
Some results on extremal and maximal processes

associated with a Lévy process
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SUMMARY

We compare the largest jump in a Lévy process Xt up till
time t, i.e,

Yt = sup{|Xs −Xs−| : s ≤ t},

to the two-sided maximal value of the process,

Mt = sup{|Xs| : s ≤ t}.

Let
T (r) = inf{t > 0 : |Xt| > r}, r > 0,

be the two-sided passage time out of the two-sided strip
[−r, r]. Then we show that Yt is negligible with respect to
Mt for small times, i.e.,

lim
t↓0

Yt
Mt

= 0 a.s.,

iff the overshoot XT (r)−r is relatively stable in the sense that

lim
r↓0

|XT (r)|

r
= 1 a.s.,

These are further equivalent to
(i) the a.s. convergence of the (stochastic) integral

∫ 1

0

Π(Mt)dt,

where Π(·) is the Lévy measure associated with X , and to
(ii) the bounded variation (with nonzero drift) of X .
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Negligibility of Yt with respect to Mt as t → ∞ can sim-
ilarly be characterised.

RESULTS

Let X = {Xt} be a Lévy process on IR starting at X0 = 0.
We adopt the usual probability set-up as described in Bertoin
(1996), Sato (1999).

X has Lévy exponent ψ(θ) ≡ log EeiθXt/t =

iγθ −
1

2
σ2θ2 +

∫ ∞

−∞

(

eiθx − 1 − iθx1{|x|≤1}

)

Π(dx),

for θ ∈ IR, t > 0, with γ ∈ IR and σ ≥ 0.
Π is a measure on IR which satisfies

∫ ∞

−∞

(x2 ∧ 1)Π(dx) <∞.

Assume throughout that

Π{(−1, 1)} = ∞.

This guarantees that X has infinitely many small jumps, a.s.,
in every non-degenerate time interval.

Define the maximal process by

Mt = sup{|Xs| : s ≤ t}, t ≥ 0.
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The large and small time behaviour of Mt and the jumps of
of the Lévy process relate to certain stochastic integrals in
natural ways. These integrals are of interest and application
in many areas; e.g, Bertoin, Biane, & Yor (2004), Bertoin &
Yor, M. (2002), Erickson & Maller (2004), Lindner & Maller
(2005), · · ·

In analysing the dominance of the two-sided maximum pro-
cess of X over its largest jump process, we are led to examine
the a.s. convergence at zero and at infinity of integrals of
certain functions of Mt.

Denote the tail of Π by

Π(x) = Π
−
(x) + Π

+
(x), for x > 0,

where

Π
−
(x) = Π{(−∞,−x)} and Π

+
(x) = Π{(x,∞)}.

Define, for x > 0,

A(x) = γ + (Π
+
(1) − Π

−
(1)) +

∫ x

1

(Π
+
(y) − Π

−
(y))dy,

and let
∆Xt = Xt −Xt−.
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Theorem 1 The following are equivalent:
∫ 1

0

Π(Mt)dt <∞ a.s.; (0.1)

∫ 1

0

EΠ(Mt)dt <∞; (0.2)

lim
t↓0

(

Mt

sup0<s≤t |∆Xs|

)

= ∞ a.s.; (0.3)

lim
r↓0

(

|XT (r)|

r

)

= 1 a.s.; (0.4)

σ2 > 0; or σ2 = 0,

∫ 1

0

Π(x)dx <∞, & lim
x↓0

A(x) = δ 6= 0.

(0.5)

Remarks. (i) In Thm 1, X has inf. many jumps in (0, t),
so the denominator in (0.3) stays positive, a.s.

(ii) |XT (r)| − r is the (two-sided) overshoot of |X| over level
r > 0. (0.4) says that the overshoot is a.s. relatively stable.

The equivalence of (0.4) with (0.5) is in Doney and Maller
(2002). (0.5) says that X has a Brownian component or else
is of bounded variation with nonzero drift.

Thus jumps are “not too big”. (0.3) quantifies this.
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We have a version of Theorem 1 at infinity, as follows:

Theorem 2 The following are equivalent:
∫ ∞

1

Π(Mt)dt <∞ a.s.; (0.6)

lim
t→∞

(

Mt

sup0<s≤t |∆Xs|

)

= ∞ a.s.; (0.7)

lim
r→∞

(

|XT (r)|

r

)

= 1 a.s.; (0.8)

EX2
1 <∞ and EX1 = 0; or E|X1| <∞ and EX1 6= 0.

(0.9)

The proofs of Theorems 1 and 2 can be deduced from the
following result which gives NASC for convergence of the
stochastic integrals in the theorem. More generally, introduce
a nonstochastic, real-valued, right-continuous nonincreasing
strictly positive function g on (0,∞). We allow g(0+) = ∞.

The stochastic integral
∫ c2
c1
g(Mt)dt can be defined pathwise

(e.g. Protter 2004), and is finite a.s. for 0 < c1 ≤ c2 < ∞
since it is not larger than g(Mc1)(c2− c1). But g(0+) may be
infinite so the finiteness for c1 → 0 or c2 → ∞ is an issue.
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We also need the functions, on x > 0,

W (x) = σ2 + 2

∫ x

0

yΠ(y)dy,

and

k(x) =
x|A(x)| +W (x)

x2
.

This is useful in measuring the magnitude of Mt via relations
of Pruitt (1981): for some constants ci > 0, Ci > 0, each
t > 0 and x > 0,

P(Mt > x) ≤ c1tk(x)

and

P(Mt ≤ x) ≤
C1

tk(x)
,

and also, for each r > 0,

c2
k(r)

≤ ET (r) ≤
C2

k(r)
.

Provided Xt is not identically equal to a constant process, we
have 0 < k(x) <∞ for all x > 0,
limx↓0 x

2k(x) = σ2, limx→∞ k(x) = 0, and, further,
k(λx) ≍ k(x), λ > 0, x > 0.
When σ2 > 0 or Π{(−1, 1)} = ∞, we have, in addition,
limx↓0 k(x) = ∞.
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Theorem 3 (i) Assume σ2 > 0 or Π{(−1, 1)} = ∞.
Let T be a positive finite random variable, on the same
probability space as X. Then

∫ T

0

g(Mt)dt <∞ a.s.

iff
∫ 1

0

(

1

k(x)

)

|dg| (x) <∞.

(ii) Alternatively,
∫ ∞

T

g(Mt)dt <∞ a.s.

iff
∫ ∞

1

(

1

k(x)

)

|dg| (x) <∞.

Remarks. The convergences in (i) are also equivalent to

E

∫ 1

0

g(Mt)dt <∞,

and similarly for (ii) (under a subsidiary condition).

We can replace the rv T in Theorem 3 by any finite nonzero
constant. We can also replace the ranges (0, 1) and (1,∞) by
(0, c) and (c,∞), for any c > 0.
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We can replace g(x) by g(λx), λ > 0, in Theorem 3.

The compound Poisson case (i.e, when γ = σ2 = 0 and
Π{(−∞,∞)} is finite) is excluded from Part (i) of Theorem
3 by our assumptions. In this case, Xt = 0 = Mt for all
0 ≤ t ≤ some random τ .

We have
∫ ∞

0 g(Mt)dt < ∞ a.s. iff both
∫ T

0 g(Mt)dt < ∞
a.s. and

∫ ∞

T g(Mt)dt <∞ a.s., so;

Corollary to Theorem 3:
∫ ∞

0

g(Mt)dt <∞ a.s. iff

∫ ∞

0

(

1

k(x)

)

|dg| (x) <∞.

When σ2 > 0, we have k(x) ∼ σ2x−2 as x ↓ 0, while when
v := EX2

1 < ∞ and EX1 = 0, we have k(x) ∼ vx−2 as
x→ ∞. In these cases, for a = 0 and/or b = ∞,

∫ b

a

g(Mt)dt <∞ a.s. iff

∫ b

a

xg(x)dx <∞.

Thus, e.g., g(x) = 1
x2 gives divergence at 0 and ∞; g(x) = 1

x
gives convergence at 0 but divergence at ∞.

WhenX ∈ bv with nonzero drift, we have limt→0Xt/t = δ, so
k(x) ∼ δx−1 as x ↓ 0. When E|X1| <∞ and µ := EX1 6= 0,
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we have k(x) ∼ |µ|x−1 as x → ∞. In these cases, for a = 0
and/or b = ∞,

∫ b

a

g(Mt)dt <∞ a.s. iff

∫ b

a

g(x)dx <∞.

There are situations in which the function A(x) dominates
W (x), and vice-versa. In the first case we can replace k(x)
by |A(x)|/x and in the second case by W (x)/x2.

Example 1. Assume Π{(−1, 1)} = ∞, σ2 = 0 and
limt↓0 P(Xt ≥ 0) = 1. Then by a result of Doney (2005),
A(x) > 0 for all small x > 0, x ≤ x0, say, and W (x) =
O(xA(x)) as x ↓ 0. Thus A(x) dominates W (x) and
k(x) ≍ A(x)/x as x ↓ 0. So the test integral can be taken to
be

∫ x0

0 (x/A(x)|dg|(x).

Similarly, given Π{(−1, 1)} = ∞, σ2 = 0 and limt↓0 P(Xt ≤
0) = 1, we get A(x) < 0 for x ≤ x0, say, and the test integral
is

∫ x0

0 (x/|A(x)||dg|(x). These hold in particular if X is a
subordinator or the negative of a subordinator. Similar results
hold for t→ ∞ using results of Doney & Maller (2002).

Example 2. At the other extreme, W (x) may dominate
|A(x)|. Let X be a symmetric stable process with index α,
i.e., having 0 < α < 2, σ2 = 0, A(x) = 0, and Π(x) = cx−α
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for some c > 0, or else α = 2, σ2 > 0, A(x) = 0, and
Π(x) ≡ 0. Then k(x) ≍ x−α as x ↓ 0 or as x→ ∞. For this
process it follows from Theorem 3 that, for any finite rv T ,

∫ T

0

g(Mt)dt <∞ a.s. ⇐⇒

∫ 1

0

xα |dg| (x) <∞.

There is an analogous equivalence for
∫ ∞

T g(Mt)dt <∞ a.s.

Extensions. Similar methods can be used to get informa-
tion on, eg.:

lim
t↓0

(

Mt

f(sup0<s≤t |∆Xs|)

)

= ∞ a.s.

for certain (monotone, measurable) functions f(·). Again
these relate to the convergence of a stochastic integral.

Also interesting would be to give conditions for

lim
t↓0

(

St
f(sup0<s≤t |∆Xs|)

)

= ∞ a.s.

where
St = sup

0≤y≤t
Xy.

Does this relate to the convergence of a stochastic integral?
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