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Two Applications

• Sea-surge data
Modelling of surge process over space for joint flood risk
assessment for coastal sites and for offshore sites needed
for insurance industry

• River flow data
Modelling of river flow for network for joint flood risk
assessment for planning purposes and insurance
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Surge Data

Hindcast output from the CSX model, a 2d numerical surge
model for the European Continental Shelf forced by DNMI
pressure data for the period 1955-2000

Data are: hourly maxima over 5-day blocks for 46 years at
259 sites



River Flow Data

Daily river flows for a network of sites in River Thames
catchment in UK
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Marginal Standardisation and Notation

X : univariate variable of most interest
Y: d-dimensional variable

Transform marginals to Gumbel distributions

Pr(X > x) = Pr(Yi > x) ∼ exp(−x) as x →∞ for i = 1, . . . , d

Lack of Memory Property

Pr(X > t + x) ∼ exp(−t) Pr(X > x) for large x

Allows focus on dependence structure



Standardisation for Surge Data

A large surge event on the Danish coast in original and
transformed margins
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What is the Aim of Analysis?

• Sea-surge data
Simulation of surge events large at a given location
Estimation of spatial risk measure

E (#{Y > x} | X > x)

Dimension reduction for physical understanding

• River flow data
Estimation of Pr(Y > x | X > x)
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Schematic of Threshold Approach

Under assumption of asymptotic dependence

lim
x→∞

Pr(Y > x | X > x) > 0

the following homogeneity property holds for all sets A
extreme in at least one variable

Pr((X ,Y) ∈ t + A) ≈ exp(−t) Pr((X ,Y) ∈ A)
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Is Surge Process Asymptotically Dependent?

X : Danish Site
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Is Surge Process Asymptotically Dependent?

X : UK Site
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Sites Significant on Testing for Asymptotic Dependence

X : Danish Site
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Sites Significant on Testing for Asymptotic Dependence

X : UK Site

East

N
or

th

* *
* * * * * * * * *
* * * * * * *
* * * * * * * * * *

* * * * * * * *
* * * * * * * * *

* * * * * * * *
* * * * * * * * *
* * * * *

*
*

*

*

O O O
O O O O O O
O O O O O O O O O

O O O O O O O O
O O O O O O O O O

O O O O O O O O
O O O O O O O O

O O O O
O
O

O

O

*



Problems for River Flow Application

Plot of data availability for Thames catchment sites

Year
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Regression Interpretation of Threshold Method

For X > u
Y = X + Z

where Z is independent of X

P̂r((X ,Y) ∈ t + A) = exp(−v)

∫ ∞

v

1

m

m∑
i=1

1{(x ,x+zi )∈t+A} exp(−x)dx
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Extension of Regression/Conditional Method

Heffernan and Tawn (2004,JRSS B)
For X > u

Y = aX + X bZ

where Z is independent of X
d-dimensional parameters 0 ≤ a ≤ 1 and b
Nonparametric model for Z
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Theoretical Examples

Y = aX + X bZ

Asymptotic Dependence

a = 1 and b = 0

Asymptotic Independence with Yj

aj < 1

Multivariate Normal Copula

aj = ρ2
j and bj =

1

2
for j = 1, . . . , d



Estimates of a

X : Danish Site
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Estimates of a
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Which Sites are Asymptotically Dependent?

Test aj = 1, bj = 0

X : Danish Site
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Search for Parsimonious Model

Dimension of model parameters currently 259× 258× 2

Dimension Reduction helpful/insightful

How many sites do we need to condition on to get all
sites asymptotically dependent on a conditioning site?
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Parsimonious Spatial Model

Partition (X ,Y) = (XC ,YC ) where
XC the six conditioning sites
YC the remaining sites

Then
[XC ,YC ] = [XC ][YC | XC ]

where [XC ] is low dimensional, and
[YC | XC ] is simpler due to asymptotic dependence property

Extremes for [YC ] only arise when [XC ] is extreme in at least
only component



Spatial Risk Measure

E (#{Y > x} | X > x) where x is the 97% quantile

Comparison of empirical, global model, parsimonious model
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Extrapolation of Spatial Risk Measure

E (#{Y > x} | X > x) where x is the 97% and 99.9%
quantiles for global model
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Simulated Fields on Original Scale

Exceeds 1000 year level on Danish coast site
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Simulated Fields on Original Scale

Exceeds 1000 year level on UK coast site
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Handling Missing Data for River Flows

Partition Y = (YM ,YO) where YM missing; YO observed
Also Z = (ZM ,ZO)

Then need to model [ZM | ZO ]

Approach is:

empty

• Transform margins

ZN = T (Z) = Φ−1(F̂ (Z))

• Model dependence by MVN copula(
ZN

M

ZN
O

)
∼ MVN

((
0
0

)
,

(
Σ11 Σ12

Σ21 Σ22

))
• Take a sample from this conditional distribution
[ẐN

M | ZN
O ]

• Back transform sample and downweight values in
sample ẐM = T−1(ẐN

M)
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[ẐN

M | ZN
O ]

• Back transform sample and downweight values in
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[ẐN

M | ZN
O ]

• Back transform sample and downweight values in
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Example of Handling Missing Data

Joint distribution model for Z = (Z1,Z2,Z3) with infilled
sample to replace missing Z3 values
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Extrapolation with Missing Data

Recall conditional model is for X > u

Y = aX + X bZ

Extrapolation: simulate X > v and independently simulate Z
then join as above to give Y
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Simulation Study to Assess Infill Method

Consider 3 different patterns of missingness with

X : Full data;Y1 : 50%;Y2 : 90%;Y3 : 80%;

9 true distributions of Z

Methods:
Use overlapping data only ?
Infill method ◦

Compare Estimators of:

Pi = Pr(Yi > x | X > x) for i = 1, 2, 3

by RMSE efficiency relative to the Full Data case



Efficiency Results for Handling Missing Data

Results for P1,P2,P3 respectively

The infill method does well!
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