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The point process of exceedances - independent case
Let (Xi) be an iid sequence of rvs with distribution F . The point

process of time normalized exceedances N
(τ )
n (·) is defined by

N (τ )
n (B) =

n∑

i=1

I{i/n∈B,Xi>un(τ )},

for any Borel set B ⊂ E := (0, 1], where (un(τ)) is a sequence of
deterministic thresholds.

Theorem

Let (un(τ)) be such that limn→∞ nF̄ (un(τ)) = τ where F̄ := 1 − F .

Then N
(τ )
n converges weakly to a homogeneous Poisson point process

N on (0, 1] with intensity τ |·|, where |·| denotes the Lebesgue measure.

If X(k) is the k-th largest of X1, ..., Xn, then

lim
n→∞

P
(
X(k) < un (τ)

)
= lim

n→∞
P

(
N (τ )

n (E) < k
)

= e−τ
k−1∑

i=0

τ i

i!
.
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The point process of exceedances - dependent case

Let (Xn) be a strictly stationary sequence with distribution F .

βn,l (τ) ≡ sup |P (Xi ≤ un (τ) , i ∈ A ∪ B)

−P (Xi ≤ un (τ) , i ∈ A) P (Xi ≤ un (τ) , i ∈ B) |,

where A ⊂ {1, ..., k}, B ⊂ {k + l, ..., n}, and 1 ≤ k ≤ n − l.

Condition

D(un (τ)) is satisfied if there exists a sequence ln = o(n) such that
ln → ∞ and βn,ln (τ) → 0 when n → ∞.

Definition

Suppose that D(un (τ)) is satisfied, θ (0 < θ ≤ 1) is called the
extremal index of the process (Xn) if for each τ > 0 :
(i) there exists un(τ) such that nF̄ (un(τ)) → τ ,

(ii) P
(
N

(τ )
n (E) = 0

)
→ exp(−θτ).
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The point process of exceedances - dependent case

Let Fp,q = Fp,q (τ) be the σ-algebra generated by the events
{Xi > un (τ)}, p ≤ i ≤ q, and

αn,l (τ) ≡ sup |P (A ∩ B) − P (A) P (B) : A ∈ F1,t, B ∈ Ft+l,∞, t ≥ 1| .

Condition

∆(un (τ)) is satisfied if there exists a sequence ln = o(n) such that
ln → ∞ and αn,ln (τ) → 0 when n → ∞.

Theorem

Assume that ∆(un (τ)) is satisfied and limn→∞ nF̄ (un(τ)) = τ . If the

limiting point process of N
(τ )
n exists, it is necessarily a homogeneous

compound Poisson point process with intensity τθ |·| and limiting
cluster size distribution π (Hsing et al. (1988)).
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The point process of exceedances - dependent case

Let πn (m; qn, un (τ)) = P

(
N

(τ )
n ((0; qn/n]) = m

∣∣∣N (τ )
n ((0; qn/n]) > 0

)
.

Proposition

Suppose that extremal index θ exists, then a necessary and sufficient

condition for the convergence of N
(τ )
n is

lim
n→∞

πn (m; qn, un (τ)) = π (m) ,

where (qn) is a sequence of positive integers such that there exists a
sequence (ln) satisfying ln = o (qn), qn = o (n) and nq−1

n αn,ln (τ) → 0.

If ∆(un(τ)) holds for each τ > 0, then θ and π do not depend on τ .
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Estimation of the extremal index and the limiting
cluster size distribution

The natural approach to estimating θ and π is to identify the clusters
of exceedances above a high threshold, then evaluate for each cluster
the characteristic of interest and construct estimates from these
values.

The blocks declustering scheme consists in choosing a threshold
usn

(τ) where sn = o (n) and a block length rn = o (sn), and
partitionning the n observations into kn = ⌈n/rn⌉ blocks.

The runs declustering scheme consists in choosing a threshold
usn

(τ) where sn = o (n) and a run length pn = o (sn), and
stipulating that any extreme observations separated by fewer
than pn non-extreme observations belong to the same cluster.

The automatic declustering scheme consists in choosing a
threshold usn

(τ) where sn = o (n) and working with
inter-exceedance times (Ferro and Segers (2003)).
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Extremal index estimators - The blocks method

Leadbetter (1983) showed that

θ = lim
n→∞

snP

(
max

1≤i≤rn

Xi > usn
(τ)

)
/ (rnτ) ,

where sn = o (n) and rn = o (sn).

This relation motivates the following estimator

θ̂n =
snKkn

(ûsn
(τ))

rnτ
,

where Kkn
(u) = k−1

n

∑kn

i=1 I{Mi
rn

>u} is the mean number of blocks

with one or more exceedances of u and ûsn
(τ) = X(⌈nτ/sn⌉).
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Extremal index estimators - The runs method

O’Brien (1987) showed that

θ = lim
n→∞

P

(
max

2≤i≤pn

Xi ≤ usn
(τ)

∣∣∣∣X1 > usn
(τ)

)
,

where sn = o (n) and pn = o (sn).

This relation motivates the following estimator

θ̂n =

∑n−pn

i=1 I{Ai,pn (ûsn (τ ))}∑n
i=1 I{Xi>ûsn (τ )}

,

where Ai,pn
(u) = {Xi > u, Xi+1 ≤ u, ..., Xi+pn

≤ u} and
ûsn

(τ) = X(⌈nτ/sn⌉).
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Extremal index estimators - The automatic method

Let T (u) be the inter-exceedance time, i.e. min {i ≥ 1, Xi+1 > u}
given that X1 > u. Ferro and Segers (2003) showed that

lim
n→∞

P
(
F̄ (usn

(τ))T (usn
(τ)) > t

)
= θe−θt, t > 0,

where sn = o (n).

This relation motivates the following moment estimator

θ̂n =
2
(∑Nn(ûsn (τ ))

i=1 (Ti (ûsn
(τ)) − 1)

)2

(Nn(ûsn
(τ)) − 1)

∑Nn(ûsn (τ ))
i=1 (Ti (ûsn

(τ)) − 1) (Ti (ûsn
(τ)) − 2)

,

where Nn(u) =
∑n

i=1 I{Xi>u} is the number of exceedances of u, Ti (u)

is the ith inter-exceedance time of u and ûsn
(τ) = X(⌈nτ/sn⌉).

Christian Y. Robert Inference for the limiting cluster size distribution



Introduction
An approach based on Panjer’s algorithm

Simulation study and conclusion

The point process of exceedances
Estimators for the extremal index
Estimators for the limiting cluster size distribution

Extremal index estimators - The automatic method

Let T (u) be the inter-exceedance time, i.e. min {i ≥ 1, Xi+1 > u}
given that X1 > u. Ferro and Segers (2003) showed that

lim
n→∞

P
(
F̄ (usn

(τ))T (usn
(τ)) > t

)
= θe−θt, t > 0,

where sn = o (n).

This relation motivates the following moment estimator

θ̂n =
2
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(τ) = X(⌈nτ/sn⌉).

Christian Y. Robert Inference for the limiting cluster size distribution



Introduction
An approach based on Panjer’s algorithm

Simulation study and conclusion

The point process of exceedances
Estimators for the extremal index
Estimators for the limiting cluster size distribution

Limiting cluster size distribution estimators - The
blocks method

Let us recall that

lim
n→∞

P

(
N (τ )

n ((0; qn/n]) = m
∣∣∣N (τ )

n ((0; qn/n]) > 0
)

= π (m) ,

where qn = o (n).

This relation motivates the following estimators (Hsing (1991))

π̂n (m; rn, ûsn
(τ)) =

∑kn

j=1 I{Yn,j(ûsn (τ ))=m}
∑kn

j=1 I{Yn,j(ûsn (τ ))>0}

,

where Yn,j (u) =
∑jrn

i=(j−1)rn+1 I{Xi>u} is the number of exceedances

of u for the jth block and ûsn
(τ) = X(⌈nτ/sn⌉).
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Limiting cluster size distribution estimators - The
automatic method (Ferro (2003))

Let T1 and T1+j be the inter-exceedance times separeted by j − 1
other inter-exceedance times. Then

lim
n→∞

P
(
F̄ (usn

(τ))T1 (usn
(τ)) > t, F̄ (usn

(τ))T1+j (usn
(τ)) > s

)

= θeje
−θ(t+s),

where sn = o (n) and ej is defined recursively by e1 = 1 and

ej = π (1) ej−1 + ... + π (j − 1) e1 + π (j) .

Ferro (2003) introduced moments estimators.

In our paper, we introduce new estimators of the limiting cluster size
probabilities. They are constructed from the compound probabilities
of the limiting point process through a recursive algorithm.
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probabilities. They are constructed from the compound probabilities
of the limiting point process through a recursive algorithm.
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Panjer’s algorithm
Let us denote by N

(τ )
E the weak limit of N

(τ )
n (E) as n → ∞ when it

exists and by p(τ ) =
(
p(τ ) (m)

)
m≥0

its distribution. Then

N
(τ )
E

d
=

η(θτ )∑

i=1

ζi,

where (ζn) is a sequence of iid integer rvs with distribution π and
η (θτ) is an independent Poisson rv with parameter θτ .
We have

p(τ ) (0) = e−θτ , p(τ ) (m) = e−θτ
m∑

j=1

(θτ)
j

j!
π∗j (m) , m ≥ 1,

where π∗j is the jth convolution of π. Panjer’s algorithm is a recursive
algorithm which can be used to compute p(τ )

p(τ ) (0) = e−θτ , p(τ ) (m) = −
ln
(
p(τ ) (0)

)

m

m∑

j=1

jπ (j) p(τ ) (m − j) , m ≥ 1.
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Note that p(τ ) (m) can be expressed as a function of the π (j),
j = 1, ..., m. But it is also possible to reverse the algorithm and to
evaluate recursively π (m) from the p(τ ) (j), j = 0, ..., m, in the
following way

π (1) = −
p(τ ) (1)

ln
(
p(τ ) (0)

)
p(τ ) (0)

,

π (m) =
π (1)

p(τ ) (1)



p(τ ) (m) +
ln
(
p(τ ) (0)

)

m

m−1∑

j=1

jπ (j) p(τ ) (m − j)



 .

We deduce that there exist differentiable functions
fm : R

m+1
+ \ {0} → R, such that

π (m) = fm

(
p(τ ) (0) , p(τ ) (1) , ..., p(τ ) (m)

)
, m ≥ 1.

Corollary: it suffices to construct an estimate of p(τ ) to have an
estimate of π.
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Defining the estimators

We use the blocks declustering scheme: we divide [1, ..., n] into kn

blocks of length rn, Ij = [(j − 1)rn + 1, ..., jrn] for j = 1, ..., kn, and a
last block Ikn+1 = [rnkn + 1, ..., n].

We define

the number of observations above the threshold urn
(τ) within

the j-th block N
(τ )
rn,j =

∑
i∈Ij

I{Xi>urn (τ )};

the empirical distribution of the number of exceedances within a

block p
(τ )
n (i) = k−1

n

∑kn

j=1 In
N

(τ)
rn,j

=i
o;

We assume that F belongs to the domain of attraction of the
generalized extreme value (GEV) distribution with index γ ∈ R, i.e.
there exist two functions a and b such that F satisfies the relation

lim
n→∞

nF̄ (a(n)x + b(n)) = (1 + γx)−1/γ .
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The threshold urn
(τ) may be chosen as

urn
(τ) = γ−1

(
τ−γ − 1

)
a (rn) + b (rn) .

An estimator of the level urn
(τ) is given by

ûrn
(τ) = γ̂−1

n

(
τ−γ̂n − 1

)
â (rn) + b̂ (rn) ,

where γ̂n, b̂ (rn) and â (rn) are suggested in Dekkers, Einmahl and de
Haan (1989).

Then we define the counterpart of N
(τ )
rn,j , p

(τ )
n (i) where urn

(τ) is
replaced by ûrn

(τ)

N̂
(τ )
rn,j =

∑

i∈Ij

I{Xi>ûrn (τ )}, p̂(τ )
n (i) =

1

kn

kn∑

j=1

In
N̂

(τ)
rn,j

=i
o.
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Finally we introduce the estimators of the limiting cluster size
distribution

π̂n (j) = fj

(
p̂(1)

n (0) , p̂(1)
n (1) , ..., p̂(1)

n (j)
)

.

Let us derive several estimators of the extremal index. This key
parameter appears in different moments of the limiting distributions

N
(τ )
E and ζ1

p(τ ) (0) = e−θτ , Eζ1 = θ−1, VN
(τ )
E = θτE (ζ1)

2
.

Estimators of θ can be constructed by equating approximately
theoritical moments to their empirical counterparts

θ̂1,n = − ln
(
p̂(1)

n (0)
)

, θ̂2,n =
1∑m

j=1 jπ̂n (j)
, θ̂3,n =

∑m
j=0 (j − 1)2 p̂

(1)
n (j)

∑m
j=1 j2π̂n (j)

,

for some m > 1.
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Condition C0

Condition

The stationary sequence (Xn) has extremal index θ > 0. ∆(un (τ))
holds for each τ > 0 and there exists a probability measure
π = (π (i))i≥1, such that for all i ≥ 1,

π (i) = lim
n→∞

P
(

N (τ )
n ((0; qn/n]) = i

∣∣∣N (τ )
n ((0; qn/n]) > 0

)
, (C0.a)

for some ∆(un (τ))-separating sequence (qn). Moreover there exists a
constant ρ > 2 such that for each τ > 0

sup
n≥1

E
(
N (τ )

n (E)
)ρ

< ∞. (C0.b)
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Condition C1

Condition

Condition (C0) holds. ∆(un (τ1) , un (τ2)) holds for each τ1 > τ2 > 0
and there exists a probability measure π2, such that for all i1 ≥ i2 ≥ 0,
i1 ≥ 1,

lim
n→∞

P

(
N (τj)

n ((0; qn/n]) = ij ; j = 1, 2
∣∣∣N (τ1)

n ((0; qn/n]) > 0
)

= π
(τ2/τ1)
2 (i1, i2) ,

for some ∆(un (τ1) , un (τ2))-separating sequence (qn).
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Let us denote by
(
N

(τ1)
E , N

(τ2)
E

)
the weak limit of

(
N

(τ1)
n (E) , N

(τ2)
n (E)

)
as n → ∞ when it exists and by p

(τ1,τ2)
2 its

distribution. Then

(
N

(τ1)
E , N

(τ2)
E

)
d
=




η(θτ1)∑

i=1

ζ
(τ2/τ1)
1,i ,

η(θτ1)∑

i=1

ζ
(τ2/τ1)
2,i





where
(
ζ

(τ2/τ1)
1,i , ζ

(τ2/τ1)
2,i

)
is a sequence of iid integer vector rvs with

distribution π
(τ2/τ1)
2 and η (θτ1) is a Poisson rv with parameter θτ1

and is independent of the
(
ζ

(τ2/τ1)
1,i , ζ

(τ2/τ1)
2,i

)
.

The distribution of
(
N

(τ1)
E , N

(τ2)
E

)
is given by

p
(τ1,τ2)
2 (0, 0) = P (η (θτ1) = 0) = e−θτ1

p
(τ1,τ2)
2 (i, j) = e−θτ1

i∑

k=1

(θτ1)
k

k!
π

(τ2/τ1),∗k
2 (i, j) .
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Condition C2

Condition
Let ε > 0. There exist two constants C > 0 and δ > 6 such that

αn,l (τ1, ..., τr) ≤ αl := Cl−δ−ε, (C2.a)

for every choice of τ1 > ... > τr > 0, r ≥ 1, n ≥ 1. (rn) is sequence
such that rn → ∞ and rn = o (n). There exists a sequence (ln)
satisfying

ln = o
(
r2/v
n

)
and lim

n→∞
nr−1

n αln = 0, (C2.b)

where v = 2δ/ (δ − 3). There exists a constant γ > 2v such that for
each τ1 > τ2 > 0

sup
n≥1

E
(
N (τ1)

n (E) − N (τ2)
n (E)

)γ

< ∞. (C2.c)
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Condition C2

Condition

Let
(
ζ

(τ2/τ1)
1,1 , ζ

(τ2/τ1)
2,1

)2v

be a vector rv with distribution π
(τ2/τ1)
2 defined

in (C1.a) . There exists a positive constant D2v such that

E
(
ζ

(τ2/τ1)
1,1 − ζ

(τ2/τ1)
2,1

)2v

< D2v (1 − τ2/τ1) , (C2.d)

for every choice of τ1 > τ2 > 0.
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Condition C3

Condition

There exist a function A, with limn→∞ A (n) = 0, and a function L
such that

dTV

(
N (τ )

n (E) , N
(τ )
E

)
≤ L (τ) A (n) . (C3.a)

There exist some constants ξ ≤ 0 and a regularly varying positive
function of index ξ, Θ, with limn→∞ Θ (n) = 0, such that

lim
n→∞

nF̄ (b(n) + a(n)x) − (1 + γx)−1/γ

Θ(n)
= K

(
(1 + γx)1/γ

)
, (C3.b)

locally uniformly for x ∈ Iγ . The sequence (rn) satisfies

lim
n→∞

√
knA (rn) = lim

n→∞

√
knΘ (rn) = 0.
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Proposition

Suppose that (C0) holds. Let (rn) be a sequence such that rn → ∞

and rn = o (n).Then π̂n (j)
P
→ π (j), j = 1, ..., m, and

θ̂1,n
P
→ θ, θ̂2,n

P
→




m∑

j=1

jπ (j)




−1

, θ̂3,n
P
→

∑m
j=0 (j − 1)

2
p(1) (j)

∑m
j=1 j2π (j)

.

Let us introduce the multivariate empirical process

Em,n (τ) = (e0,n (τ) , ..., em,n (τ) , ēn (τ))′ , τ > 0,

where

ei,n (τ) =
√

kn

(
p(τ )

n (i) − P
(
N

(τ )
rn,j = i

))
,

ēn (τ) =
√

kn

(
p̄(τ )

n − rnP (Xi > urn
(τ))

)
,

p̄(τ )
n =

∞∑

i=1

ip(τ )
n (i) =

1

kn

kn∑

j=1

N
(τ )
rn,j =

1

kn

rnkn∑

i=1

1{Xi>urn (τ )}.
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Let B > 1 and D(m) (0, B) be the space of functions from (0, B) to
R

m which are left continuous and have right limits at each point,
equipped with the Skorohod’s J1-topology.

Theorem

Suppose that (C1) and (C2) hold. There exists a pathwise continuous
centered Gaussian process Em with covariance function

C (Em (τ1) , Em (τ2)) = V (m) (τ1, τ2)

which can be expressed as a function of τ1, τ2, p(τ1), p(τ2), p
(τ1,τ2)
2 , π,

π
(τ2/τ1)
2 , θ, such that Em,n ⇒ Em weakly in D(m+2) (0, B).
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Theorem

Suppose that (C1), (C2) and (C3) hold. Then

√
kn

(
p̂(·)

n (j) − p(·) (j)
)

⇒

(
Ej+1,m (·) − hj (·) (·)1+γ ×(

γ−1
(
(·)

−γ
− 1
)

A + B + γ−2
(
1 − (·)

−γ
(1 + γ ln (·))

)
Γ
)
)

in D(m+1) (0, B), where hj (τ) = ∂p(τ ) (j) /∂τ , Ej,m is the j-th
component of Em and A, B, Γ depend on γ and (Em+1,m (τ))0<τ≤1 .

Corollary

Suppose that (C1), (C2) and (C3) hold. Then

√
kn

(
p̂(1)

n (j) − p(1) (j)
)

j=0,...,m

d
→ N

(
0, M (m)

)
,

where M (m) can be expressed as a function of p(1), π.
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kn
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Let Π̂n,m = k
1/2
n (π̂n (j) − π (j))j=1,...,m, f (m) = (f1, ..., fm) and

∇f (m) = (∂fj/∂pi−1)1≤i≤m+1,1≤j≤m.

Corollary

Suppose that (C1), (C2) and (C3) hold. Then

Π̂n,m
d
→ N

(
0, P (m)

)
,

where P (m) =
(
∇f (m)

)′
M (m)∇f (m).
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Corollary

Suppose that (C1), (C2) and (C3) hold. Then

√
kn

(
θ̂1,n − θ

)
d
→ N



0, eθ − 2θ − 1 + θ3
∞∑

j=1

j2π (j)



 ,

√
kn

(
θ̂2,n −

1∑m
j=1 jπn (j)

)
d
→ N



0,
A′

mP (m)Am(∑m
j=1 jπn (j)

)4



 ,

√
kn

(
θ̂3,n −

∑m
j=0 (j − 1)

2
p(1) (j)

∑m
j=1 j2π (j)

)
d
→ N

(
0, B′

mM (m)Bm

)
,

where Am = (1, ..., m)
′
and

Bm =



 1∑m
l=1 l2π (l)



(j − 1)
2
−

∑m
l=0 (l − 1)

2
p(1) (l)∑m

l=1 l2π (l)

m∑

l=j

l2
∂fl

∂pj









j=0,...,m

.
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Simulation study

500 sequences of length 2000 were simulated from the three processes:

an ARCH(1) process: Xn = (η + λXn−1)Z2
n, n ≥ 2, where Zn

are iid standard Gaussian rvs, η = 2.10−5, λ = 0.5 and X1 = 0.

π (1) = 0.751 π (2) = 0.168 π (3) = 0.055
π (4) = 0.014 π (5) = 0.008 θ = 0.727.

a max-autoregressive process: Xn = max {(1 − θ) Xn−1, Wn},
n ≥ 2, where Wn are independent unit Fréchet rvs, θ = 0.5 and
X1 = W1/θ.

π (1) = 0.5 π (2) = 0.25 π (3) = 0.125
π (4) = 0.0625 π (5) = 0.031 θ = 0.5.
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an AR (1) process with uniform marginal: Xn = r−1Xn−1 + εn,
n ≥ 2, where (εn) are iid and uniformly distributed on
{0, 1/r, ...., (r − 1) /r}, r = 4 and X1 is uniformly distributed on
(0, 1).

π (1) = 0.75 π (2) = 0.1875 π (3) = 0.0469
π (4) = 0.0117 π (5) = 0.0029 θ = 0.75

To smooth the discontinuity effect due to the blocks declustering
scheme, we computed averages over the estimates corresponding to
different block sizes. Morover, we considered the ratios ̂̄πn (i) /π (i),

i = 1, ..., 5 and ̂̄θj,n/θ, j = 1, .., 3 to compare the performance of the
estimators for the three processes.

Legend: ARCH(1) process (——), max-AR (1) process (- - - ), AR(1)
process (· · · ·).
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