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SUMMARY

We compare the largest jump in a Lévy process X; up till
time ¢, l.e,

Y = sup{| Xs — X, |1 s < t},
to the two-sided maximal value of the process,
My = sup{| X;| : s <t}
Let
T(r)=inf{t >0:|Xy| >r}, r>0,
be the two-sided passage time out of the two-sided strip

|—r,r]. Then we show that Y; is negligible with respect to
M; for small times, i.e.,

i Yy 0
im— = 8.
t10 Mt B
iff the overshoot X7,y —r is relatively stable in the sense that
X,
1im| )| =1 a.s.,
r]10 T

These are further equivalent to
(i) the a.s. convergence of the (stochastic) integral

/0 1 I1(M;)dt,

where I1(-) is the Lévy measure associated with X, and to
(ii) the bounded variation (with nonzero drift) of X.
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Negligibility of Y; with respect to M; as t — 0o can sim-
ilarly be characterised.

RESULTS

Let X = {X}} be a Lévy process on R starting at Xy = 0.
We adopt the usual probability set-up as described in Bertoin
(1996), Sato (1999).

X has Lévy exponent 1(0) = log EeXt /t =

1 <
i”y@ — 502(92 + / (62% —1 - i9$1{|x|§1}) H(dx),

oo

for 6 € R, t > 0, with v € R and ¢ > 0.
IT is a measure on IR which satisfies

/OO (z* A DII(dw) < oo.

©.9)

Assume throughout that

This guarantees that X has infinitely many small jumps, a.s.,
in every non-degenerate time interval.

Define the maximal process by
My =sup{|X4| : s <t}, t > 0.
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The large and small time behaviour of M; and the jumps of
of the Lévy process relate to certain stochastic integrals in
natural ways. These integrals are of interest and application
in many areas; e.g, Bertoin, Biane, & Yor (2004), Bertoin &
Yor, M. (2002), Erickson & Maller (2004), Lindner & Maller
(2005), - - -

In analysing the dominance of the two-sided maximum pro-
cess of X over its largest jump process, we are led to examine
the a.s. convergence at zero and at infinity of integrals of
certain functions of M;.

Denote the tail of IT by

I(z) =1 (z) +ﬁ+(az), for x > 0,

where

M (z) =I{(—00,—2)} and I (z)=I{(z,00)}.
Define, for x > 0,
Ale) =+ (T @) =TT W)+ [T ()~ T )

and let



Theorem 1 The following are equivalent:

1
/ [I(M;)dt < 0o a.s.; (0.1)
0
1 —_
/ EII(M;)dt < oo; (0.2)
0
M,
lim = 00 a.s. 0.3
3 (e ) 0
pem
lim (‘ al )|> =1 a.s; (0.4)
710 r
1_
oc*>0;or o%=0, / [I(z)dx < oo, & 11?(5)114(@ =g # 0.
0 x
(0.5)

Remarks. (i) In Thm 1, X has inf. many jumps in (0, ),
so the denominator in (0.3) stays positive, a.s.

(ii) | X7(y| — 7 is the (two-sided) overshoot of | X| over level
r > 0. (0.4) says that the overshoot is a.s. relatively stable.

The equivalence of (0.4) with (0.5) is in Doney and Maller
(2002). (0.5) says that X has a Brownian component or else
is of bounded variation with nonzero drift.

Thus jumps are “not too big”. (0.3) quantifies this.
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We have a version of Theorem 1 at infinity, as follows:

Theorem 2 The following are equivalent:

/ II(M,)dt < oo a.s.; (0.6)
1
| M, )
lim = 00 a.8.; 0.7
i (o 00
Xr(
lim (‘ al )|) =1 as. (0.8)
7—00 T
EX? <ooand EX; =0; or E|X;| < oo and EX; #0.
(0.9)

The proofs of Theorems 1 and 2 can be deduced from the
following result which gives NASC for convergence of the
stochastic integrals in the theorem. More generally, introduce
a nonstochastic, real-valued, right-continuous nonincreasing
strictly positive function g on (0, 00). We allow ¢g(0+) = oo.

The stochastic integral fc? g(M;)dt can be defined pathwise
(e.g. Protter 2004), and is finite a.s. for 0 < ¢; < ¢ < 0
since it is not larger than g(M,,)(c2 —c;1). But g(04) may be
infinite so the finiteness for ¢; — 0 or ¢y — 00 1S an issue.



We also need the functions, on x > 0,

W(x) =0 +2 /Ox yll(y)dy.

and
_ z|Alz)| + W(x)

k() >

X

This is useful in measuring the magnitude of M; via relations
of Pruitt (1981): for some constants ¢; > 0, C; > 0, each
t>0and x>0,

P(M; > z) < eqtk(x)

and o
P(M, <z) < —
My < 7)< gy
and also, for each r > 0,
€2 Co
— < ET(r) < —.
k) = P S k)

Provided X is not identically equal to a constant process, we
have 0 < k(x) < oo for all z > 0,

lim, o 2%k(z) = 0%  limy_k(z) = 0, and, further,
k(Ax) < k(x), A\ >0, x> 0.

When o2 > 0 or ITI{(—1,1)} = oo, we have, in addition,

lim, o k(x) = oo,



Theorem 3 (i) Assume o> > 0 or I1{(—1,1)} = oc.
Let T be a positive finite random wvariable, on the same
probability space as X. Then

T
/ g(My)dt < oo as.
0

/01 (ﬁ@) dgl (z) < oo.

(11) Alternatively,

/ g(My)dt < oo as.
T

[ () 10l @) <<

Remarks. The convergences in (i) are also equivalent to

if

1
0

and similarly for (ii) (under a subsidiary condition).

We can replace the rv T in Theorem 3 by any finite nonzero
constant. We can also replace the ranges (0, 1) and (1, c0) by
(0, ¢) and (¢, 00), for any ¢ > 0.
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We can replace g(z) by g(Ax), A > 0, in Theorem 3.

The compound Poisson case (i.e, when v = ¢? = 0 and
[T{(—00,00)} is finite) is excluded from Part (i) of Theorem
3 by our assumptions. In this case, X; = 0 = M, for all
0 <t < some random 7.

We have fo (M;)dt < oo a.s. iff both fo (My)dt < oo
as. and [ g Mt)dt<ooas S0;

Corollary to Theorem 3:

/Ooog(Mt)dt < 00 as. iff /OOO (%) dg| (z) < oo.

When o* > 0, we have k(z) ~ 0?27 as x | 0, while when
v = EX? < oo and EX; = 0, we have k(z) ~ vz~ as
r — 00. In these cases, for a = 0 and/or b = oo

)

b b
/ g(My)dt < oo a.s. iff / rg(x)dr < oo.

Thus, e.g., g(x) = % gives divergence at 0 and oo; g(z) = 2
gives convergence at 0 but divergence at oo.

When X € bv with nonzero drift, we have lim; .o X/t = 9, so
k(z) ~dz tasx | 0. When E|X;| < coand p := EX; # 0,
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we have k(z) ~ |u|z™! as  — oo. In these cases, for a = 0
and/or b = o0,

b b
/ g(My)dt < oo a.s. iff / g(x)dr < oo.

There are situations in which the function A(z) dominates

W (x), and vice-versa. In the first case we can replace k(x)
by |A(z)|/x and in the second case by W (x)/z>.

Example 1. Assume I1{(—1,1)} = oo, 0> = 0 and
limy o P(X; > 0) = 1. Then by a result of Doney (2005),
A(x) > 0 for all small x > 0, x < x, say, and W(x) =
O(xA(z)) as * | 0. Thus A(x) dominates W(x) and
k(x) < A(x)/x as x | 0. So the test integral can be taken to

be [y (x/A(z)|dg|(z).

Similarly, given IT{(—1,1)} = oo, 6* = 0 and lim; o P(X; <
0) =1, we get A(x) < 0 for x < xy, say, and the test integral
is ["(x/]A(z)||dg|(z). These hold in particular if X is a
subordinator or the negative of a subordinator. Similar results
hold for ¢ — oo using results of Doney & Maller (2002).

Example 2. At the other extreme, W (x) may dominate
|A(z)]. Let X be a symmetric stable process with index «,
ie., having 0 < a < 2, 02 =0, A(z) =0, and II(z) = cx™®
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for some ¢ > 0, or else @ = 2, o0 > 0, A(z) = 0, and
[I(x) = 0. Then k(x) < 27 as x | 0 or as x — oo. For this
process it follows from Theorem 3 that, for any finite rv T,

T 1
/ g(My)dt < 0o a.s. < / % |dg| (x) < oo.
0 0

There is an analogous equivalence for fTOO g(My)dt < oo as.

Extensions. Similar methods can be used to get informa-
tion on, eg.:

' ( M, )

im = 00 a.8.

10\ f(supge <t [AXS])

for certain (monotone, measurable) functions f(-). Again
these relate to the convergence of a stochastic integral.

Also interesting would be to give conditions for

lim ( il ) — 00 a8
£10 f(sup0<5§t|AXs|) N

St = sup X,

O<y<t

where

Does this relate to the convergence of a stochastic integral?
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