into (22), we obtain

nf (&) B — B) = Du1S,(0) + 0,(1) (23)

as n — 00, and this in turn implies (16). Hajek (1965) proved the conver-
gence of the standardized process {> (@i — Tj)an(i, 1) 0 <t <1} of
the scores (17) to the Brownian bridge, j = 1, ..., p; this in turn implies
+

the asymptotic normality of n f(&,) (,Bn R ,3) . This completes the proof
of proposition (i). (ii) The proof of the second part is analogous to that of
(i); the approximations are conditional under given X, . .., X,,. In such a
way we obtain
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~t
(&) Qn(Bnr — B) = Sno + 0p(1) as n — o0
and S,,0 = x,,; with probability %, t=1,...,n; hence, for B € BP,

P (Su € B} = %iP(xm € B) = Hy(B) — H(B)

1=1
as n — OQ.
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