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Consider a random process

Yt =
∫ t

0
Xs ds − ctθ,

where Xt, t ≥ 0 is a stationary real-valued zero-mean Gaussian process with
continuous trajectories and twice differentiable covariation function R(t), c >
0, θ > 1/2. Such a model arises, for example, in ruin financial problems,
telecommunications, and information storage problems [6,7].

Define the ruin probability

P (u) = P{∃ t ≥ 0 : Yt ≥ u} = P{max
t≥0

Yt ≥ u}.

The random process
∫ t
0 Xs ds is a process with stationary increments. The

ruin probability P (u) has been studied in a number of papers for various
models of processes with stationary increments. In [3,7] an exact asymptotic
of P (u) as u → ∞ has been found for Yt = Bα/2(t) − ct, where Bα/2 is the
fractional Brownian motion. The most similar in problem formulation work
is the paper [5]. There, an asymptotic of the ruin probability for θ = 1 was
found in the following form:

P (u) =
HηG

c2
e−Hc2/G2

e−uc/G(1 + o(1))

as u → ∞. Here Hη is a generalized Pickands constant for the process
η = c(G

√
2)−1

∫ t
0 Xt dt. But the constant Hη has not been calculated, and its

dependance on characteristics of the original process Xt remains unclear.
Application of the Rice’s method allows to obtain the exact asymptotic

of the P (u) as u → ∞ under some conditions, thus we are able to calculate
the value of Hη.

Intuitively it is clear that for large u the event that the process Yt crosses
the level u more than once is rare, so the probability P (u) approximately
equals the mean number of crossings. The Rice’s method allows to formalize
this idea.
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Let a random variable Nu([0, T ]) be equal to the number of crossings of
the level u by the process Yt on the segment [0, T ]. In [1,2] it was shown
that for a random process with continuously differentiable trajectories and
for any segment S the following relation holds

0 ≤ ENu(S) − P (max
t∈S

Yt ≥ u) ≤ ENu(S)(Nu(S) − 1).

Application of this method gives us

Theorem 1 Suppose that G =
∫ ∞

0
R(s) ds > 0, H =

∫ ∞

0
sR(s) ds is finite,

and u2−2/θ
∫ ∞

u1/θ
sR(s) ds → 0, u → ∞. Then

P (u) =

√

R(0)
√

2π
u−1+1/θ(2θ − 1)1/2−1/θc−1/θ×

× exp

{

−u2−1/θ (1 + τ θ
min(2θ − 1)−1))2

4G(2θ − 1)−1/θc−1/θτmin − 4Hu−1/θ

}

(1 + o(1))

as u → ∞, where τmin = τmin(u) is a point of minimum of the function

v(τ) =
(1 + τ θ(2θ − 1)−1))2

4G(2θ − 1)−1/θc−1/θτ − 4Hu−1/θ
.

It turns out that main part of the probability P (u) compose events such
that the level crossing occurres for t in some neighborhood of maximum point
of variance of the process Yt. To prove this, rewrite the probability P (u) in
the following form:

P (u) = P

(

max
t>0

1

(1 + ctθ/u)

∫ t

0
Xsds > u

)

.

Then, the variance of the process Vt = 1
(1+ctθ/u)

∫ t

0
Xsds can be represented as

the sum

VarVt =
2Gt − 2H

(1 + ctθ/u)2
−

2Gt
∫ ∞

t
R(s)ds − 2

∫ ∞

t
sR(s)ds

(1 + ctθ/u)2
= S1(t)+R1(t). (1)

The second term in (1) is negligible due to the assumptions set, and the first
term has a unique point of maximum for large enough u. If we denote this
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point by tmax = tmax(u), then with the help of Piterbarg inequality [1] we can
choose a segment I = [tmax − ∆, tmax + ∆] with ∆ = ∆(u) → 0, such that

P

(

sup
t6∈I

Yt > u

)

= o

(

exp

{

− u2

2S1(tmax)

})

.

Thus, it is sufficient to estimate the values ENu(I) and ENu(I)(Nu(I)− 1).
The first term can be evaluated using the Rice formula [1]

ENu(I) =
∫

I

∫ ∞

0
|y|pt(u, y) dydt, (2)

where pt(u, y) is a joint density of the random variables Yt, Y
′
t . Performing

change of the variable t = (u(2θ − 1)−1/c)
1/θ

τ and applying the generaliza-
tion of the Laplace method to the integral (2), we obtain that

ENu(I) =

√

R(0)
√

2π
u−1+1/θ(2θ − 1)1/2−1/θc−1/θ×

× exp

{

−u2−1/θ (1 + τ θ
min(2θ − 1)−1))2

4G(2θ − 1)−1/θc−1/θτmin − 4Hu−1/θ

}

(1 + o(1)),

where τmin = τmin(u) is defined in the statement of the theorem.
The estimation of the ENu(I)(Nu(I) − 1) is based on the application of

the explicit formula for the second moment

ENu(I)(Nu(I) − 1) =
∫

I

∫

I

∫ ∞

0

∫ ∞

0
y1y2ϕt,s,t,s(u, u, y1, y2) dy1 dy2 ds dt,

where ϕt,s,t,s(u, u, y1, y2) is a joint density of the variables Yt, Ys, Y
′
t , Y

′
s . Pro-

ceeding to conditional densities and applying Taylor formula, we prove that
ENu(I)(Nu(I) − 1) = o (ENu(I)) as u → ∞. It turns out that the require-
ment of twice differentiability of the covariance function R(t) is significant
in this method.

Consideration of the case θ = 1 gives us the asymptotic

P (u) =

√

R(0)
√

2π
c−1 exp{−Hc2

G2
} exp {−uc/G} (1 + o(1)),

thus, comparing it with the result of Debicki, we obtain that the Pickands

constant for the process η(t) =
c

G
√

2

∫ t

0
Xt dt equals

√

R(0)/(
√

2πGc).
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Denote the time of ruin τu = inf{t ≥ 0 : u − Yt ≤ 0}. The Rice’s
method allows to obtain the asymptotic of the conditional distribution of τu

as u → ∞ given the ruin condition max
t≥0

Yt ≥ u. It is worth to mention that

τu takes values mostly in some neighborhood of tmax.

Theorem 2 Let the conditions of the Theorem 1 be fulfilled. Then

P (τu < f(x)| τu < ∞) → Φ(x), u → ∞,

where Φ(x) is a distribution function of the standard normal random variable,

and f(x) = u3/(2θ)−1
√

2G(2θ − 1)−3/(2θ)c−3/(2θ)θ−2x + (u(2θ − 1)−1/c)
1/θ

.

Let us start with the estimation of the probability P(τu < f(x)). To
prove the result we, as above, restrict consideration to the neighborhood of
the point tmax: I = [tmax−c−1/θ(2θ−1)−1/θu3/(2θ)−1 ln u, tmax +(f(x)− tmax)].

Substituting t = t(τ) = (u(2θ − 1)−1/c)
1/θ

τ+tmax, we obtain I = (I1+I2)(1+
o(1)), where

I1 =
(u(2θ − 1)−1/c)

1/θ

√
2π

∫ 0

−u1/(2θ)−1 ln u

σ(t(τ))

a(τ)
g(t(τ)) exp {−S3(τ)} dτ,

I2 =
(u(2θ − 1)−1/c)

1/θ

√
2π

∫ u1/(2θ)−1h(x)

0

σ(t(τ))

a(τ)
g(t(τ)) exp {−S3(τ)} dτ,

S3(τ) =
u2

2S1(t(τ))
.

(3)

a(τ), g(t), and σ(t) are known functions with not more than polynomial
growth in u.

The first integral in (3) is estimated with the help of the Laplace method,
which gives us

I1 =

√

R(0)

2
√

2π
u−1+1/θ(2θ − 1)1/2−1/θc−1/θ exp {−S3(0)} (1 + o(1)).

In the second integral we can perform the change of variable y2 = 2(S3(u
1/(2θ)−1τ)−

S3(0)), thus obtaining

I2 =

√

R(0)
√

2π
u−1+1/θ(2θ−1)1/2−1/θc−1/θ exp {−S3(0)} 1√

2π

∫ x

0
e−

y2

2 dy(1+o(1)).
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The estimation of the ENu(I)(Nu(I) − 1) repeats the corresponding part of
the proof of the former theorem.

To complete the proof, it remains to sum the obtained estimates and to
divide it by the probability P (sup

t>0
Yt > u).
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