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Heavy-tailed density kernel estimation.

Let Xn = {X1, . . . , Xn} be a sample of i.i.d. r.v. distributed with the

heavy-tailed CDF F (x) and the PDF f (x).

Variable bandwidth kernel estimate, Abramson (1982)

f̂A(x|h) = (nh)−1 ∑n
i=1 f (Xi)

1/2K
(
(x−Xi)f (Xi)

1/2/h
)

Practical version

f̃A(x|h1, h) = (nh)−1 ∑n
i=1 f̂h1(Xi)

1/2K
(
(x−Xi)f̂h1(Xi)

1/2/h
)

Non-variable bandwidth kernel estimate

f̂h(x) = (nh)−1 ∑n
i=1 K((x−Xi)/h)

Mean squared errors:

• MSE(f̂h) ∼ n−4/5 ( bias ∼ h2 ; variance ∼ (nh)−1)

if a non-variable bandwidth kernel estimator with a

second-order kernel as f̂h(x) is used,

h ∼ n−1/5, f has two continuous derivatives,

• MSE(f̂A(x|h)) ∼ n−8/9 ( bias ∼ h4 ; variance ∼ (nh)−1)

if a variable bandwidth kernel estimator with a fourth-

order kernel (non-positive) as f̂h(x) is used,

h ∼ n−1/9, f has four continuous derivatives.



Disadvantage of a variable bandwidth kernel estimators:

• they are not intended for the estimation of the density

at infinity,

at least with compactly supported kernels.

What’s new?

A combination of

preliminary data transformation

+ a variable bandwidth kernel estimator

+ data-driven smoothing tool

to provide

• the consistency of the estimation,

• the MSE of the fastest achievable order n−8/9,

• good density estimation at infinity,

is considered.



Smoothing methods and their relia-
bility.

• Over-smoothing bandwidth selection:

ĥOS =




243R(K)

35µ2(K)2n




1/5

· s,

s is the sample standard derivation,

µ2(K) =
∫

z2K(z)dz, R(K) =
∫

K2(x)dx.

• Cross-validation:

n∏

i=1
f̂−i(Xi; h) −→ max

h
,

f̂−i(x; h) =
1

(n− 1)h

n∑

j=1,j 6=i
K(

x−Xj

h
)

• Least squares cross-validation:

LSCV (h) = n−1
n∑

i=1

∫
f̂−i(x; h)2dx− 2n−1

n∑

i=1
f̂−i(Xi; h) → min

h
;

Non-consistency of cross-validation on heavy-tailed den-

sities:

h →∞ as n →∞.

Consistency of cross-validation for compactly supported

densities.



Cross-validation for a variable bandwidth
kernel estimator (P.Hall (1992)).

• Weighted integrated squared error

WISE =
∫

f̆−i(x; h)2ω(x)dx− 2
∫

f̆−i(x; h)2f (x)ω(x)dx,

where

f̆−i(x; h) =
1

nhp

n∑

j=1,j 6=i
f̂−i(Xj, h1)

p/2K



(x−Xj)f̂−i(Xj, h1)

1/2

h




·1 (|x−Xj| ≤ Ah) , ∀A > 0,

ω(x) is a bounded, nonnegative function, e.g.,

ω(x) =





1, for ‖Σ̂−1/2(x− µ̂)‖2 ≤ zη,

0, otherwise,

where µ̂ and Σ̂ denote the sample mean and variance,

‖ · ‖ is Euclidean distance,

zη is the upper (1−η)-level critical point of the chi-squared

distribution.

• Practical version

̂WISE =
∫

f̆−i(x; h)2ω(x)dx− 2

n

n∑

i=1
f̆−i(Xi; h)2ω(Xi)

What is h?



General discrepancy method.

The bandwidth h is defined as the solution of the discrep-

ancy equation

ρ(
̂
Fh, Fn) = δ,

where
̂
Fh(x) =

∫ x−∞
̂
fh(t)dt,

δ is a known uncertainty of the estimation of the CDF

F (x) by the empirical CDF Fn(t), i.e. δ = ρ(F, Fn),

ρ(·, ·) is a metric in the space of CDFs,

* Markovich (1989); Vapnik, Markovich and Stefanyuk

(1992).

δ is a quantile of the limit distribution of the Mises-

Smirnov statistic

ω2
n = n

∫
(Fn(x)− F (x))2 f (x)dx,

or Kolmogorov-Smirnov statistic

Dn =
√

n sup
−∞<x<∞

|F (x)− Fn(x)|



Consistency and convergence rate in L2 of discrepancy

method based on Mises-Smirnov statistic

is proved for projection estimators when

• density is compactly supported,

• its kth derivative has a bounded variation.

Practical version:

h :

nω2
n(h) = n

∫ (
Fn(x)− ̂

Fh(x)
)2

f (x)dx = 0.05

ω2-method

h :
√

nDn(h) =
√

n sup
−∞<x<∞

| ̂
Fh(x)−Fn(x)| = 0.5

D-method

0.05 and 0.5 are the maximum likelihood

values of ω2
n and Dn statistics,

respectively.



Discrepancy method on finite and heavy-tailed densi-

ties. Examples.

Figure 1: Standard kernel estimates with different smoothing for uniform distribution (left) and
the dependence of the statistic

√
nDn(h) against h (right) distributions. Discrepancy method:

h = 0.14. Normal kernel is used in the case of the Least squares cross-validation (LSCV),
otherwise Epanechnikov’s kernel.



Figure 2: Standard kernel estimates with different smoothing for Pareto distribution (left) and
the dependence of the statistic

√
nDn(h) against h (right) distributions. Discrepancy method:

h = 0.23. Normal kernel is used in the case of the Least squares cross-validation (LSCV),
otherwise Epanechnikov’s kernel.



Figure 3: Standard kernel estimates for two Cauchy distributions (left), and the dependence of
the statistic

√
nDn(h) against h. Discrepancy method, h corresponded to the largest minimum

of
√

nDn(h) is selected: h = 0.21 (top), h = 0.4 (bottom). Normal kernel is used in the case of
the Least squares cross-validation (LSCV), otherwise Epanechnikov’s kernel.



Transformation to [0, 1] interval.

X1, ..., Xn →T Y1, ..., Yn, Yj = T (Xj), j = 1, . . . , n

Let T (x) be a monotone increasing ”one-to-one” transfor-

mation function (T ′ is continuous).

The PDF of Xi is estimated by

f̂ (x) = ĝ(T (x))T ′(x), g(x) is the PDF of the r.v. Yi.

The CDF of the r.v. Yi is

G(x) = IP{Yi ≤ x} = IP{T (Xi) ≤ x} = F (T−1(x))

Fixed transformations: ln x, 2/π arctan x.

Adapted transformation (Maiboroda & Markovich (2004))

from the Pareto CDF

Ψγ̂(x) =





1− (1 + γ̂x)−1/γ̂, if x ≥ 0,

0, if x < 0.

to the triangular distribution

Φ+tri(x) = (2x− x2)1{x ∈ [0, 1]} + 1{x > 1} is

Tγ̂(x) = 1− (1 + γ̂x)−1/(2γ̂),

where γ̂ is some estimate of the extreme value index γ.



Comparison of re-transformed kernel
estimate and
variable bandwidth kernel estimate.

Pure variable bandwidth kernel estimator

does not fit the density at infinity

at least with compact supported kernels

in contrast to variable bandwidth kernel estimator

that uses transformation of the data.

Figure 4: Retransformed standard kernel estimate and variable band-

width kernel estimate with Epanechnikov’s kernel for Pareto distribu-

tion: body (left) and tail (right). h is selected by D-method.



Discrepancy method for variable
bandwidth kernel estimator.

Let h∗ be a solution of the equation

sup
x∈Ω∗

|Fn(x)− FA
h,h1

(x)| = δn−1/2, (1)

where Ω∗ ⊆ (−∞,∞) is some finite interval,

FA
h,h1

(x) =
∫

(−∞,x] ⋂ Ω∗
˜
fA(t | h1, h)dt,

˜
fA(t | h1, h) is a variable bandwidth kernel esti-
mator.

The application of (1) requires the preliminary

transform of the data to some finite interval.



Accuracy of the discrepancy method
for variable bandwidth kernel estima-
tor.

Theorem 1 .

Let Xn = {X1, . . . , Xn} be i.i.d. r.v.s with a density f (x)

that is supported at Ω∗ = [0, 1]. Suppose that f (x) and

1/f (x) have four continuous derivatives of all types and

f (x) is bounded away from zero, on <ε for some ε > 0.

We assume that K is symmetric, continuous and satis-

fies

K3 =
∫

x4K(x)dx < ∞, sup
x
| K(x) |< ∞,

∫
K(x)dx = 1.

(2)

Let the non-random bandwidth h1 in a pilot standard ker-

nel estimator f̂h1(x) be cn−1/5. Then at least one of the

solutions h∗ of equation (1) obeys the condition

η ≤ h∗n1/9 ≤ λ, λ > η > 0, (3)

with probability 1.

Denotations:

< is a compact set of R,

<ε ≡ {x ∈ R : for some y ∈ <, ‖x− y‖ ≤ ε},
ε > 0,

where ‖ · ‖ is the usual Euclidean norm



Theorem 2 .

Let the density f (x) be estimated by
the variable bandwidth kernel estimate
˜
fA(x|h1, h).

Assume the conditions on f (x) and
K(x) given in Theorem 1 hold.

In addition, we assume that K(x) van-
ishes outside a compact set and has two
bounded derivatives.

Let us assume that IE(Z · f̂A(x|h)) = 0,
where Z is a standard normal r.v.,
a non-random bandwidth h1 in non-
variable kernel estimator

̂
fh1

(x) obeys

h1 = cn−1/5.

Then at least one solution h∗ of the dis-
crepancy equation (1) exists such that

MSE(
˜
fA(x|h1, h∗)) = O


n−8/9




as n →∞.


