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Introduction The point process of exceedances

Estimators for the extremal index
Estimators for the limiting cluster size distribution

The point process of exceedances - independent case

Let (X;) be an iid sequence of rvs with distribution F. The point
process of time normalized exceedances N,(,T) (+) is defined by

N (B) = Zﬂ{i/neB,ximnm}v
=1

for any Borel set B C E := (0, 1], where (u,(7)) is a sequence of
deterministic thresholds.
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The point process of exceedances - independent case

Let (X;) be an iid sequence of rvs with distribution F. The point
process of time normalized exceedances N,(,T) (+) is defined by

N (B) = Zﬂ{i/neB,ximn(f)}v
=1

for any Borel set B C E := (0, 1], where (u,(7)) is a sequence of
deterministic thresholds.

Theorem
Let (un(7)) be such that limy, oo nE(un(7)) = 7 where F:=1— F.

Then N,(,T) converges weakly to a homogeneous Poisson point process
N on (0,1] with intensity T |-|, where |-| denotes the Lebesgue measure.
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The point process of exceedances - independent case

Let (X;) be an iid sequence of rvs with distribution F. The point
process of time normalized exceedances N,(,T) (+) is defined by

N (B) = Zﬂ{i/neB,ximn(f)}v
=1

for any Borel set B C E := (0, 1], where (u,(7)) is a sequence of
deterministic thresholds.

Theorem

Let (un(7)) be such that limy, oo nE(un(7)) = 7 where F:=1— F.
Then N,(,T) converges weakly to a homogeneous Poisson point process
N on (0,1] with intensity T |-|, where |-| denotes the Lebesgue measure.

If X is the k-th largest of Xj, ..., X, then

k=1
H : T -7 2 T
7LIL>mooP (X(k) < Un (T)) - 7LIL>mooP (Nr(L ) (E) < k) —° F
i=0

Christian Y. Robert Inference for the limiting cluster size distribution



Introduction The point process of exceedances

Estimators for the extremal index
Estimators for the limiting cluster size distribution

The point process of exceedances - dependent case

Let (X,,) be a strictly stationary sequence with distribution F'.

Bni(r) = sup|P(X; <un(r),i€ AUB)
—P(X; < up(7),i€ A)P(X; < uyn(r),i€ B,

where A C {1,...,k}, BC{k+1,...,n},and 1 <k <n-—1L
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The point process of exceedances - dependent case

Let (X,,) be a strictly stationary sequence with distribution F'.
Brni(r) = sup|P(X; <up(r),i€ AUDB)
—P(X; <up(r),i € A)P(X; <wun(7),i € B)],
where A C {1,..,k}, BC{k+,...,n},and 1 <k <n-—I.

Condition

D(uy, (7)) is satisfied if there exists a sequence l,, = o(n) such that
l, — 00 and Bn, (1) — 0 when n — co.
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The point process of exceedances - dependent case

Let (X,,) be a strictly stationary sequence with distribution F'.

B (7)

sup [P (X; <u, (1), € AUB)
—P(X; <up(r),i € A)P(X; <wun(7),i € B)],

where A C {1,...,k}, BC{k+1,...,n},and 1 <k <n-—1L

Condition

D(uy, (7)) is satisfied if there exists a sequence l,, = o(n) such that
l, — 00 and Bn, (1) — 0 when n — co.

Definition

Suppose that D(u, (7)) is satisfied, 0 (0 < 0 < 1) is called the
extremal index of the process (Xp) if for each 7> 0 :
(i) there exists un(7) such that nF(u,(7)) — 7,

(i) P (fo) (E) = o) — exp(—67).
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The point process of exceedances - dependent case

Let F, o = Fp.q (7) be the o-algebra generated by the events
{Xi>u, (1)}, p<i<gq, and

an 1 (1) =sup|P(ANB)—P(A)P(B): A€ Fi, B € Frii00,t > 1].
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The point process of exceedances - dependent case

Let F, o = Fp.q (7) be the o-algebra generated by the events
{Xi>u, (1)}, p<i<gq, and

an 1 (1) =sup|P(ANB)—P(A)P(B): A€ Fi, B € Frii00,t > 1].

Condition

A (un (7)) is satisfied if there exists a sequence l,, = o(n) such that
l, — 00 and a1, (T) — 0 when n — oco.
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The point process of exceedances - dependent case

Let F, o = Fp.q (7) be the o-algebra generated by the events
{Xi >un (1)}, p<i<gq, and

an 1 (1) =sup|P(ANB)—P(A)P(B): A€ Fi, B € Frii00,t > 1].

Condition

A (un (7)) is satisfied if there exists a sequence l,, = o(n) such that
l, — 00 and a1, (T) — 0 when n — oco.

Theorem
Assume that A (uy, (7)) is satisfied and limy, oo nE(un(7)) = 7. If the

limiting point process of fo) erists, it is necessarily a homogeneous
compound Poisson point process with intensity 70 |-| and limiting

cluster size distribution w (Hsing et al. (1988)).
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The point process of exceedances - dependent case

Let m, (m; qn, un (7)) = P (Nr(f) ((0; go/n]) =m N ((0; gn/n]) > 0).
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The point process of exceedances - dependent case

Let m, (m; qn, un (7)) = P (Nr(f) ((0; go/n]) =m N ((0; gn/n]) > O).

Proposition

Suppose that extremal index 0 exists, then a necessary and sufficient
condition for the convergence of fo) 18

lim m, (m; qn; Un (T)) =7 (m) )

n—oo

where (gn) is a sequence of positive integers such that there exists a
sequence (1) satisfying l, = 0(qn), qn = o(n) and ng, *an, 1, (1) — 0.
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The point process of exceedances - dependent case

Let m, (m; qn, un (7)) = P (Nr(f) ((0; go/n]) =m N ((0; gn/n]) > O).

Proposition
Suppose that extremal index 0 exists, then a necessary and sufficient

condition for the convergence of fo) 18

lim m, (m; qn; Un (T)) =7 (m) )

n—oo

where (gn) is a sequence of positive integers such that there exists a
sequence (1) satisfying l, = 0(qn), qn = o(n) and ng, *an, 1, (1) — 0.

If A(un(7)) holds for each 7 > 0, then 6 and 7 do not depend on 7.
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Estimation of the extremal index and the limiting
cluster size distribution

The natural approach to estimating 6 and 7 is to identify the clusters
of exceedances above a high threshold, then evaluate for each cluster
the characteristic of interest and construct estimates from these
values.
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Estimation of the extremal index and the limiting
cluster size distribution

The natural approach to estimating 6 and 7 is to identify the clusters
of exceedances above a high threshold, then evaluate for each cluster
the characteristic of interest and construct estimates from these
values.

@ The blocks declustering scheme consists in choosing a threshold
us, (7) where s, = o(n) and a block length r,, = 0 (s,), and
partitionning the n observations into k, = [n/r, | blocks.
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Estimation of the extremal index and the limiting
cluster size distribution

The natural approach to estimating 6 and 7 is to identify the clusters
of exceedances above a high threshold, then evaluate for each cluster
the characteristic of interest and construct estimates from these
values.

@ The blocks declustering scheme consists in choosing a threshold
us, (7) where s, = o(n) and a block length r,, = 0 (s,), and
partitionning the n observations into k, = [n/r, | blocks.

@ The runs declustering scheme consists in choosing a threshold
us, (7) where s, = o(n) and a run length p,, = o (s,), and
stipulating that any extreme observations separated by fewer
than p, non-extreme observations belong to the same cluster.
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Estimation of the extremal index and the limiting
cluster size distribution

The natural approach to estimating 6 and 7 is to identify the clusters
of exceedances above a high threshold, then evaluate for each cluster
the characteristic of interest and construct estimates from these
values.

@ The blocks declustering scheme consists in choosing a threshold
us, (7) where s, = o(n) and a block length r,, = 0 (s,), and
partitionning the n observations into k, = [n/r, | blocks.

@ The runs declustering scheme consists in choosing a threshold
us, (7) where s, = o(n) and a run length p,, = o (s,), and
stipulating that any extreme observations separated by fewer
than p, non-extreme observations belong to the same cluster.

@ The automatic declustering scheme consists in choosing a
threshold us, (7) where s, = o(n) and working with
inter-exceedance times (Ferro and Segers (2003)).
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Extremal index estimators - The blocks method

Leadbetter (1983) showed that

0= lim s,P( max X;>us, (7)) /(rn7),

n— oo 1<i<r,

where s, = o(n) and r,, = 0(sy)-
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Extremal index estimators - The blocks method

Leadbetter (1983) showed that

n—00 <i<ry,

0= lim s,P (1 max X; > us, (7‘)) / (rnT),
where s, = o(n) and r,, = 0(sy)-

This relation motivates the following estimator

é\ — SnKkn (ﬁsn (T))
n Tn’]_ b
where Ky, (u) = k! ngl H{Mi Su} is the mean number of blocks

with one or more exceedances of u and s, (7) = X(fnr/s,1)-
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Extremal index estimators - The runs method

O’Brien (1987) showed that

0= lim P| max X; <us, (7)|X1>us, (7)),
n— oo 2<i<pn

where s, = o(n) and p,, = o (sn).
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Extremal index estimators - The runs method

O’Brien (1987) showed that

0= lim ]P’< max X; < wus, (7)

n—oo  \ 2<i<p,

X1 > ug, (T)) :
where s, = o(n) and p,, = o (sn).

This relation motivates the following estimator

i Lt MAipn (Gen ()

Y i1 Lixi>a, (1)

where A; ,, (v) = {X; > u, Xit1 < w, ..., Xiyp, <u} and
ﬁSn (7_) = X(Frw/sn—\)'
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Extremal index estimators - The automatic method

Let T (u) be the inter-exceedance time, i.e. min{¢ > 1, X;11 > u}
given that X7 > u. Ferro and Segers (2003) showed that

lim P (F (us, (7)) 7T (us, (1)) > t) = 0%, t>0,

n—oo

where s,, = o(n).
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Extremal index estimators - The automatic method

Let T (u) be the inter-exceedance time, i.e. min{¢ > 1, X;11 > u}
given that X7 > u. Ferro and Segers (2003) showed that

lim P (F (us, (7)) 7T (us, (1)) > t) = 0%, t>0,

n—oo

where s,, = o(n).
This relation motivates the following moment estimator
" 2
Ny (s, (T ~
i 2 (L (13 (@, (1) - 1))

" (Na(@s, (7)) = 1) SN (T3 (@, (7)) = 1) (T: (@, (7)) — 2)

where Ny (u) =37 ; I{x,>4} is the number of exceedances of u, T; (u)
is the i'" inter-exceedance time of u and 4, (7) = X([nr/s,1)-

n =
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Limiting cluster size distribution estimators - The
blocks method

Let us recall that

lim P (N ((0: gn/m]) = m| N{ ((0: gn/n]) > 0) = 7 (m),

n—oo

where g, = o(n).
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Limiting cluster size distribution estimators - The
blocks method
Let us recall that
Jim P (N ((0: ga/n]) = m| NE ((0: gn/n]) > 0) = 7 (m),
where g, = o(n).

This relation motivates the following estimators (Hsing (1991))

kTI,
>0 Ly s (o, (r)=m)

ﬁ-n (m; Tn, asn, (T)) =

)

kn
> i1 v (s, (7)) >0}

where Y, ; (u) = ng(bj_l),,_ﬁl I x,>y} is the number of exceedances

of u for the j' block and 4, (7) = X([nr/s,7)-
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Limiting cluster size distribution estimators - The
automatic method (Ferro (2003))

Let T and T14; be the inter-exceedance times separeted by j — 1
other inter-exceedance times. Then

nILmOO]P’ (F (us, (7)) T1 (us, (1)) > t, F (us, (1)) Titj (us, (1)) > 5)
_ eeje—G(t—t-s),
where s, = 0(n) and e; is defined recursively by e; = 1 and

e; = 7T(1)€j_1+...—|—7T(j—1)€1—|—7‘(‘(j).

Ferro (2003) introduced moments estimators.
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Limiting cluster size distribution estimators - The
automatic method (Ferro (2003))

Let T and T14; be the inter-exceedance times separeted by j — 1
other inter-exceedance times. Then

nILmOO]P’ (F' (us, (7)) T4 (us, (7)) > t, F (us, (7)) Ti4j (us, (7)) > s)

_ eeje—G(t—t-s),

where s, = 0(n) and e; is defined recursively by e; = 1 and
e; = 7T(1)€j_1 + ... —|—7T(_j = 1)61 —|—7T(j)
Ferro (2003) introduced moments estimators.

In our paper, we introduce new estimators of the limiting cluster size
probabilities. They are constructed from the compound probabilities
of the limiting point process through a recursive algorithm.
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Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Asymptotic properties of the estimators

Panjer’s algorithm

Let us denote by Ng) the weak limit of N{" (E) as n — oo when it
exists and by p(™) = (p(7) (m))m>0 its distribution. Then

n(07)

N LN ¢,
=1

where () is a sequence of iid integer rvs with distribution 7 and
7 (07) is an independent Poisson rv with parameter 67.
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Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Asymptotic properties of the estimators

Panjer’s algorithm

Let us denote by Ng) the weak limit of N{" (E) as n — oo when it
exists and by p(™) = (p(7) (m))m>0 its distribution. Then

n(07)

N LN ¢,
=1

where () is a sequence of iid integer rvs with distribution 7 and
7 (07) is an independent Poisson rv with parameter 67.
We have

e J

P (0) = e~ b7, p) (m) = e 07 E —(GTI) 7 (m), m>1,
4 J!
j=1

where 7*7 is the j*"* convolution of 7. Panjer’s algorithm is a recursive
algorithm which can be used to compute (™)

P (0)=e707, p") (m) = Z]” P (m—j), m>1.

Christian Y. Robert Inference for the limiting cluster size distribution



Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Asymptotic properties of the estimators

Note that p(7) (m) can be expressed as a function of the 7 (j),

7 =1,...,m. But it is also possible to reverse the algorithm and to
evaluate recursively 7 (m) from the p(™) (), j = 0,...,m, in the
following way

P (1)
T (1) - In (p('r) (O)) p(‘r) (O)’
T n (T) m—1
wm) = o (50 O S )0 )
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Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Asymptotic properties of the estimators

Note that p(7) (m) can be expressed as a function of the 7 (j),

7 =1,...,m. But it is also possible to reverse the algorithm and to
evaluate recursively 7 (m) from the p(™) (), j = 0,...,m, in the
following way

p(T)(l)
7T(1) - (p ) (.,-) O)
n (p™ (0)) =t
wW)=ﬂ£me(HL%§@ ()7 (m =)

j=1

We deduce that there exist differentiable functions
fm : RPN\ {0} — R, such that

m(m) = frn (17 (0),#7 (1) ,p (m),  m21

Corollary: it suffices to construct an estimate of p{™) to have an
estimate of 7.
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Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Asymptotic properties of the estimators

Defining the estimators

We use the blocks declustering scheme: we divide [1, ..., n] into &,
blocks of length r,, I; = [(j — 1)rp + 1,...,5m] for j =1, ..., k,, and a
last block I, +1 = [rnkn +1,...,70].

We define
o the number of observations above the threshold u,, (7) within
the j-th block N7\ = ¥ ) (x5, (n)
@ the empirical distribution of the number of exceedances within a
block pii”) (1) = k1 35, T (v i)
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Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Asymptotic properties of the estimators

Defining the estimators

We use the blocks declustering scheme: we divide [1, ..., n] into &,
blocks of length r,, I; = [(j — 1)rp + 1,...,5m] for j =1, ..., k,, and a
last block I, +1 = [rnkn +1,...,70].

We define
o the number of observations above the threshold u,, (7) within
the j-th block N7\ = ¥ ) (x5, (n)
@ the empirical distribution of the number of exceedances within a

block pg) (i) = k,* Z?ll H{N(ﬂ ,:i};
Tn,J

We assume that F' belongs to the domain of attraction of the
generalized extreme value (GEV) distribution with index v € R, i.e.
there exist two functions a and b such that F' satisfies the relation

lim nF (a(n)z + b(n)) = (1 +~yz)~1/7.

n—oo
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Motivation and estimators
An approach based on Panjer’s algorithm Technical conditior

Asymptotic properties of the estimators

The threshold u,. (7) may be chosen as

Ur, (1) =7 (7" = 1) a(rn) +b(ryn).
An estimator of the level u,, (7) is given by

i, (1) = A0t (777 = 1) a(rn) +b(rn)

where 4, IS(M) and a (ry,) are suggested in Dekkers, Einmahl and de
Haan (1989).

Then we define the counterpart of Ni:)j, Py (7) where w,.,, (7) is
replaced by 4, (7) 1

k
(@ A6 7. 1 Z
N7 =Y Ixosanmp P00 =1 > Iz v
ielj n ]:1 T™n,J
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Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Asymptotic properties of the estimators

Finally we introduce the estimators of the limiting cluster size
distribution

() = £ (B0 (0,50 (1), (5)) -
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Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Asymptotic properties of the estimators

Finally we introduce the estimators of the limiting cluster size
distribution

#u () = 15 (P2 (0), 82 (1), 2P (7))

Let us derive several estimators of the extremal index. This key
parameter appears in different moments of the limiting distributions

Ng) and (3
(7) _ =0T __p-1
p'(0) =e" "7, E¢G =077, WN = 07E (G1)°.

Estimators of 6 can be constructed by equating approximately
theoritical moments to their empirical counterparts

1 s Y G- ()
S i () S 2R (G)

Oy, = fln( A1) (0)), by =

for some m > 1.
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Introduction Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Simulation study and conclusion Asymptotic properties of the estimators

Condition CO

Condition

The stationary sequence (X,) has extremal index 0 > 0. A (uy, (7))
holds for each T > 0 and there exists a probability measure
7= (7 (i));>1, such that for all i > 1,

7 (i) = lim P (NO (0qn/n)) = i| N (0 4a/n]) > 0),  (COa)

n—oo

for some A (uy, (7))-separating sequence (qn). Moreover there exists a
constant p > 2 such that for each 7 > 0

sup E (N,(f) (E))p < 0. (C0.b)

n>1
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Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Asymptotic properties of the estimators

Condition C1

Condition

Condition (C0) holds. A (uyn (11),un (72)) holds for each 7 > m >0
and there exists a probability measure 7, such that for all iy > iy > 0,

il Z 17
Jm P (Nv(fj) ((0: gn/n]) = i5: 5 = 1,2| NS ((0; g /n]) > 0)
= ™ (i1, 32),

for some A (uy, (11) , un (72))-separating sequence (q,).
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Motivation an stimators
An approach based on Panjer’s algorithm Technical conditions

Asymptotic properties of the estimators

Let us denote by (Ngl), Ng2)) the weak limit of
(N’r(LTl) (E), N (E)) as n — oo when it exists and by p(Tl’TZ) its
distribution. Then

97‘1 (97‘1

(N(ETI))N(ETZ)) 4 Z ClTZ/Tl Z C'rz/-rl

where ( Yf/ Tl), gf/ Tl)) is a sequence of iid integer vector rvs with

distribution 74/ ™ and 5 (671) is a Poisson rv with parameter 7
and is independent of the (C TZ/Tl ,C(TZ/Tl))

The distribution of (Ngl) , N](;z) ) is given by

P (0,0) = P(n(0n)=0)=e '

(rm) (5 Comm (071" (o) ek

P (i,5) = e ZT% (4,4) -
k=1
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Introduction Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Simulation study and conclusion Asymptotic properties of the estimators

Condition C2

Condition
Let € > 0. There exist two constants C > 0 and § > 6 such that

1 (11,00, ) < 1= cl—°-e, (C2.a)

for every choice of 1 > ... > 7. >0,r>1,n>1. (r,) is sequence
such that v, — oo and r,, = o(n). There exists a sequence (1)
satisfying
l,=o0 (rf/”) and lim nr;,ta;, =0, (C2.b)
n—oo
where v =26/ (6 — 3). There exists a constant v > 2v such that for
each 1 > 1 >0

sup B (N{™ () - N{T (E))7 < 0. (C2.)

n>1
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Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Asymptotic properties of the estimators

Condition C2

Condition

Let (CITZ/ iR éTZ/ ™™ be a vector rv with distribution '™ defined

in (Cl.a). There exists a positive constant Dy, such that
2v
E (3™ - {3/™)" < Doy (1= ma/m), (C2.d)

for every choice of 11 > m > 0.
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Introduction Motivation and estimators
An approach based on Panjer’s algorithm Technical conditions

Simulation study and conclusion Asymptotic properties of the estimators

Condition C3

Condition

There exist a function A, with lim, . A(n) =0, and a function L
such that
e (N,(f) (E) ,Ng>) <L(r)A(n). (C3.2)

There exist some constants & < 0 and a reqularly varying positive
function of index &, ©, with lim,_ © (n) =0, such that

im nE(b(n) + a(n)z) — (1 4 yz)~ /7
e o(n)

_K ((1 +’yac)1/7) , (C3.b)
locally uniformly for « € I,. The sequence () satisfies

lim koA (rn) = lim /k,© (1) = 0.
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Proposition
Suppose that (CO) holds. Let (ry,) be a sequence such that r, — oo
and r, = o(n).Then @, () Lt 7(7),j=1,....,m, and

-1
m m . 2 (1) %
A P A P y A P Z-:o(.? 1) p™ (4)
ol,n i 93 92,71 - Jm (J) ) 93,71 - J m . "
; Zj:ljzﬂ' (4)
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Asymptotic properties of the estimators

Proposition
Suppose that (CO) holds. Let (ry,) be a sequence such that r, — oo
and r, = o(n).Then @, () Lt 7(7),j=1,....,m, and
- S =170 )

m _ 1 .

. . A P 7=0 J J

Jm(G) ] 5 O3n— :
Z Zj:l 727 (5)

~ P ~ P
ol,n = 93 92,71 -

Let us introduce the multivariate empirical process

B (1) = (00 (1) s emn (1) 80 (1)), 7>0,

where

Vi (00 () - P (ND; =1)),
en(r) = Vha (ﬁ£:>frnP(Xz->um(v)>),

ein (T)

oo kn Tnkn
A = a0 = 2N = 3 o
i=1 moj=1
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Asymptotic properties of the estimators

Let B > 1 and D(™ (0, B) be the space of functions from (0, B) to
R™ which are left continuous and have right limits at each point,
equipped with the Skorohod’s Ji-topology.

Theorem
Suppose that (C1) and (C2) hold. There exists a pathwise continuous
centered Gaussian process Ep, with covariance function

C(Bm (11), Bm (12)) = VU™ (11, 72)

which can be expressed as a function of T, T, p{™), p(™), pgﬁ’n), T,

ﬂén/ﬁ), 0, such that Ep, n = E,, weakly in plm+2) (0, B).
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Theorem
Suppose that (C1), (C2) and (C3) hold. Then

Ve (5 G) =29 (7))
Ejy1m () = i () ()7 x
- (v‘l ((')‘” - 1) A+B+y2 (1 — ()7 (@ +~n ('))) r)

in D™ (0, B), where h; (1) = 0p{™) () /0T, Ejm is the j-th

component of Ey, and A, B, T depend on v and (Em11,m (7))gcr<1 -
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Theorem
Suppose that (C1), (C2) and (C3) hold. Then

Vi (55 () = 29 ()
S ( Bjam ()= by () ()7 x )
(7 (7 =) A+ B+r2 (1= ()7 @+ (D))

in D™ (0, B), where h; (1) = 0p{™) () /0T, Ejm is the j-th

component of Ey, and A, B, T depend on v and (Em11,m (7))gcr<1 -

Corollary
Suppose that (C1), (C2) and (C3) hold. Then

Vi (B0 G) -0 () SN (o,m™),

where M) can be expressed as a function of p!), 7.
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Asymptotic properties of the estimators

Let A = b3/ (i () = 7 (), £ = (1o fn) and
V™ = (0£;/0pi-1)1<icmir1<j<m

Corollary
Suppose that (C1), (C2) and (C3) hold. Then

A % N (0, P(m)) :

where P(M) = (Vf(m))/ MMy f(m),
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Corollary
Suppose that (C1), (C2) and (C3) hold. Then

\/E(él,n—e) 4N 0,69—29—1+93§:j27r(j) :

=1

. 1 Al PM A
\/E 2n — ﬁ) i’ N 07 % ;
- (Zj:l JTn (]))

NS <A3,n _ it (i_i) pfl) (J)) LN (O,B;nM(m)Bm) ,
(

l— 1 (1 m 8f
N 12 (1) j—1 ? Zl 2 (m p l2 l
IO N KA SV Zap]
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Simulated processes

Simulation study and conclusion

Simulation study

500 sequences of length 2000 were simulated from the three processes:

@ an ARCH(1) process: X,, = (n+ AX,—1) Z2, n > 2, where Z,
are iid standard Gaussian rvs, n = 2.1072, A = 0.5 and X; = 0.
m(1)=0.751 7 (2)=0.168 = (3)=0.055
7 (4)=0.014 = (5)=0.008 6=0.727.

@ a max-autoregressive process: X, = max{(1 —0) X,,_1, W, },
n > 2, where W,, are independent unit Fréchet rvs, 8 = 0.5 and

X1 =W4/6.
7(1)=05  7(2)=025 (3)=0.125
m(4) =0.0625 w(5)=0.031 6 =0.5.
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Simulation study and conclusion

@ an AR (1) process with uniform marginal: X, =r"1X,,_1 + &p,
n > 2, where (g,) are iid and uniformly distributed on
{0,1/r,....,(r — 1) /r}, r = 4 and X; is uniformly distributed on
(0,1).
m (1) =0.75 7m(2) =0.1875 7 (3) = 0.0469
7(4) =0.0117 7 (5)=0.0029 6 =0.75
To smooth the discontinuity effect due to the blocks declustering

scheme, we computed averages over the estimates corresponding to
different block sizes. Morover, we considered the ratios 7, (¢) /7 (2),

i=1,...,5 and éj,n/e, j=1,..,3 to compare the performance of the
estimators for the three processes.

Legend: ARCH (1) process (——), max-AR (1) process (- - - ), AR(1)
process (- - - -).
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