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1 Introduction

Assume F' € D(G,) and let U(t) = F—(1—1/t), t > 1.
Drees, de Haan and Li (2003, 2005):
Uts)-U() _ 27—1

a(t) Y
T K@ (1

tF(ao(t)z + bo(t)) — (1 + vx) '/
Ao(t)

sup wF(t7 CB) - dF(w) - 0(1)'

€Dy,

Here,
1. ag, by and Ay are some special chosen functions:

ap~a, by—U=o0(ag), Ao€ RV(p).

1 slow

2. Dy, is the set of x such that —vo T T <z < ﬁ.

3. w, is a power function of (1 4+ yx)~'/7, depending on F only

ifv=p=0.

!

tF(ao®) +bo(t) . 1= F'(a(m)z +bo(n))

1
(14 ~yz)~1/ ’ 1 — Gy(x)
uniform for —ﬁ AL <z < ﬁ, but excluding v = p = 0.
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Question: can we find ”some conditions” such that

”some conditions”

[

tag(t) £ (ao(t)z + bo(t)) — (1 + ya) "
Ap(t)

ﬂ ?
tao(t) f(ao(t) + bo(t))
(14 ~yz)~t/1

slower .
ﬁ — < x< ﬁ, and some result like

sup wg(t, x) +ds(x)| = 0o(1)

x€Dy,p

uniform for —

L F"(ag(n)z + bo(n)) — £G,(z)
sup w(x) Aq(z)

— bias function| = o(1) ?

Note:

1. These results are parallelized with those of Drees et. al. (2003,
2005), but do not follow directly from those results.

2. ”some condition” should be stronger than (1).

3.

d d
%F (ap(n)x 4 bo(n)) — %GV(J;) — 0

means that F' is in the differentiable domain of attraction of G,

(see Pickands (1986)).



2 Motivation/Background

Game theory: n goods; i=1, 2, ..., n;

p;: the price of 2-th good to buy;
0;X;: the profit from :-th good;
X, is a random variable, o; > 0 is the scale;
Ui = —pi + 0: X5
utility sign for one consumer to choose i-th good;
D, = P(Ul > Max;£; Uj):

demand for for one consumer to choose z-th good;

In order to calculate the Nash equilibrium, we need to approxi-

mate D;. See Gabaix and Laibson (2003).

In general, assume X, ..., X,, i.i.d. F (density f) and define

Dn — P( — Pn1 + UnIXI Z 21'£la<X{—pnz + O'niXi})'

D, =1/n: if ppi = Pnj, Oni = 0on; fori, j=1, .., n.

How to approximate D,, for other cases?



Assume F € D(G,) with~y > 0and 0 < F(x) <1 for z € R.
Then

= [ 1@ [[pEEELRE gy
—o i=2

nt

First consider o,; = 1. Let a,, = a¢(n), b, = by(n).

Then replace x by a,x + b,

DPni
an

D, =n" /oo nanf(a,n(w n ?) 4 bn) ﬁF(an(w + 2y 4 bn) dx
- n i=2

— n_1</l:o... + /_l;> =: n" (I, + I2,).

If )
nF(a,x + by)
é

(L +y2)

na,f(anx + by)
_

1
(1 + )7

9

uniform for l,, < x < oo, it may follow that

n

H <1 — %(1 -+ 'yazi)_;) dx

=2

Iy, ~ / (1+ ’)’5131)_;_1
ln

with x; = ¢ 4+ ppi/an, 1 = 1,...,n.
This may help us to approximate D,,.
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3 Main Results

Assume the second order condition in de Haan and Resnick (1996):

U is twice differentiable, U is eventually positive;
A(t) := % — ~ + 1 has constant sign near infinity; (2)
A(t) > 0 ast — oo and |A| € RV(p) with p < 0.

(2)==-(1), thus the results on F' (Drees et. al. (2003, 2005))
hold under the condition (2).

Let )
tU’'(t), Yy=p=0,
Ut >0 =
ao(t):<7 (t), vy P,
—v(U(c0) = U(t)), 7v<0=p,
ct?, p <0,

\

bo () — {U(t) —ag(t)Ao(t) 45, ifp <0, v+ p#0,
U(t), else

for some suitable Ajy, and for each 3,5 > 0 define

{: (14+~z)"/7 < B}, p<o,

Dy := Dypes,8 1=
’ ’ {{w= (1+2)~7 < |Ao()| P}, p=o.



Theorem 1. Suppose (2) holds. Then

tao(t) f (ao(t)a + bo(t)) — (1 +~va) 7!

t d = o(1).
2, ) Ault) H
Note:
df(z) = d,'(z)
t
M:1+ﬂyw, ifn()t’)/:p:o.
’LUF(t, w)

Theorem 2. Suppose (2) holds with p > —1 but not v = p = 0.
Then

sup w(x)
{z: (1+~2)~1/7<log® | Ao (t)[}

i F"(ao(n)x + bo(n)) — -G, (x)
Ao(a'})

X — bias func.| = o(1).

Note: w(x) and bias function are complicated.

Based on Theorem 1 and Theorem 2, we can easily have some

large deviation results on the density function.



4 Sketch of Proofs

By de Haan and Resnick (1996), (2) implies

tA
U'(t) = kt" Lexp (/ Au) du),
1 u
where k # 0, and that
U'te) _ -1 p__
0"t L™t s
A(t) p

Then we prove that

Lemma 1. Suppose (2) holds. Then Ve > 0, 3t. > 0 s.t. for all

min{t, tx} > t.

U'(tx) v—1
= — X d
— - — t—1 t
T (v+p l)e el log x| ao(t)

A(t)  dx

(K%p(a:)) <e.

Comparing it with

Lemma 1*. (Drees, 1998; Cheng and Jiang, 2001) Suppose (1)
holds. Then Ve > 0, 3t. > 0 s.t. for all min{t, tx} > t.

Utz)-U(®t) _ a7—1
z—(+p) g—¢llogz| ao(t) T K, ()| <e.

Ao(t)

Lemma 1* is elementary to derive the results on F

Lemma 1 is elementary to obtain the results on f.
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Proof of Theorem 1:

Recall U(t) = F—(1 —1/t). Hence F(U(t)) =1 — 1/t and

fFU@®)-U'@) =t

Replace t by

1

U@z + b)) = & e @)

then

F(ao()e + bo(t))
U"(1/F (as(®) + bo(1)))

flao(t)x + bo(t)) =

Using the results on F to approximate F(ao(t)x + bo(t)), us-
ing Lemma 1 to approximate U’(1/F (a¢(t)x + bo(t))) and by very
complicated calculation (for different cases), we obtain Theorem

1.
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Proof of Theorem 2:

Note that

P (ao(n)o + bo(n)
= nao(n)f(ag(n)z + bo(n)) - F"'(ao(n)z + bo(n))

and that

F"(ag(n)z + bo(n))
= exp {(’n, —1)log [1 — F(ao(n)w + bO(n))}}

Hence by Theorem 1 and the results on F (Drees et. al., 2003,

2005), Theorem 2 follows by complicated calculation.
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5 Application

Theorem 2.1 in Li and de Vries (2005):

Suppose Xi, ..., X, i.i.d. F and F satisfies (2) with v > 0.
Then

Dn — P( — Pn1 + Unlxl Z 2r2,a<x{_pni + Cranz})

1/~
nl

n 1/~

o

~Y

as n — oo, provided by
max o,; = O(1),

1<i<n

| = (1—e)vy
max |Pni| = o(n )

for some € > 0.

More results in Li and de Vries (2005):
1. vy=0>p;

2. y=0=p;

3. F ~ cxPe %" with ¢,d,a,3> 0 .
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