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Outline of this talk

■ Smoothing semipararametric tools & splines

■ Generalized linear mixed models (GLMM) for spline
estimation

■ GLMM for smoothing sample extremes

■ Some bits of Bayesian inference and MCMC

■ Simulations and applications to pollutants
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Parametric modeling

Popular models for response yi, i = 1, . . . , n have form

yi = f(xi) + errori

■ f can be any parametric function

■ many way to characterize error; examples:
◆ Gaussian iid (simple regression)
◆ Correlated errors
◆ Exponential family (generalized linear models)
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Regression

Take simple linear regression

f(x) = β0 + β1x

Smoothing features:
■ f is smooth; often unsuited to model real data

■ f is a linear combination of basis functions
[

1 x
]
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Regression

Take simple linear regression

f(x) = β0 + β1x

Smoothing features:
■ f is smooth; often unsuited to model real data

■ f is a linear combination of basis functions
[

1 x
]

An extension is polynomial regression

f(x) = β0 + β1x+ β2x
2 + . . .+ βpx

p

Smoothing features:
■ f is smooth and suited to model non-linearity

■ f is a linear combination of basis functions
[

1 x x2 · · · xp
]



Smoothing
modeling
Regression
stick
spline
knots placement
penalized splines
optimization
generalization
LMM
spline & LMM
extensions
breath

EVA 2005 F. Pauli & F. Laurini - p. 5/34

Broken linear stick modeling

Linear model for a “structural change” at time κτ (broken
stick)

f(x) = β0+β1x+bτ (x−κτ )+ ()+ the positive part of (x− κτ )

Smoothing features:
■ f is rough and suited to explain structural changes

■ f is a linear combination of basis functions
[

1 x (x− κτ )+

]

(x− κτ )+ is a linear spline basis function
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Linear spline modeling

Extension to linear spline regression by adding knots
κ1, . . . , κK

f(x) = β0 + β1x+
K

∑

k=1

bk(x− κk)+

Smoothing features:
■ f is piecewise linear, and more flexible than broken stick

■ f is a linear combination of basis functions
[

1 x (x− κ1)+ . . . (x− κK)+

]
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Linear spline modeling

Extension to linear spline regression by adding knots
κ1, . . . , κK

f(x) = β0 + β1x+
K

∑

k=1

bk(x− κk)+

Smoothing features:
■ f is piecewise linear, and more flexible than broken stick

■ f is a linear combination of basis functions
[

1 x (x− κ1)+ . . . (x− κK)+

]

“Definition”

■ The set of functions {(x− κj)+}, j = 1, . . . , K is a linear
spline basis

■ A linear combination of such basis functions is a piecewise
linear function

■ Commonly called spline with knots at κ1, . . . , κK
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How do we choose knots?

Knots selection and their placement have drawbacks
■ Somehow ad hoc solution

■ Overfitting

■ Might be time consuming
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Penalized spline regression

Let β = (β0, β1, b1, . . . , bK).
Wiggly fit is avoided by constraints on bk such as

K
∑

k=1

b2k < C finite C

Minimization is written as

minimize ‖y −Xβ‖2
subject to βTDβ ≤ C

where D is a squared positive matrix with K + 2 rows

D =

[

02×2 0

0 IK×K

]

Smoothing features:
■ f is smooth and pleasing

■ The amount of smoothness is controlled by C, and does not
depend on number/placement of knots
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Solution of constrained optimization

With Lagrange multiplier argument, for some λ ≥ 0, choose β
to minimize

‖y −Xβ‖2
+λ2βTDβ with solution β̂λ = (XTX+λ2D)−1XT y.

■ λ2βTDβ is the roughness penalty term

■ λ is the smoothing parameter

■ Connections with ridge regression

λ small λ big
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Generalization of spline models

Generalization may involve

Use of different basis

■ Use of B-spline (numerical stability)

■ Use of natural cubic splines (arise as solution of
optimization problem)

Use of different penalties

■ Penalize “some difference” in spline coefficients

■ Penalizing degree of spline function. Example: q-th
derivative of f



Smoothing
modeling
Regression
stick
spline
knots placement
penalized splines
optimization
generalization
LMM
spline & LMM
extensions
breath

EVA 2005 F. Pauli & F. Laurini - p. 11/34

Penalized splines as Linear Mixed Model

Take the Linear Mixed Model (LMM)

y = Xβ + Zu+ ε

and assume

E

[

u

ε

]

=

[

0

0

]

, COV

[

u

ε

]

=

[

G 0

0 R

]

and
G = σ2

uI

R = σ2
εI

■ Xβ is the fixed component

■ u is the random component or random effect
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Spline embedded in LMM

For LMM

y = Xβ + Zu+ ε

yi = β0 + β1xi +
K

∑

k=1

uk(xi − κk)+ + εi

splines are the Best Linear Unbiased Predictor where u is a
vector of random coefficients.
Details:

X =









1 x1

...
...

1 xn









and Z =









(x1 − κ1)+ · · · (x1 − κK)+
...

. . .
...

(xn − κ1)+ · · · (xn − κK)+









■ In general uk i.i.d. N(0, σ2
u)

■ σu = ∞ leads to wiggly (over)fit

■ Finite σu shrinks uk (smooth fit)
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Sketch of extensions to LMM (increasing complexity)

■ Semiparametric models: one covariate is nonparametric

yi = f(X1
i ) +X

[−1]
i β + εi, f smooth

■ Semiparamtric mixed models: add random effects u

■ Additive models: covariates as penalized linear splines, e.g.

yi = c+ f1(xi) + f2(ti) + εi; f1 and f2 are smooth

■ Generalized parametric regression with random effects
(GLMM), e.g.

yi | u ∼ Ber
( exp{(Xβ + Zu)i}

1 + exp{(Xβ + Zu)i}

)

u ∼MVN(0,Gθ)

■ Combine all above ingredients, eventually with a Bayesian
approach.
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Breath for a thought!

Obvious and less immediate features
■ Model fit with (restricted) ML methods (S-PLUS, R, SAS,

?).

1. Selection of smoothing parameter λ (cross validation)

2. Degrees of freedom & model selection (AIC)

■ Standard inference tools available

1. Pointwise & simultaneous confidence bands

2. Hypothesis testing

3. Likelihood ratio and F -tests

■ Inference on functional of splines (e.g. confidence bands for
any derivative of f)

■ Extensions to LMM are “quite” easy.
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Smoothing and extremes

■ Hall and Tajvidi (2000)

motivation, scope : exploratory analysis, assessment of trend

method and model : local likelihood smoothing on GEV and
GPD models

smoothing parameter : CV for bandwith choice

error assessment : goodness of fit evaluated using
probability plots

application(s) :
◆ intensities of windstorms (N = 45) → GPD
◆ Australian temperature extrema → GEV
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Smoothing and extremes

■ Davison and Ramesh (2000) - Ramesh and Davison (2002)

motivation, scope : exploratory analysis, assessment of trend

method and model : local likelihood smoothing on GEV
model

smoothing parameter :
◆ bandwith chosen “by eye”
◆ likelihood cross validation

error assessment : bootstrap

application(s) :
◆ central England temperatures (r-largest)
◆ athletic records (r-largest)
◆ extreme sea level
◆ river flow
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Smoothing and extremes

■ Pauli and Coles (2001)

motivation, scope : exploratory analysis, more flexible than
previous approaches, allow for multiple series

method and model : penalized likelihood spline smoothing on
GEV model

smoothing parameter : bandwith chosen “by eye”

error assessment : bayesian credibility intervals

application(s) :
◆ temperature at Oxford and Worthing (r-largest)
◆ athletic records (r-largest)
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Smoothing and extremes

■ Chavez-Demoulin and Davison (2005)

motivation, scope : this approach can be applied to dataset
with numerous series

method and model : generalized additive models estimated
by penalized likelihood approach

smoothing parameter : AIC

error assessment : differences of deviances and bootstrap

application(s) : daily minimum temperature at 21-weather
stations in Switzerland
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Smoothing and extremes

Our choices

We use a mixed model approach to estimate the spline
function
■ Bayesian approach

■ Smoothing coefficient is a parameter to be estimated

■ Error bands arise naturally as part of the procedure

■ Use of GEV, GPD and Poisson processes (instead of
exponential family of GLM)

■ The model extends to multiple series
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Standard assumptions

■ Extreme observations (t, Yt) (where t ∈ [0, 1])

■ follow a non-stationary Poisson process with intensity

ψ−1
t

(

1 + ξt
y − µt

ψt

)−1/ξt−1

+
, ξt 6= 0

ψ−1
t exp

(y − µt

ψt

)

, ξt = 0

■ µt and ψt are for location-scale

■ ξt shape parameter

■ Parameter are assumed time-varying
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Some conditions

■ Define Nu =
∑

t∈[T1,T2]
I{Yt > u}

■

Nu ∼ Poi
(

∫ T2

T1

λ(t)dt
)

■

λ(t) = {1 + ξ(t)
u− µ(t)

ψ(t)
}
−1/ξ(t)
+

■ Fix Nu = n; then data {Yt − u | Yt > u} ∼ GPD(ξt, σt),
σt = ψt + ξt(u− µt)

■ log-likelihood decomposes as follows

l(λ, σ, ξ) = lN (λ) + lY −u(σ, ξ)
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Model description: first glance

Poisson process parameters are assumed as

log(λt) = β1 + β2t+ fλ(t)

log(νt) = β5 + β6t+ fν(t)

ξt = β3 + β4t+ fξ(t)
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Details on estimation

■ Separate inference for λ and (σ, ξ) due to likelihood
factorization

l(λ, σ, ξ) = lN (λ) + lY −u(σ, ξ)

■ We consider orthogonal reparametrization

(σ, ξ) → (ν = σ(1 + ξ), ξ)

■ Estimation of Poisson process intensity λ(t)
◆ Divide interval [0, 1] into nδ = 1/δ intervals of length δ
◆ di = count of observations in [(i− 1)δ, iδ]
◆ λ(t) is assumed constant in [(i− 1)δ, iδ]
◆ i-th interval contribution is given by

Li(λ) = λ(iδ)die−δλ(iδ)
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Bayesian model specification

di ∼ Poisson(λi)

log(λi) = β1 + β2t+ Zdbλ

bλ ∼ N (0, Iτ−1
λ )

Yj ∼ GPD(νj , ξj)

ξj = β3 + β4tj + Zybξ

log(νj) = β5 + β6tj + Zybν

bξ ∼ N (0, Iτ−1
ξ )

bν ∼ N (0, Iτ−1
ν )

βi ∼ N (0, 106)

τλ, τν , τξ ∼ Gamma(10−3, 10−3)
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WinBUGS code (part of) for MCMC

Estimation is carried with WinBUGS to produce MCMC
output

One issue in using WinBUGS is that GPD is not among the
built-in distributions, so

for (i in 1:noss) {
ones[i] <- 1 # fictitious observations
ones[i] ~ dbern(p[i])
Lik[i] <- (likelihood of i-th observation)
p[i] <- Lik[i]/C
csi[i] <- beta[3]+beta[4]*(t[i])+

inprod(bcsi[],Z[i,])
vu[i] <- exp(beta[5]+beta[6]*(t[i])+

inprod(bvu[],Z[i,])
}
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Some estimates on simulated samples

■ we simulate a Poisson point process model with parameters
λ(t), ξ(t), σ(t)

■ samples are simulated involving approximately 200
observation (the exact number is random)

■ in what follows we compare estimates and true values
◆ red lines in the plot represent true values of the

parameters
◆ bands are pointwise 95% credibility intervals
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Simulation 1
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Simulation 2
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Ozone data

We consider daily maxima of O3 concentration (ppm) in
Milan measured
■ at three different sites (Juvara, Parco Lambro, Verziere)

■ from 1995 to 2004 (10 years)
We consider only observations from June to September
(included) since O3 concentration is high only if temperatures
is high.

The aim is to assess wether a time trend exist for the
extremes of the series

Seasonality must be taken into account, semiparametric
regression is used for this.
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Ozone, model specification

■ we employ a threshold of 170ppm chosen “by eye” (and do
not discuss this choice further)

■ a poisson point process model is estimated in which
◆ a spline model is employed to allow for seasonality
◆ random effects are employed to allow for site and year

effect
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Ozone, model specification

Consider observations (t, Ysi) where Ysi is ozone
concentration measured
■ at site s (s = 1, 2, 3)

■ in year i (i = 1995, . . . , 2004)

■ at time of year (actually, of summer) t (renormalized so
that t ∈ [0, 1])

Poisson intensity is given by

log(λtis) = β1 + β2t+ fλ(t) + γ
(λ)
i + δ(λ)

s

Parameters of the generalized Pareto for excesses is

ξtis = β3 + β4t+ fξ(t) + γ
(ξ)
i + δ(ξ)s

log(νtis) = β5 + β6t+ fν(t) + γ
(ν)
i + δ(ν)

s



Application on
Ozone data
Data
Model
Model
Results
Results

EVA 2005 F. Pauli & F. Laurini - p. 32/34

Ozone, results
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Ozone, results on year effects
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Concluding remarks

■ Flexible set of tools to make inference for non-stationary
extreme value models

What next?

■ Make inference on Poisson process directly (no
reparametrization)

■ Compare results with existing approaches (GCV/AIC
smoothness)
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