$\begin{array}{c} \textbf{Tail Approximations to the Density Function} \\ \textbf{in EVT} \end{array}$

Deyuan Li

(joint work with Jürg Hüsler)

University of Bern

EVA 2005, Gothenburg, August 15–19.

Outline of the talk:

- 1. Introduction
- 2. Motivation/Background
- 3. Main Results
- 4. Sketch of Proofs
- 5. Application

1 Introduction

Assume $F \in D(G_{\gamma})$ and let $U(t) = F^{\leftarrow}(1 - 1/t), t \geq 1$.

Drees, de Haan and Li (2003, 2005):

$$\frac{\frac{U(tx)-U(t)}{a(t)} - \frac{x^{\gamma}-1}{\gamma}}{A(t)} \to K_{\gamma,\rho}(x) \tag{1}$$

$$\sup_{x \in D_{t,
ho}} w_{_F}(t,x) \left| rac{tar{F}(a_0(t)x + b_0(t)) - (1 + \gamma x)^{-1/\gamma}}{A_0(t)} - d_{_F}(x)
ight| = o(1).$$

Here,

1. a_0 , b_0 and A_0 are some special chosen functions:

$$a_0\sim a,\quad b_0-U=o(a_0),\quad A_0\in \mathrm{RV}(
ho).$$

- 2. $D_{t,\rho}$ is the set of x such that $-\frac{1}{\gamma\vee 0} \stackrel{\text{slow}}{\longleftarrow} x_t \leq x < \frac{1}{(-\gamma)\vee 0}$.
- 3. $w_{\scriptscriptstyle F}$ is a power function of $(1+\gamma x)^{-1/\gamma},$ depending on F only if $\gamma=\rho=0.$

$$rac{tar{F}(a_0(t)x+b_0(t))}{(1+\gamma x)^{-1/\gamma}} o 1, \quad rac{1-F^n(a_0(n)x+b_0(n))}{1-G_\gamma(x)} o 1$$

uniform for $-\frac{1}{\gamma\vee 0}\stackrel{\mathrm{slower}}{\longleftarrow} x_t \leq x < \frac{1}{(-\gamma)\vee 0}, \ \mathrm{but} \ \mathrm{excluding} \ \gamma = \rho = 0.$

Question: can we find "some conditions" such that

"some conditions"

$$igg| egin{aligned} & igg| \ dots \ \sup_{x \in D_{t,
ho}} w_f(t,x) \left| rac{t a_0(t) f(a_0(t) x + b_0(t)) - (1 + \gamma x)^{-rac{1}{\gamma} - 1}}{A_0(t)} + d_f(x)
ight| = o(1) \ & igg| \ dots \ rac{t a_0(t) f(a_0(t) x + b_0(t))}{(1 + \gamma x)^{-1/\gamma - 1}}
ightarrow 1 \end{aligned}$$

uniform for $-\frac{1}{\gamma\vee 0}\stackrel{\text{slower}}{\longleftarrow} x_t \leq x < \frac{1}{(-\gamma)\vee 0}$, and some result like

$$\sup_{x\in ...} w(x) \left| rac{rac{d}{dx} F^n(a_0(n)x + b_0(n)) - rac{d}{dx} G_\gamma(x)}{A_0(x)} - ext{bias function}
ight| = o(1) \, ?$$

Note:

- 1. These results are parallelized with those of Drees et. al. (2003, 2005), but do not follow directly from those results.
- 2. "some condition" should be stronger than (1).

3.

$$rac{d}{dx}F^n(a_0(n)x+b_0(n))-rac{d}{dx}G_\gamma(x) o 0$$

means that F is in the differentiable domain of attraction of G_{γ} (see Pickands (1986)).

2 Motivation/Background

Game theory: n goods; i = 1, 2, ..., n;

 p_i : the price of *i*-th good to buy;

 $\sigma_i X_i$: the profit from *i*-th good;

 X_i is a random variable, $\sigma_i > 0$ is the scale;

 $U_i = -p_i + \sigma_i X_i$:

utility sign for one consumer to choose *i*-th good;

 $D_i = P(U_i > \max_{j \neq i} U_j)$:

demand for for one consumer to choose *i*-th good;

In order to calculate the <u>Nash equilibrium</u>, we need to approximate D_i . See Gabaix and Laibson (2003).

In general, assume $X_1, ..., X_n$ i.i.d. F (density f) and define

$$D_n = P\Big(-p_{n1}+\sigma_{n1}X_1 \geq \max_{2 \leq i \leq n}\{-p_{ni}+\sigma_{ni}X_i\}\Big).$$

$$D_n=1/n$$
: if $p_{ni}=p_{nj},\;\sigma_{ni}=\sigma_{nj}$ for $i,\,j=1,\,...,\,n$.

How to approximate D_n for other cases?

Assume $F \in D(G_{\gamma})$ with $\gamma \geq 0$ and 0 < F(x) < 1 for $x \in \mathbb{R}$. Then

$$egin{aligned} D_n &= P(-p_{n1} + \sigma_{n1} X_1 \geq \max_{2 \leq i \leq n} \{-p_{ni} + \sigma_{ni} X_i\}) \ &= \int_{-\infty}^{\infty} f(x) \prod_{i=2}^n F(rac{\sigma_{n1} x - p_{n1} + p_{ni}}{\sigma_{ni}}) \, dx \ &= \sigma_{n1}^{-1} \int_{-\infty}^{\infty} f\Big(rac{x + p_{n1}}{\sigma_{n1}}\Big) \prod_{i=2}^n F\Big(rac{x + p_{ni}}{\sigma_{ni}}\Big) \, dx. \end{aligned}$$

First consider $\sigma_{ni} \equiv 1$. Let $a_n = a_0(n)$, $b_n = b_0(n)$.

Then replace x by $a_n x + b_n$,

$$egin{align} D_n &= n^{-1} \int_{-\infty}^{\infty} n a_n f\Big(a_n (x + rac{p_{n1}}{a_n}) + b_n\Big) \prod_{i=2}^n F\Big(a_n (x + rac{p_{ni}}{a_n}) + b_n\Big) \, dx \ &= n^{-1} \Big(\int_{l_n}^{\infty} ... \ + \ \int_{-\infty}^{l_n}\Big) =: n^{-1} (I_{1n} + I_{2n}). \end{split}$$

$$rac{nar{F}(a_nx+b_n)}{(1+\gamma x)^{-1/\gamma}}
ightarrow 1, \qquad rac{na_nf(a_nx+b_n)}{(1+\gamma x)^{-1/\gamma-1}}
ightarrow 1$$

uniform for $l_n \leq x < \infty$, it may follow that

$$I_{1n} \sim \int_{l_n}^{\infty} (1+\gamma x_1)^{-rac{1}{\gamma}-1} \prod_{i=2}^n \left(1-rac{1}{n}(1+\gamma x_i)^{-rac{1}{\gamma}}
ight) dx$$

with $x_i = x + p_{ni}/a_n$, i = 1, ..., n.

This may help us to approximate D_n .

3 Main Results

Assume the second order condition in de Haan and Resnick (1996):

$$\begin{cases} U \text{ is twice differentiable, } U' \text{ is eventually positive;} \\ A(t) := \frac{tU''(t)}{U'(t)} - \gamma + 1 \text{ has constant sign near infinity;} \\ A(t) \to 0 \text{ as } t \to \infty \text{ and } |A| \in \text{RV}(\rho) \text{ with } \rho \leq 0. \end{cases}$$
 (2)

 $(2)\Longrightarrow(1)$, thus the results on F (Drees et. al. (2003, 2005)) hold under the condition (2).

Let

$$a_0(t) = egin{cases} tU'(t), & \gamma =
ho = 0, \ \gamma U(t), & \gamma > 0 =
ho, \ -\gamma (U(\infty) - U(t)), & \gamma < 0 =
ho, \ ct^\gamma, &
ho < 0, \end{cases}$$

$$b_0(t) = egin{cases} U(t) - a_0(t)A_0(t)rac{1}{\gamma+
ho}, & ext{if }
ho < 0, \; \gamma+
ho
eq 0, \ U(t), & ext{else} \end{cases}$$

for some suitable A_0 , and for each $\beta, \delta > 0$ define

$$D_{t,
ho}:=D_{t,
ho,\delta,eta}:=egin{cases} \{x:\,(1+\gamma x)^{-1/\gamma}\leqeta t^{-\delta+1}\},&
ho<0,\ \{x:\,(1+\gamma x)^{-1/\gamma}\leq|A_0(t)|^{-eta}\},&
ho=0. \end{cases}$$

Theorem 1. Suppose (2) holds. Then

$$\sup_{x \in D_{t,
ho}} w_f(t,x) \left| rac{t a_0(t) f(a_0(t) x + b_0(t)) - (1 + \gamma x)^{-rac{1}{\gamma} - 1}}{A_0(t)} + d_f(x)
ight| = o(1).$$

Note:

$$d_f(x)=d_{_F}{\,}'(x) \ rac{w_f(t,x)}{w_{_F}(t,x)}=1+\gamma x, \quad ext{if not } \gamma=
ho=0.$$

<u>Theorem 2</u>. Suppose (2) holds with $\rho > -1$ but not $\gamma = \rho = 0$. Then

$$\sup_{\{x:\,(1+\gamma x)^{-1/\gamma}\leq \log^2|A_0(t)|\}}\,w(x)$$

$$imes \left| rac{rac{d}{dx} F^n(a_0(n) x + b_0(n)) - rac{d}{dx} G_\gamma(x)}{A_0(x)} - ext{bias func.}
ight| = o(1).$$

Note: w(x) and bias function are complicated.

Based on Theorem 1 and Theorem 2, we can easily have some large deviation results on the density function.

4 Sketch of Proofs

By de Haan and Resnick (1996), (2) implies

$$U'(t) = kt^{\gamma-1} \exp\Big(\int_1^t rac{A(u)}{u}\,du\Big),$$

where $k \neq 0$, and that

$$rac{rac{U'(tx)}{U'(t)}-x^{\gamma-1}}{A(t)}
ightarrow x^{\gamma-1}rac{x^
ho-1}{
ho},\quad x>0.$$

Then we prove that

<u>Lemma 1</u>. Suppose (2) holds. Then $\forall \varepsilon > 0$, $\exists t_{\varepsilon} > 0$ s.t. for all $\min\{t, tx\} > t_{\varepsilon}$

$$\left| x^{-(\gamma+
ho-1)} e^{-arepsilon |\log x|} \left| rac{U'(tx)}{t^{-1}a_0(t)} - x^{\gamma-1} \over ilde{A}(t) - dx \Big(K_{\gamma,
ho}(x)\Big)
ight| < arepsilon.$$

Comparing it with

<u>Lemma 1*</u>. (Drees, 1998; Cheng and Jiang, 2001) Suppose (1) holds. Then $\forall \varepsilon > 0, \exists t_{\varepsilon} > 0$ s.t. for all $\min\{t, tx\} > t_{\varepsilon}$

$$\left| x^{-(\gamma+
ho)} e^{-arepsilon |\log x|} \left| rac{rac{U(tx)-U(t)}{a_0(t)} - rac{x^{\gamma}-1}{\gamma}}{A_0(t)} - K_{\gamma,
ho}(x)
ight| < arepsilon.$$

Lemma 1^* is elementary to derive the results on F;

Lemma 1 is elementary to obtain the results on f.

Proof of Theorem 1:

Recall $U(t) = F^{\leftarrow}(1 - 1/t)$. Hence F(U(t)) = 1 - 1/t and

$$f(U(t)) \cdot U'(t) = t^{-2}$$
.

Replace t by

$$U^{\leftarrow}(a_0(t)x+b_0(t))=rac{1}{ar{F}(a_0(t)x+b_0(t))},$$

then

$$f(a_0(t)x+b_0(t))=rac{ar{F}^2(a_0(t)x+b_0(t))}{U'(1/ar{F}(a_0(t)x+b_0(t)))}.$$

Using the results on F to approximate $\bar{F}(a_0(t)x + b_0(t))$, using Lemma 1 to approximate $U'(1/\bar{F}(a_0(t)x + b_0(t)))$ and by very complicated calculation (for different cases), we obtain Theorem 1.

Proof of Theorem 2:

Note that

$$egin{split} rac{d}{dx} F^n(a_0(n)x + b_0(n)) \ &= n a_0(n) f(a_0(n)x + b_0(n)) \, \cdot \, F^{n-1}(a_0(n)x + b_0(n)) \end{split}$$

and that

$$egin{aligned} F^{n-1}(a_0(n)x+b_0(n)) \ &= \, \exp \left\{ (n-1) \log \left[1 - ar{F}(a_0(n)x+b_0(n))
ight]
ight\} \end{aligned}$$

Hence by Theorem 1 and the results on F (Drees et. al., 2003, 2005), Theorem 2 follows by complicated calculation.

5 Application

Theorem 2.1 in Li and de Vries (2005):

Suppose $X_1, ..., X_n$ i.i.d. F and F satisfies (2) with $\gamma > 0$.

Then

$$egin{aligned} D_n &= P\Big(-p_{n1} + \sigma_{n1} X_1 \geq \max_{2 \leq i \leq n} \{-p_{ni} + \sigma_{ni} X_i\}\Big) \ &\sim rac{\sigma_{n1}^{1/\gamma}}{\sum_{i=2}^n \sigma_{ni}^{1/\gamma}} \end{aligned}$$

as $n \to \infty$, provided by

$$\max_{1 \leq i \leq n} \sigma_{ni} = O(1),$$

$$\max_{1 \leq i \leq n} |p_{ni}| = o(n^{(1-arepsilon)\gamma})$$

for some $\varepsilon > 0$.

More results in Li and de Vries (2005):

1.
$$\gamma = 0 > \rho$$
;

2.
$$\gamma = 0 = \rho$$
;

3.
$$ar{F} \sim c x^{eta} e^{-dx^{lpha}}$$
 with $c,d,lpha,eta>0$.