Some results on extremal and maximal processes associated with a Lévy process

K. B. Erickson and R. A. Maller

Department of Mathematics
University of Washington
Seattle, WA 98195, USA
and
Centre for Financial Mathematics, MSI,

Centre for Financial Mathematics, MSI, and School of Finance & Applied Statistics, Australian National University, Canberra, Australia

July 29, 2005

SUMMARY

We compare the largest jump in a Lévy process X_t up till time t, i.e,

$$Y_t = \sup\{|X_s - X_{s-}| : s \le t\},\$$

to the two-sided maximal value of the process,

$$M_t = \sup\{|X_s| : s \le t\}.$$

Let

$$T(r) = \inf\{t > 0 : |X_t| > r\}, \ r > 0,$$

be the two-sided passage time out of the two-sided strip [-r, r]. Then we show that Y_t is negligible with respect to M_t for small times, i.e.,

$$\lim_{t\downarrow 0} \frac{Y_t}{M_t} = 0 \quad \text{a.s.},$$

iff the overshoot $X_{T(r)} - r$ is relatively stable in the sense that

$$\lim_{r\downarrow 0} \frac{|X_{T(r)}|}{r} = 1 \quad \text{a.s.},$$

These are further equivalent to

(i) the a.s. convergence of the (stochastic) integral

$$\int_0^1 \overline{\Pi}(M_t) dt,$$

where $\overline{\Pi}(\cdot)$ is the Lévy measure associated with X, and to (ii) the bounded variation (with nonzero drift) of X.

Negligibility of Y_t with respect to M_t as $t \to \infty$ can similarly be characterised.

RESULTS

Let $X = \{X_t\}$ be a Lévy process on \mathbb{R} starting at $X_0 = 0$. We adopt the usual probability set-up as described in Bertoin (1996), Sato (1999).

X has Lévy exponent $\psi(\theta) \equiv \log \mathbf{E} e^{i\theta X_t}/t =$

$$i\gamma\theta - \frac{1}{2}\sigma^2\theta^2 + \int_{-\infty}^{\infty} \left(e^{i\theta x} - 1 - i\theta x \mathbf{1}_{\{|x| \le 1\}}\right) \Pi(dx),$$

for $\theta \in \mathbb{R}$, t > 0, with $\gamma \in \mathbb{R}$ and $\sigma \geq 0$.

 Π is a measure on \mathbb{R} which satisfies

$$\int_{-\infty}^{\infty} (x^2 \wedge 1) \Pi(dx) < \infty.$$

Assume throughout that

$$\Pi\{(-1,1)\} = \infty.$$

This guarantees that X has infinitely many small jumps, a.s., in every non-degenerate time interval.

Define the maximal process by

$$M_t = \sup\{|X_s| : s \le t\}, \ t \ge 0.$$

The large and small time behaviour of M_t and the jumps of of the Lévy process relate to certain stochastic integrals in natural ways. These integrals are of interest and application in many areas; e.g, Bertoin, Biane, & Yor (2004), Bertoin & Yor, M. (2002), Erickson & Maller (2004), Lindner & Maller (2005), \cdots

In analysing the dominance of the two-sided maximum process of X over its largest jump process, we are led to examine the a.s. convergence at zero and at infinity of integrals of certain functions of M_t .

Denote the tail of Π by

$$\overline{\Pi}(x) = \overline{\Pi}^-(x) + \overline{\Pi}^+(x)$$
, for $x > 0$,

where

$$\overline{\Pi}^{-}(x) = \Pi\{(-\infty, -x)\} \quad \text{and} \quad \overline{\Pi}^{+}(x) = \Pi\{(x, \infty)\}.$$

Define, for x > 0,

$$A(x) = \gamma + (\overline{\Pi}^+(1) - \overline{\Pi}^-(1)) + \int_1^x (\overline{\Pi}^+(y) - \overline{\Pi}^-(y)) dy,$$

and let

$$\Delta X_t = X_t - X_{t-}.$$

Theorem 1 The following are equivalent:

$$\int_0^1 \overline{\Pi}(M_t)dt < \infty \text{ a.s.}; \tag{0.1}$$

$$\int_0^1 \mathbf{E}\overline{\Pi}(M_t)dt < \infty; \tag{0.2}$$

$$\lim_{t\downarrow 0} \left(\frac{M_t}{\sup_{0 < s < t} |\Delta X_s|} \right) = \infty \text{ a.s.}; \tag{0.3}$$

$$\lim_{r\downarrow 0} \left(\frac{|X_{T(r)}|}{r}\right) = 1 \text{ a.s.}; \tag{0.4}$$

$$\sigma^2 > 0$$
; or $\sigma^2 = 0$, $\int_0^1 \overline{\Pi}(x) dx < \infty$, & $\lim_{x \downarrow 0} A(x) = \delta \neq 0$. (0.5)

Remarks. (i) In Thm 1, X has inf. many jumps in (0, t), so the denominator in (0.3) stays positive, a.s.

(ii) $|X_{T(r)}| - r$ is the (two-sided) overshoot of |X| over level r > 0. (0.4) says that the overshoot is a.s. relatively stable.

The equivalence of (0.4) with (0.5) is in Doney and Maller (2002). (0.5) says that X has a Brownian component or else is of bounded variation with nonzero drift.

Thus jumps are "not too big". (0.3) quantifies this.

We have a version of Theorem 1 at infinity, as follows:

Theorem 2 The following are equivalent:

$$\int_{1}^{\infty} \overline{\Pi}(M_t)dt < \infty \text{ a.s.}; \tag{0.6}$$

$$\lim_{t \to \infty} \left(\frac{M_t}{\sup_{0 \le s \le t} |\Delta X_s|} \right) = \infty \text{ a.s.}; \tag{0.7}$$

$$\lim_{r \to \infty} \left(\frac{|X_{T(r)}|}{r} \right) = 1 \text{ a.s.}; \tag{0.8}$$

$$\mathbf{E}X_1^2 < \infty \text{ and } \mathbf{E}X_1 = 0; \quad \text{or} \quad \mathbf{E}|X_1| < \infty \text{ and } \mathbf{E}X_1 \neq 0.$$

$$(0.9)$$

The proofs of Theorems 1 and 2 can be deduced from the following result which gives NASC for convergence of the stochastic integrals in the theorem. More generally, introduce a nonstochastic, real-valued, right-continuous nonincreasing strictly positive function g on $(0, \infty)$. We allow $g(0+) = \infty$.

The stochastic integral $\int_{c_1}^{c_2} g(M_t) dt$ can be defined pathwise (e.g. Protter 2004), and is finite a.s. for $0 < c_1 \le c_2 < \infty$ since it is not larger than $g(M_{c_1})(c_2 - c_1)$. But g(0+) may be infinite so the finiteness for $c_1 \to 0$ or $c_2 \to \infty$ is an issue.

We also need the functions, on x > 0,

$$W(x) = \sigma^2 + 2 \int_0^x y \overline{\Pi}(y) dy,$$

and

$$k(x) = \frac{x|A(x)| + W(x)}{x^2}.$$

This is useful in measuring the magnitude of M_t via relations of Pruitt (1981): for some constants $c_i > 0$, $C_i > 0$, each t > 0 and x > 0,

$$\mathbf{P}(M_t > x) \le c_1 t k(x)$$

and

$$\mathbf{P}(M_t \le x) \le \frac{C_1}{tk(x)},$$

and also, for each r > 0,

$$\frac{c_2}{k(r)} \le \mathbf{E}T(r) \le \frac{C_2}{k(r)}.$$

Provided X_t is not identically equal to a constant process, we have $0 < k(x) < \infty$ for all x > 0,

 $\lim_{x\downarrow 0} x^2 k(x) = \sigma^2$, $\lim_{x\to\infty} k(x) = 0$, and, further, $k(\lambda x) \approx k(x)$, $\lambda > 0$, x > 0.

When $\sigma^2 > 0$ or $\Pi\{(-1,1)\} = \infty$, we have, in addition, $\lim_{x\downarrow 0} k(x) = \infty$.

Theorem 3 (i) Assume $\sigma^2 > 0$ or $\Pi\{(-1,1)\} = \infty$. Let T be a positive finite random variable, on the same probability space as X. Then

$$\int_0^T g(M_t)dt < \infty \quad \text{a.s.}$$

iff

$$\int_0^1 \left(\frac{1}{k(x)}\right) |dg|(x) < \infty.$$

(ii) Alternatively,

$$\int_{T}^{\infty} g(M_t)dt < \infty \quad \text{a.s.}$$

iff

$$\int_{1}^{\infty} \left(\frac{1}{k(x)} \right) |dg|(x) < \infty.$$

Remarks. The convergences in (i) are also equivalent to

$$\mathbf{E} \int_0^1 g(M_t) dt < \infty,$$

and similarly for (ii) (under a subsidiary condition).

We can replace the rv T in Theorem 3 by any finite nonzero constant. We can also replace the ranges (0,1) and $(1,\infty)$ by (0,c) and (c,∞) , for any c>0.

We can replace g(x) by $g(\lambda x)$, $\lambda > 0$, in Theorem 3.

The compound Poisson case (i.e, when $\gamma = \sigma^2 = 0$ and $\Pi\{(-\infty, \infty)\}$ is finite) is excluded from Part (i) of Theorem 3 by our assumptions. In this case, $X_t = 0 = M_t$ for all $0 \le t \le$ some random τ .

We have $\int_0^\infty g(M_t)dt < \infty$ a.s. iff both $\int_0^T g(M_t)dt < \infty$ a.s. and $\int_T^\infty g(M_t)dt < \infty$ a.s., so;

Corollary to Theorem 3:

$$\int_0^\infty g(M_t)dt < \infty \text{ a.s. iff } \int_0^\infty \left(\frac{1}{k(x)}\right) |dg|(x) < \infty.$$

When $\sigma^2 > 0$, we have $k(x) \sim \sigma^2 x^{-2}$ as $x \downarrow 0$, while when $v := \mathbf{E} X_1^2 < \infty$ and $\mathbf{E} X_1 = 0$, we have $k(x) \sim v x^{-2}$ as $x \to \infty$. In these cases, for a = 0 and/or $b = \infty$,

$$\int_a^b g(M_t)dt < \infty \text{ a.s. iff } \int_a^b xg(x)dx < \infty.$$

Thus, e.g., $g(x) = \frac{1}{x^2}$ gives divergence at 0 and ∞ ; $g(x) = \frac{1}{x}$ gives convergence at 0 but divergence at ∞ .

When $X \in bv$ with nonzero drift, we have $\lim_{t\to 0} X_t/t = \delta$, so $k(x) \sim \delta x^{-1}$ as $x \downarrow 0$. When $\mathbf{E}|X_1| < \infty$ and $\mu := \mathbf{E}X_1 \neq 0$,

we have $k(x) \sim |\mu| x^{-1}$ as $x \to \infty$. In these cases, for a = 0 and/or $b = \infty$,

$$\int_a^b g(M_t)dt < \infty \text{ a.s. iff } \int_a^b g(x)dx < \infty.$$

There are situations in which the function A(x) dominates W(x), and vice-versa. In the first case we can replace k(x) by |A(x)|/x and in the second case by $W(x)/x^2$.

Example 1. Assume $\Pi\{(-1,1)\} = \infty$, $\sigma^2 = 0$ and $\lim_{t\downarrow 0} \mathbf{P}(X_t \geq 0) = 1$. Then by a result of Doney (2005), A(x) > 0 for all small x > 0, $x \leq x_0$, say, and W(x) = O(xA(x)) as $x \downarrow 0$. Thus A(x) dominates W(x) and $k(x) \approx A(x)/x$ as $x \downarrow 0$. So the test integral can be taken to be $\int_0^{x_0} (x/A(x)|dg|(x)$.

Similarly, given $\Pi\{(-1,1)\} = \infty$, $\sigma^2 = 0$ and $\lim_{t\downarrow 0} \mathbf{P}(X_t \le 0) = 1$, we get A(x) < 0 for $x \le x_0$, say, and the test integral is $\int_0^{x_0} (x/|A(x)||dg|(x))$. These hold in particular if X is a subordinator or the negative of a subordinator. Similar results hold for $t \to \infty$ using results of Doney & Maller (2002).

Example 2. At the other extreme, W(x) may dominate |A(x)|. Let X be a symmetric stable process with index α , i.e., having $0 < \alpha < 2$, $\sigma^2 = 0$, A(x) = 0, and $\overline{\Pi}(x) = cx^{-\alpha}$

for some c > 0, or else $\alpha = 2$, $\sigma^2 > 0$, A(x) = 0, and $\overline{\Pi}(x) \equiv 0$. Then $k(x) \approx x^{-\alpha}$ as $x \downarrow 0$ or as $x \to \infty$. For this process it follows from Theorem 3 that, for any finite rv T,

$$\int_0^T g(M_t)dt < \infty \text{ a.s. } \iff \int_0^1 x^\alpha |dg|(x) < \infty.$$

There is an analogous equivalence for $\int_T^\infty g(M_t)dt < \infty$ a.s.

Extensions. Similar methods can be used to get information on, eg.:

$$\lim_{t\downarrow 0} \left(\frac{M_t}{f(\sup_{0 < s < t} |\Delta X_s|)} \right) = \infty \text{ a.s.}$$

for certain (monotone, measurable) functions $f(\cdot)$. Again these relate to the convergence of a stochastic integral.

Also interesting would be to give conditions for

$$\lim_{t\downarrow 0} \left(\frac{S_t}{f(\sup_{0 < s \le t} |\Delta X_s|)} \right) = \infty \text{ a.s.}$$

where

$$S_t = \sup_{0 \le y \le t} X_y.$$

Does this relate to the convergence of a stochastic integral?

References

- [1] Bertoin, J. (1996) Lévy Processes. Cambridge Tracts in Mathematics **121**. Cambridge University Press.
- [2] Bertoin, J., Biane, P. and Yor, M. (2004) Poissonian exponential functionals, q-series, q-integrals, and the moment problem for log-normal distributions. Seminar on Stochastic Analysis, Random Fields and Applications IV, 45–56, Progr. Probab., 58, Birkhuser, Basel.
- [3] Bertoin, J. and Yor, M. (2002) On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes. Ann. Fac. Sci. Toulouse Math. **11**, 33–45.
- [4] Doney, R. A. (2005) Small time behaviour of Lévy processes, submitted.
- [5] Doney, R. A. (2004) Stochastic bounds for Lévy processes. Ann. Prob., **32**, 1545–1552.
- [6] Doney, R. A., and Maller, R.A. (2002a) Stability and attraction to normality for Lévy processes at zero and infinity. J. Theoret. Prob. **15**, 751–792.
- [7] Doney, R. A., and Maller, R.A. (2002b) Stability of the overshoot for Lévy processes. Ann. Prob. **30**, 188–212.

- [8] Doney, R. A., and Maller, R.A. (2004) Moments of passage times for Lévy processes. Ann. Inst. Henri Poincaré, **40**, 279–297.
- [9] Erickson, K. B., and Maller, R. A. (2004) Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy integrals, Séminaire de Probabilités XXXVIII, 1857, 70–94.
- [10] Lindner, A. and Maller, R.A. (2005) Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes, Stoch. Proc. Appl., to appear.
- [11] Protter, P.E. (2004) Stochastic Integration and Differential Equations. 2nd edition. Springer, Berlin.
- [12] Pruitt, W.E. (1981) The growth of random walks and Lévy processes. *Annals of Probab.* **9**, 948–956.
- [13] Sato, K. (1999) Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.