Practical Issues in Applications of Multivariate Extreme Values

Jonathan Tawn

with

Caroline Keef and Mark Latham

Lancaster, UK

Two Applications

• Sea-surge data

Modelling of surge process over space for joint flood risk assessment for coastal sites and for offshore sites needed for insurance industry

Two Applications

• Sea-surge data

Modelling of surge process over space for joint flood risk assessment for coastal sites and for offshore sites needed for insurance industry

• River flow data

Modelling of river flow for network for joint flood risk assessment for planning purposes and insurance

Surge Data

Hindcast output from the CSX model, a 2d numerical surge model for the European Continental Shelf forced by DNMI pressure data for the period 1955-2000

Data are: hourly maxima over 5-day blocks for 46 years at 259 sites

River Flow Data

Daily river flows for a network of sites in River Thames catchment in UK

Marginal Standardisation and Notation

X: univariate variable of most interest

Y: d-dimensional variable

Transform marginals to Gumbel distributions

$$\Pr(X > x) = \Pr(Y_i > x) \sim \exp(-x)$$
 as $x \to \infty$ for $i = 1, ..., d$

Lack of Memory Property

$$\Pr(X > t + x) \sim \exp(-t) \Pr(X > x)$$
 for large x

Allows focus on dependence structure

Standardisation for Surge Data

A large surge event on the Danish coast in original and transformed margins

What is the Aim of Analysis?

Sea-surge data
 Simulation of surge events large at a given location
 Estimation of spatial risk measure

$$E(\#\{Y > x\} \mid X > x)$$

Dimension reduction for physical understanding

What is the Aim of Analysis?

Sea-surge data
 Simulation of surge events large at a given location
 Estimation of spatial risk measure

$$E(\#\{\mathbf{Y}>x\}\mid X>x)$$

Dimension reduction for physical understanding

• River flow data Estimation of $Pr(Y > x \mid X > x)$

Schematic of Threshold Approach

Under assumption of asymptotic dependence

$$\lim_{X\to\infty} \Pr(Y>x\mid X>x)>0$$

the following homogeneity property holds for all sets *A* extreme in at least one variable

$$\Pr((X, \mathbf{Y}) \in t + A) \approx \exp(-t) \Pr((X, \mathbf{Y}) \in A)$$

Is Surge Process Asymptotically Dependent?

X: Danish Site

Is Surge Process Asymptotically Dependent?

X: UK Site

Sites Significant on Testing for Asymptotic Dependence

X: Danish Site

 Θ * * Θ Θ Θ * Θ Θ * 000000000000 000000000000000 $\Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta$ 0000000000 00000000000000 00000 $\Theta \Theta \Theta \Theta \Theta \Theta$ $\Theta \Theta \Theta \Theta$ $\Theta \Theta \Theta \Theta$

North

Sites Significant on Testing for Asymptotic Dependence

X: UK Site

 $\Theta \Theta \Theta \star \Theta \Theta \Theta \Theta \Theta$ 0000000 00000000 000000 000 * 0000 * 🗵 🗇 😥

North

Problems for River Flow Application Plot of data availability for Thames catchment sites

Regression Interpretation of Threshold Method

For
$$X > u$$

$$\mathbf{Y} = X + \mathbf{Z}$$

where Z is independent of X

$$\hat{\Pr}((X, \mathbf{Y}) \in t + A) = \exp(-v) \int_{v}^{\infty} \frac{1}{m} \sum_{i=1}^{m} 1_{\{(x, x + \mathbf{z}_{i}) \in t + A\}} \exp(-x) dx$$

Extension of Regression/Conditional Method

Heffernan and Tawn (2004,JRSS B) For X > u

$$Y = aX + X^bZ$$

where Z is independent of X d-dimensional parameters $0 \le a \le 1$ and b Nonparametric model for Z

Theoretical Examples

$$Y = aX + X^bZ$$

Asymptotic Dependence

$$a = 1$$
 and $b = 0$

Asymptotic Independence with Y_i

$$a_i < 1$$

Multivariate Normal Copula

$$a_j = \rho_j^2 \text{ and } b_j = \frac{1}{2} \text{ for } j = 1, \dots, d$$

Estimates of a

X: Danish Site

Estimates of a

X: UK Site

Which Sites are Asymptotically Dependent?

Test
$$a_i = 1, b_i = 0$$

X: Danish Site

0 * * 0 0 0 * 0 0 * 00000000000 00000000000000 $\Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta$ 0000000000 00000000000000 000000 00000 $\Theta \Theta \Theta \Theta$ $\Theta \Theta \Theta \Theta$

North

Search for Parsimonious Model

Dimension of model parameters currently $259 \times 258 \times 2$ Dimension Reduction helpful/insightful

Search for Parsimonious Model

Dimension of model parameters currently $259 \times 258 \times 2$

Dimension Reduction helpful/insightful How many sites do we need to condition on to get all sites asymptotically dependent on a conditioning site?

Search for Parsimonious Model

Dimension of model parameters currently $259 \times 258 \times 2$

Dimension Reduction helpful/insightful How many sites do we need to condition on to get all sites asymptotically dependent on a conditioning site?

Parsimonious Spatial Model

Partition $(X, Y) = (X_C, Y_C)$ where X_C the six conditioning sites Y_C the remaining sites

Then

$$[\mathbf{X}_C, \mathbf{Y}_C] = [\mathbf{X}_C][\mathbf{Y}_C \mid \mathbf{X}_C]$$

where $[X_C]$ is low dimensional, and $[Y_C \mid X_C]$ is simpler due to asymptotic dependence property

Extremes for $[Y_C]$ only arise when $[X_C]$ is extreme in at least only component

Spatial Risk Measure

 $E(\#\{Y>x\}\mid X>x)$ where x is the 97% quantile Comparison of empirical, global model, parsimonious model

Extrapolation of Spatial Risk Measure

 $E(\#\{Y>x\}\mid X>x)$ where x is the 97% and 99.9% quantiles for global model

Simulated Fields on Original Scale

Exceeds 1000 year level on Danish coast site

Simulated Fields on Original Scale

Exceeds 1000 year level on UK coast site

Partition $Y = (Y_M, Y_O)$ where Y_M missing; Y_O observed Also $Z = (Z_M, Z_O)$

Then need to model $[Z_M \mid Z_O]$

Approach is:

Partition
$$Y = (Y_M, Y_O)$$
 where Y_M missing; Y_O observed Also $Z = (Z_M, Z_O)$

Then need to model $[Z_M \mid Z_O]$

Approach is:

• Transform margins

$$\boldsymbol{\mathsf{Z}}^{N} = \boldsymbol{\mathsf{T}}(\boldsymbol{\mathsf{Z}}) = \boldsymbol{\Phi}^{-1}(\hat{\boldsymbol{\mathsf{F}}}(\boldsymbol{\mathsf{Z}}))$$

Partition $Y = (Y_M, Y_O)$ where Y_M missing; Y_O observed Also $Z = (Z_M, Z_O)$

Then need to model $[Z_M \mid Z_O]$

Approach is:

• Transform margins

$$\boldsymbol{\mathsf{Z}}^{N} = T(\boldsymbol{\mathsf{Z}}) = \boldsymbol{\Phi}^{-1}(\hat{F}(\boldsymbol{\mathsf{Z}}))$$

Model dependence by MVN copula

$$\begin{pmatrix} \mathbf{Z}_{M}^{N} \\ \mathbf{Z}_{O}^{N} \end{pmatrix} \sim \text{MVN} \begin{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \end{pmatrix}$$

Partition $Y = (Y_M, Y_O)$ where Y_M missing; Y_O observed Also $Z = (Z_M, Z_O)$

Then need to model $[Z_M \mid Z_O]$

Approach is:

• Transform margins

$$\boldsymbol{\mathsf{Z}}^{N} = \boldsymbol{\mathsf{T}}(\boldsymbol{\mathsf{Z}}) = \boldsymbol{\mathsf{\Phi}}^{-1}(\hat{\boldsymbol{\mathsf{F}}}(\boldsymbol{\mathsf{Z}}))$$

Model dependence by MVN copula

$$\begin{pmatrix} \mathbf{Z}_{M}^{N} \\ \mathbf{Z}_{O}^{N} \end{pmatrix} \sim \text{MVN} \begin{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \end{pmatrix}$$

• Take a sample from this conditional distribution $[\hat{\mathbf{Z}}_{M}^{N} \mid \mathbf{Z}_{O}^{N}]$

Partition $Y = (Y_M, Y_O)$ where Y_M missing; Y_O observed Also $Z = (Z_M, Z_O)$

Then need to model $[Z_M \mid Z_O]$

Approach is:

• Transform margins

$$\boldsymbol{\mathsf{Z}}^{N} = \boldsymbol{\mathsf{T}}(\boldsymbol{\mathsf{Z}}) = \boldsymbol{\mathsf{\Phi}}^{-1}(\hat{\boldsymbol{\mathsf{F}}}(\boldsymbol{\mathsf{Z}}))$$

Model dependence by MVN copula

$$\begin{pmatrix} \mathbf{Z}_{M}^{N} \\ \mathbf{Z}_{O}^{N} \end{pmatrix} \sim \text{MVN} \begin{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \end{pmatrix}$$

- Take a sample from this conditional distribution $[\hat{\mathbf{Z}}_{M}^{N} \mid \mathbf{Z}_{O}^{N}]$
- Back transform sample and downweight values in sample $\hat{\mathbf{Z}}_M = T^{-1}(\hat{\mathbf{Z}}_M^N)$

Example of Handling Missing Data

Joint distribution model for $\mathbf{Z} = (Z_1, Z_2, Z_3)$ with infilled sample to replace missing Z_3 values

Extrapolation with Missing Data

Recall conditional model is for X > u

$$Y = aX + X^bZ$$

Extrapolation: simulate X > v and independently simulate **Z** then join as above to give Y

Simulation Study to Assess Infill Method

Consider 3 different patterns of missingness with

$$X : Full data; Y_1 : 50\%; Y_2 : 90\%; Y_3 : 80\%;$$

9 true distributions of Z

Methods:

Use overlapping data only ★ Infill method ○

Compare Estimators of:

$$P_i = \Pr(Y_i > x \mid X > x) \text{ for } i = 1, 2, 3$$

by RMSE efficiency relative to the Full Data case

Efficiency Results for Handling Missing Data

Results for P_1, P_2, P_3 respectively

The infill method does well!

