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In the last 5 years or so a large number of pub-

lications have studied various models for com-

munication networks in order to explain the

empirical findings of long memory and scaling

in such networks.

W. Willinger, M.S. Taqqu, R. Sherman and

D. Wilson (1995) “Self–similarity through high

variability: statistical analysis of ethernet LAN

traffic at the source level”

V. Pipiras and M. S. Taqqu (2002) “The limit

of a renewal reward process with heavy-tailed

rewards is not a linear fractional stable motion”

T. Mikosch, S. Resnick, H. Rootzén and A.W.

Stegeman (2002) “Is network traffic approx-

imated by stable Lévy motion or Fractional

Brownian motion?”

1



Most of the models considered are based either

on various renewal arrival processes, with var-

ious rules for the amount of work each arrival

brings.

We are suggesting an intuitive cluster arrival

model that has been used before, but, appar-

ently, not in the communication network con-

text.

In this model we assume that the first packet

in each cluster (flow) arrives at the points Γj

of a rate λ Poisson process on IR.

Each flow then consists of several packets, which

arrive at the times Yjk = Γj + Sjk, where for

each j

Sjk =
k
∑

i=1

Xji , 0 ≤ k ≤ Kj .
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(Xji) are iid non-negative random variables

(Kj) are iid integer-valued random variables.

We assume that (Γj), (Kj) and (Xji) are mu-

tually independent.

Let N(a, b) denote the number of packets ar-

riving in the interval (a, b] for a < b and N(t) =

N(0, t), t > 0.

Some of the questions:

• Is N(t) finite with probability 1?

• What are the tails of the number of arrivals

in a finite interval?

• What are the correlations between the num-

bers of arrivals in intervals of the same

length but far apart?

• What are the scaling limits for such a model?
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Claim 1. A necessary and sufficient condition

for N(t) < ∞ with probability 1 for some t > 0

is EK < ∞. Under that assumption

EN(t)p < ∞ for all t > 0 and p > 0.

That is, the number of arrivals in any interval

of finite length has light tails.

To study the length of the memory in the

packet arrival process we consider the station-

ary process

N((h, h + 1)), h = 0,1,2, . . .

of arrivals in consecutive intervals of unit length.

Let γN(h) = cov(N(0,1], N(h, h + 1]) be the

covariance function of this process.
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Claim 2.
∫ ∞

0
γN(h) dh < ∞ if and only if EK2 < ∞.

The divergence of the integral is often taken

is an indication of long range dependence.

In this sense, presence or absence of long mem-

ory in the arrivals of a cluster process depends

only on the cluster size K, but not on the in-

cluster interarrival time X.

To know more about the rate of decay of the

covariance function one does need to have in-

formation about the in-cluster interarrival times.
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If EK2 = ∞ then the actual rate of decay of

the covariance function depends on the tail of

K, and on in-cluster interarrival time distribu-

tion.

Here is one possible situation.

Theorem 1. Assume that P(K > k) is reg-

ularly varying with index α ∈ (1,2) or α = 1

and EK < ∞. Assume also that X has a non-

arithmetic distribution and EX < ∞. Then

γN(h) ∼ λ(EX)α−2
∫ ∞

h
FK(y) dy

∼ λ(EX)α−2 1

α − 1
h FK(h) , if α > 1

as h → ∞.
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The ergodicity of the stationary point process

N immediately implies that the number of ar-

rivals N(t) grows roughly linearly with t:

N(t)

t

a.s.
→ λ (EK + 1) , t → ∞

However, the deviations of the number of ar-

rivals from the straight line may look differently

depending, mostly, on the cluster size distribu-

tion.

Theorem 2. Assume EK2 < ∞. Then N

satisfies the functional central limit theorem






N(rt) − λrt(EK + 1)
√

λrE[(K + 1)2]
, 0 ≤ t ≤ 1







⇒ (B(t) , 0 ≤ t ≤ 1) , as r → ∞

in terms of convergence of the finite-dimensional

distributions, where (B(t) ,0 ≤ t ≤ 1, ) is the

standard Brownian motion.
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On the other hand, if EK2 = ∞, then the tail

of K affects the limit, and, as usual, the regular

variation of the tail is associated with a stable

limit.

Theorem 2. Assume that P(K > k) is regu-

larly varying with index α ∈ (1,2). Assume also

that EX < ∞. Then N satisfies the functional

central limit theorem:
(

N(rt) − λrt(EK + 1)

Θ(r)
, 0 ≤ t ≤ 1

)

⇒ (Lα(t) , 0 ≤ t ≤ 1) , as r → ∞

in terms of convergence of the finite-dimensional

distributions, where Θ : (0,∞) → (0,∞) is a

nondecreasing function such that

lim
r→∞

r P(K > Θ(r)) = 1

and (Lα(t) ,0 ≤ t ≤ 1, ) is a spectrally positive

α-stable Lévy motion with Lα(1) ∼ Sα(σα,1,0),

with σα > 0.
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How long is the length of each cluster?

The answer to this question is of importance

for various structural properties of the cluster

process, in particular for its dependence struc-

ture.

Obviously,

SK =
K
∑

i=1

Xi .

Under what conditions is SK regularly varying?

We start with the case when X has heavier tail

than K.

Proposition 1. Assume that P(X > x) is

regularly varying for some α > 0, EK < ∞ and

P(K > x) = o(P(X > x)). Then, as x → ∞,

P(SK > x) ∼ EK P(X > x) .
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Perhaps more natural in applications to com-

munication networks is the situation where the

tail K has heavier tail than X.

Proposition 2. Assume P(K > k) is regularly

varying with index β ≥ 0. If β = 1, assume that

EK < ∞. Moreover, assume that EX < ∞ and

P(X > x) = o(P(K > x)). Then, as x → ∞,

P(SK > x) ∼ P(K > (EX)−1 x)

∼ (EX)β P(K > x) .

Interestingly, the statement of the proposition

fails, in general, in the case β = 1 and EK =

∞, but will still hold under even stronger as-

sumptions on X.
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The reverse problem: what causes regularly

varying tails of the cluster length?

First a a situation where K has a sufficiently

light tail.

In that situation it turns out that the tail of X

must be regularly varying of the same order as

that of SK.

Proposition 3. Assume P(SK > x) is regularly

varying with index α > 0 and EKmax(1,α+δ) <

∞ for some positive δ. Then P(X > x) is

regularly varying with index α and

P(SK > x) ∼ EK P(X > x)

.
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What happens if the tail of X is sufficiently

light?

Than the tail of K must be regularly varying

of the same order as that of SK.

Proposition 4. Assume P(SK > x) is regularly

varying with index α > 0. Suppose that EX <

∞ and P(X > x) = o(P(SK > x)) as x → ∞.

In the case α = 1 and ESK = ∞, assume that

xP(X > x) = o(P(SK > x)) as x → ∞. Then

K is regularly varying with index α and

P(SK > x) ∼ (EX)α P(K > x) .

Again, the case α = 1 and infinite mean is

special.
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Statistical issues

To fit a cluster model to data it useful to know

the stationary (Palm) distribution of the inter-

arrival times. This can be computed explicitly:

F0(t) =: P0(T1 > t) =

1

EK + 1
(1 + EKP(X > t))

exp

{

−λ(t + EK

∫ t

0
P(X > x) dx)

}

.
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