
1

TESTING THE TAIL INDEX

IN AUTOREGRESSIVE MODELS
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Introduction

We construct a class of tests on the tail index of the innovation distribution

in a stationary linear autoregressive model:

Xt = ρ1Xt−1 + . . . + ρpXt−p + εt, t = 0,±1,±2, . . . , (1)

for some ρ := (ρ1, . . . , ρp)
′ ∈ IRp,

εt, t = 0,±1,±2, . . . , are independent identically distributed (i.i.d.) ran-

dom variables with a heavy-tailed distribution function F :

1 − F (x) = x−mL(x), x ∈ IR. (2)
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Let m0 > 0 be a fixed number. We wish to test the hypothesis that

the right tail of F is the same or heavier than that of the Pareto distribu-

tion with index m0 against the alternative that the right tail of F is lighter.

H0 : F is heavy-tailed, concentrated on the positive half-axis, satisfying

xm0(1 − F (x)) ≥ 1, ∀x > x0,

for some x0 ≥ 0, against the alternatives

K0 : F is heavy-tailed, concentrated on the positive half-axis, and

limx→∞xm0(1 − F (x)) < 1.
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If F is heavy tailed (1 − F (x) = x−mL(x) - L(x) is a function, slowly

varying at infinity), then F satisfies H0 with m = m0 provided either

m = m0 and L(x) ≥ 1 for ∀x > x0, or m < m0;

if limx∈IRL(x) < 1, then F satisfies the hypothesis for m0 = m + ε,

∀ε > 0, because L(x) increases ultimately slower than any positive power

of x.

The proposed tests are based on the extremes of the residual empirical

process. Tests on the Pareto index for the i.i.d. model were constructed

in Jurečková and Picek (2001):

A class of tests on the tail index. Extremes, 4:2, 165–183.
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Estimators of autoregressive parameter vector

The choice of estimator ρ̂ heavily depends on our hypothetical value m0

of the tail index. Generally, we should distinguish two cases for the hypo-

thetical distribution of innovations:

(i) Heavy-tailed distribution (1 − F (x) = x−mL(x)) with 0 < m0 ≤ 2;

(ii) Heavy-tailed distribution with m0 > 2.
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ad (i): For distributions of the first group we find the linear program-

ming estimator of ρ, proposed by Resnick and Feigin (1997), as the most

convenient.

(Limit distributions for linear programming time series estimators. J.

Stoch. Process. & Appl. 51, 135-165).

ρ̂LP := argmaxu∈DN

p∑
j=1

uj, (3)

DN := {u := (u1, · · · , up)
′ ∈ IRp : Xt ≥

p∑
j=1

ujXt−j, t = 1, · · ·nN}.

Feigin and Resnick considered a stationary autoregressive process with

positive innovations, whose distribution is of type 1 − F (x) = x−mL(x).
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ad (ii): If F belongs to the second group, then we need not to restrict

ourselves to positive innovations. The most convenient estimators of ρ

for distributions with m0 > 2 are either GM-estimators or GR-estimators.

These estimators are
√

N -consistent, and cover the popular Huber esti-

mator; the distribution can be extended over all real line.
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Construction of the tests

Let n, N be positive integers and let ρ̂N be an estimator of ρ based on

the data set X1−p, X2−p, · · · , X0, X1, · · ·XnN . Let

ε̂t := Xt − ρ̂′
NYt−1, t = 1 − p, 2 − p, · · · , nN, (4)

where Yt−1 := (Xt−1, · · · , Xt−p)
′, t = 0,±1, · · · .

If we want to test H0 with 0 < m0 ≤ 2, then we use the linear program-

ming estimator ρ̂LP . If we want to test H0 with m0 > 2, then we use

GM- or GR-estimators.

Now group these residuals in N groups, each of size n, so that the resid-

uals in the tth group are ε̂(t−1)n−p+1, · · · , ε̂tn−p.
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Let

ε̂t
(n) := max

1≤i≤n
ε̂(t−1)n−p+i, t = 1, 2, · · · , N, (5)

F̂ ∗
N(x) := N−1

N∑
t=1

I(ε̂t
(n) ≤ x), x ∈ IR.

a
(1)
N,m := (nN 1−δ)

1
m , 0 < δ < 1, (6)

a
(2)
N,m :=

(
nN (ln N )−2+η

) 1
m , 0 < η < 1. (7)

The thresholds a
(1)
N,m and a

(2)
N,m lead to slightly different tests; comparing

with the original a
(1)
N,m, used in Jurečková and Picek (2001), the new

threshold a
(2)
N,m seems to give better numerical results both in the linear

regression and autoregression models.
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The empirical distribution function F̂ ∗
N of the maximal residuals {ε̂t

(n), t =

1, . . . , N} approximates the empirical distribution function

F ∗
N = N−1

N∑
t=1

I(εt
(n) ≤ x), x ∈ IR,

of the maximal errors

{εt
(n) = max

1≤i≤n
ε(t−1)n−p+i, , t = 1, . . . , N}.

If F is heavy-tailed and ρ̂N is an appropriate estimate of ρ,

|F̂ ∗
N(aN,m) − F ∗

N(aN,m)| = op(1), as N → ∞, (8)

with an appropriate rate of convergence, provided m is the true value of

the tail index. All limits throughout are taken as N → ∞ and for a fixed

n.
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We propose two tests for H0 against K0 corresponding to a
(1)
N,m0

, a
(2)
N,m0

,

respectively. The first test is based on the same threshold a
(1)
N,m0

as the

test for i.i.d. observations proposed by Jurečková and Picek (2001). The

higher value a
(2)
N,m0

in the second test is likely to reduce the probability

of error of the first kind, though it leads to a slower convergence to the

asymptotic null distribution.

Test (1): The test of H0 against K0 rejects the hypothesis provided

either 1 − F̂ ∗
N(a

(1)
N,m0

) = 0,

or 1 − F̂ ∗
N(a

(1)
N,m0

) > 0 and

Nδ/2
[
− ln(1 − F̂ ∗

N(a
(1)
N,m0

)) − (1 − δ) ln N
]
≥ Φ−1(1 − α),

where Φ is the standard normal distribution function.
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Test (2): The test of H0 against K0 rejects the hypothesis provided

either 1 − F̂ ∗
N(a

(2)
N,m0

) = 0,

or 1 − F̂ ∗
N(a

(2)
N,m0

) > 0, and

(ln N )1−
η
2

[
− ln(1 − F̂ ∗

N(a
(2)
N,m0

)) − ln N + (2 − η) ln ln N
]
≥

Φ−1(1 − α).

The test criteria have asymptotically standard normal distributions under

the exact Pareto tail corresponding to 1 − F (x) = x−m0, ∀x > x0.
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Theorem 1 Consider the stationary autoregressive process.

Assume that the process satisfies the condition
∑p

j=1 ρj < ∞ and that the

innovation distribution function F is heavy-tailed with tail index m0, 0 <

m0 ≤ 2, concentrated on the positive half-axis and strictly increasing on

the set {x : F (x) > 0}. Let F̂ ∗
N(a

(1)
N,m0

) be the empirical distribution

function of extreme residuals.

Then, the following hold:

(i) For every distribution IP satisfying H0,

lim
N→∞

IP
(
0 < F̂ ∗

N(a
(1)
N,m0

) < 1
)

= 1.
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(ii) If 1 − F (x) = x−m0, ∀ x > x0, then ∀ x ∈ IR

lim
N→∞

IP
{

N δ/2
[
− ln(1 − F̂ ∗

N(a
(1)
N,m0

)) − (1 − δ) lnN
]
≤ x

}
= Φ(x).

Hence,

lim
N→∞

IP
{
N δ/2

[
− ln(1 − F̂ ∗

N(a
(1)
N,m0

)) − (1 − δ) lnN
]
≥ Φ−1(1 − α)

}
= α.

(iii) The test is asymptotically unbiased for the family of heavy-tailed
d.f.’s F with m = m0 and with limx→∞L(x) ≥ 1. More precisely, then

limN→∞IP
{

N δ/2
[
− ln(1 − F̂ ∗

N(a
(1)
N,m0

)) − (1 − δ) lnN
]
≥ Φ−1(1 − α)

}
≤ α.

It is also asymptotically unbiased for the family with m < m0.
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Let F be heavy-tailed with tail index m0, m0 > 2, with a continuous

and positive density on IR. Let F̂ ∗
N(a

(1)
N,m0

) be the empirical distribution

function of extreme residuals, where the residuals are calculated with re-

spect to a
√

N -consistent estimator of ρ. Then the conclusions of (i) –

(iii) above continue to hold.

Theorem 2 Consider the stationary model. Let F̂ ∗
N(a

(2)
N,m0

) be the em-

pirical distribution function of extreme residuals of N segments of length

n, where the residuals are calculated with respect to ρ̂LP . Then, under

the conditions of Part (I) of Theorem 3.1, the following hold:

(i) For every distribution IP satisfying H0,

lim
N→∞

IP
(
0 < F̂ ∗

N(a
(2)
N,m0

) < 1
)

= 1.
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(ii) If 1 − F (x) = x−m0, ∀ x > x0, then for ∀ x ∈ IR,

lim
N→∞

IP
{

(lnN)
η
2

[
− ln(1 − F̂ ∗

N(a
(2)
N,m0

)) − ln N + (2 − η) ln lnN
]
≤ x

}
= Φ(x).

Hence,

lim
N→∞

IP
{

(ln N)
η
2

[
− ln(1 − F̂ ∗

N(a
(2)
N,m0

)) − ln N + (1 − η) ln ln N
]
≥ Φ−1(1 − α)

}
= α.

(iii) The test is asymptotically unbiased for F either with m = m0 and
with limx→∞L(x) ≥ 1, or with m < m0. More precisely, then

limN→∞IP
{

N
η
2

[
− ln(1 − F̂ ∗

N(a
(2)
N,m0

)) − ln N + (2 − η) ln lnN
]
≥ Φ−1(1 − α)

}
≤ α.

(II) Let F be heavy-tailed with tail index m0, m0 > 2, with a continuous

and positive density on IR. Let F̂ ∗
N(a

(2)
N,m0

) be the empirical distribution

function of extreme residuals, where the residuals are calculated with re-

spect to a
√

N -consistent estimator of ρ. Then the conclusions (i) – (iii)

above continue to hold.
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Simulation study

The performance is studied on three simulated time series:

(A) Xt = 0.05Xt−1 + εt, t = 1, 2, . . . , Nn,

(B) Xt = 0.9Xt−1 + εt, t = 1, 2, . . . , Nn,

(C) Xt = 0.6Xt−1 − 0.3Xt−2 + 0.2Xt−3 + εt, t = 1, 2, . . . , Nn

with the following white noise distributions:

Pareto: F (x) = 1 − (
1

1+x

)m
, x ≥ 0;

Burr : F (x) = 1 − (
1

1+xm

)κ
, x ≥ 0;

Inverse normal : F (x) = 2
(
1 − Φ

(
1√
x

))
, x > 0

Student: f (x) = 1√
mB(1

2 ,m2 )

(
1 + x2

m

)−(m+1)/2

, x ∈ IR
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For each of these cases, the time series were simulated of the lengths

nN = 200 and 1000. The initial values for the time series were obtained

as the last values of auxiliary simulated time series of length 500 with the

same autoregression coefficients and innovation distribution and initial

values 0).

(1) generated the autoregressive time series;

(2) estimated ρ by ρ̂;

(3) computed residuals ε̂t := Xt− ρ̂′NYt−1, t = 1−p, 2−p, · · · , nN ;

(4) found the maxima ε̂
(1)
n , . . . , ε̂

(N)
n of the segments and the correspond-

ing empirical distribution function F̂ ∗
N ;

(5) we made a decision about H0;

(6) the step (5) was repeated for various values m0, δ;

(7) the steps (1)-(6) were repeated 1 000 times.
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Numbers of rejections of the null hypothesis for a
(1)
N,m,

α = 0.05, N = 50, n = 4, δ = 0.1

distribution time m0

of white noise series 0.25 0.4 0.5 0.6 0.75

Pareto A 986 674 245 36 0

m = 0.5 B 986 674 245 36 0

C 986 674 245 36 0

Burr A 986 674 246 37 0

m = 0.5 B 986 674 246 37 0

κ = 1 C 986 674 246 37 0

Inverse A 990 736 320 79 1

normal B 990 736 320 79 1

C 990 736 320 79 1
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Numbers of rejections of the null hypothesis for a
(2)
N,m,

α = 0.05, N = 50, n = 4, η = 0.1

distribution time m0

of white noise series 0.3 0.4 0.5 0.52 0.6

Pareto A 1000 995 84 17 0

m = 0.5 B 1000 995 84 17 0

C 1000 995 84 17 0

Burr A 1000 995 107 20 0

m = 0.5 B 1000 995 107 20 0

κ = 1 C 1000 995 107 20 0

Inverse A 1000 1000 363 158 1

normal B 1000 1000 363 158 1

C 1000 1000 363 158 1
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Numbers of rejections of the null hypothesis for a
(1)
N,m, α = 0.05, N = 50, n = 4, δ = 0.1

distribution time m0

of white noise series 0.5 0.8 0.9 1.0 1.2

Pareto A 991 674 438 246 36

m = 1 B 991 674 441 245 37

C 991 674 439 246 37

Burr A 991 674 442 246 37

m = 1 B 991 674 442 246 37

κ = 1 C 991 674 442 246 37

m0 2.0 2.5 2.75 3.0 3.5

Student A 867 569 402 255 66

m = 3 B 865 565 398 254 63

C 866 564 403 251 69

4th Conference on Extreme Value Analysis August 15-19, 2005, Gothenburg



Simulation study 22

Numbers of rejections of the null hypothesis for a
(2)
N,m, α = 0.05, N = 50, n = 4, η = 0.1

distribution time m0

of white noise series 0.8 0.9 1.0 1.02 1.1

Pareto A 995 646 84 36 1

m = 1 B 995 646 84 38 1

C 995 646 84 37 1

Burr A 995 667 107 51 1

m = 1 B 995 667 107 51 1

κ = 1 C 995 667 107 51 1

m0 2.5 2.8 3.00 3.05 3.5

Student A 982 684 283 186 7

m = 3 B 983 680 282 193 4

C 982 685 281 187 5
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Fig.: Number of rejections of H0 (α = 0.05) plotted against m0 for Xt = 0.9Xt−1+εt

and a
(1)
N,m =

(
nN 1−δ

) 1
m ; εt, t = 1, . . . , nN have the Pareto distribution with m =

0.5; N = 50, n = 4, δ = 0.1.
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Fig.: Number of rejections of H0 (α = 0.05) plotted against m0 for Xt = 0.9Xt−1+εt

and a
(2)
N,m =

(
nN(lnN)−2+η

) 1
m ; εt, t = 1, . . . , nN have the Pareto distribution with

m = 0.5; N = 200, n = 5, η = 0.1.
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Fig. : Number of rejections of H0 (α = 0.05) plotted against δ for Xt = 0.9Xt−1 +εt

and a
(1)
N,m =

(
nN 1−δ

) 1
m ; εt, t = 1, . . . , nN have the Pareto distribution with m =

0.5; N = 50, n = 4, m0 = 0.51.
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Fig.: Number of rejections of H0 (α = 0.05) plotted against η for Xt = 0.9Xt−1 +εt

and a
(2)
N,m =

(
nN(lnN)−2+η

) 1
m ; εt, t = 1, . . . , nN have the Pareto distribution with

m = 0.5; N = 200, n = 5, m0 = 0.51.
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Numbers of rejections of the null hypothesis among 1000 AR series of the length
1000 for various N, n; α = 0.05, δ = 0.1.

distribution m0

of white noise n, N 0.5 0.8 0.9 1.0 1.2

Pareto n = 5, N = 200 997 725 438 193 3

m = 1 n = 10, N = 100 997 745 462 221 4

n = 20, N = 50 998 761 489 241 7

m0

2.0 2.5 2.75 3.0 3.5

Pareto n = 5, N = 200 943 704 522 341 104

m = 3 n = 10, N = 100 950 723 547 355 103

n = 20, N = 50 955 742 572 387 124
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Numbers of rejections of the null hypothesis at level α = 0.05 among 1000 AR time
series, and among 1000 corresponding sequences of the white noise (WN);

N = 200, n = 5, δ = 0.1, 0.5.

distribution m0

of white noise δ 0.5 0.8 0.9 1.0 1.2

Pareto AR 0.1 997 725 438 193 3

m = 1 AR 0.5 836 3 1 0 0

WN 0.1 997 725 438 193 3

WN 0.5 836 3 1 0 0

2.0 2.5 2.75 3.0 3.5

Pareto AR 0.1 943 704 522 341 104

m = 3 AR 0.5 310 36 4 2 0

WN 0.1 932 623 389 204 12

WN 0.5 169 1 0 0 0
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Application to the daily maximum temperatures

The tests described above are applied to a 40-year dataset of daily max-
imum temperatures measured at three meteorological stations in Czech
Republic, over the period of 1961-2000. The names and coordinates of
the three stations are as follows:

Praha-Ruzyně: 50◦06′N, 14◦15′E, altitude 364 m above sea level;

Liberec: 50◦46′N, 15◦01′E, altitude 398 m above sea level;

Brno-Tǔrany: 49◦09′N, 16◦42′E, altitude 241 m above sea level.

The maximum temperatures were centered and deseasonalized by sub-

tracting the average maximum temperature computed over the 40 years.

The residuals then were modeled as autoregressive series of order p = 1,

(see Hallin et al. (1977)).
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Rejection (R) and non-rejection (N) of the null hypothesis at level α = 0.05 for

a
(1)
N,m =

(
nN 1−δ

) 1
m and some selected values of m0; n = 5, δ = 0.1

time

series m0 = 3.2 m0 = 3.3 m0 = 3.5 m0 = 3.6 m0 = 3.7

Praha R N N N N

Liberec R R N N N

Brno R R R R N

The same for a
(2)
N,m =

(
nN(lnN)−2+η

) 1
m .

time

series m0 = 2.5 m0 = 2.6 m0 = 2.65 m0 = 2.7 m0 = 2.75

Praha R R N N N

Liberec R R R R N

Brno R R R R N
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