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1. Introduction
X = (X17X27 T 7Xd) ~ G(X)a X € Rda

where G is a multivariate extreme value distribution
function. WOLOG with Fréchet margins: for all j

Gj(z) = exp{—1/z} (= >0)
and exponent function
A(X) — — |Og G(X)a
Gl(tx) = G(x) = tA(tx) = A\(x), (¢t > 0).
Since for MEVD

d
,Min, Gyleg) 2 Gx) 2 j£[1 Gj(x;),

in our case

1 1
max — < A(x) <) —.
L T

(complete dependence) (total independence)



The homogeneity of X implies that A(tz)/Z(tz;) "1
does not depend on t. Define the (generalized)
Pickands dependence function

A(v) = )\(vl_l,vz_l,--- ,v(zl) v € Q,

where Q={v :v; >0, Zv; =1}

IS the unit-simplex. It follows that

1
p < Ap(v) =: maxv; < A(v) <1,

A(x) = A(v)=a; 1,

1 —1
where v; = x; /X, "

1 1
:A(_,...,_>
i d d

has an interesting interpretation:

P {12?§><de < z} = exp{—-A(z,z,---,2)}

= exp{—dn/z} = {exp{-1/z}}™.



Hence, 0 = dn is the extremal coefficient of
(X17 X27 toe 7Xd)'

0 =1 < complete dependence

0 = d < total independence

Schlather and Tawn (2002) analyse 8 = |B|ng for
all 2¢ possible subsets B of {1,2,---,d}.

From de Haan and Resnick (1977) and Pickands
(1981)

A(v) = /Q maxv;a;U(da)

for a finite positive measure U,
U(Q) = d and /QajU(da) — 1 for all j.
The function A is convex because for 0 < a < 1,

max{(av; + (1 — a)wj)a;}

< amaxvja; + (1 — a) maxw;a;.
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Pickands dependence function for the Logistic Model
A() = (w2 4 (1 — v) /) with
o =0, .25, .50, .75, 1.

2. Measures of Dependence: Rescaling n, a
natural measure of dependence is

1—A(%,--- %)
maxA{l—A&,--- ,%)}

T —




d—0 d
= = (1 —
i1 g1 ™

An alternative measure is

= Jo(1 — A(v))dv
max 4 Jo(1l — A(v))dv

_ Jo@@ —AM)dv _ S4(A)
Jo(1 —Ag(v))dv  S;(Ag)

Which one is preferred?
Similar question: mode vs. mean.
Expect from dependence measure that for

A=aApg+ (1 —a)-1

— T = .

Indeed, for this mixture model

T1 = T = Q.



To compute ™ we need a formula for SAO, the
volume above Agp:

d S Aq

2| 1/4 = .2500
3|7/36 =.19444
4 .07986

5 02264

Until very recently the challenge was to find a
formula for S;(Ag). My colleague Shmuel Onn

derived and proved

Sqa(Ag) = ﬁ — %

where
1 1 1
Bd:(1+§+§+"'+3)

is the harmonic sum.



Other (bivariate) measures of dependence:

In the literature (Beirlant et al, 2004) we encounter

7 = Kendall's tau = 4EC(G1(X1),G2(X5)) — 1,
pPsS = Spearman’s rho = COT’/‘(Gl(Xl), GQ(XQ)),

p = corr(10g G1(X1),109 G2(X5)).

Tawn (1988) mentioned 1 for d = 2. I have not
seen 7». T hese are all marginal-free and for mixture
distributions (not mixture exponents):

e ={ ) e L

U, V independent,

TR =ps=p=a



3. Examples.

Let V1,V5,--- be i.i.d. unit-Fréchet.

Mixture model: For 0 < a <1

AMz,y) = amax(z Ly ™ D+ (1 —a)@t+y1).
That is

X = max(aVq, (1 —a)Vs)
Y = max(aVy, (1 — a)Va).

A(w) =amax(v,1 —v)+ (1 —«a)-1 (v e [0,1]).

_ > 3a <
KPPy =T, ="
O=T]=T2| pPS |TK =P
0 0 0
1/4 1/5 | 1/7
1/2 3/7 | 1/3
3/4 9/13| 3/5
1 1 1
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Mixed model:
(87
_ _|_ _
y Tty

Alw) =1 —a(l —v)v

0" 2
=5, T2= g0
8tan~1(a/(4 — a))1/?
TK = 1/2 15 2
al/ (4 — ) /
. 8tan " 1(a/(4 — a))1/2 2_—q
T al/2(a— )32 4 _ o
8tan~1(a/(8 — a))1/? 1
ps = 12 1/2 52 T -3
at/4(8 — a) 8 — «
o TK P 71 PS 72
0 0 0 0 0 0]
25 1.0877 | .0901 | .1250|.1299 | .1667
.50 (.1853].1958 | .2500 | .2702 | .3333
75 1.2947 | .3215 | .3750 | .4222 | .5000
1 |.4184 | .4728 | .5000 | .5874 | .6667
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de Haan - Resnick model.

1
M@y, 2) = S{max(z~ Ly + max(e L, 271

+ max(y~ 1,271}

i
|

= max(Vy,V2)/2

>
N
|

= max(V1,V3)/2

X3 = max(Vp,V3)/2

1
A(v) = E{max(’Ula vo) + max(vy,v3) + max(vo,v3)}

n=A(1/3,1/3,1/3) =1/2, 71 = (3/2)(1 —n) = 3/4

36 1 9
rp= 2.2 =2 — 642857
7 8 14
m1(1,2) = 7m>(1,2) =1/2

(Introducing X3 to the system increases the
dependence)
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Non-symmetric model.
X1 = max(Vy/2,Vs/4,V3/4)
Xo = max(2V71/3,V»/3)
X3 =1V3
A(v) = max(.75v1,v5) + max(.25v1, v3)
(v1 +v2+v3=1)
n=2/3, 11 =1/2, ™ =(36/7).104762 = .53876
7(1,2) =3/4=.75 15(1,2) =6/7 = .85714

7(1,3) =1/4=.25 15(1,3) =4/10= .4
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4. Relations between ;1 and 7.

Theorem. Ford =2, 1 <.

N 7
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Proof. Denote 1 —h = A(1/2,1/2)),

= 1 = 2h.

Define the mixture model (green graph)

A*(v) =11 Ap(v) + 1 — 11,
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= T =T1="Th.

Since A is convex, A < A*(= at (1/2,1/2)),

Ja-az= [ a-49=m | 1-40

_ Jo(1—-A) >
Jo(1—Ag) — ©

T2

This is a perfect proof for d =2. For d > 3, the
picture is misleading, namely, A < A* is not

necessarily true. Here is a counter example: de
Haan-Resnick model.

For vy > vp > v3, v +vp+v3=1,

3 1
A(V) = vy + %2 A*(v) = o+

Since v > vz < vy > (1 —wv1)/2,
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1 1 1
A(v) — A* — 14+ o — = >0
(v) (v) 4?}1 2v2 220

with equality when v > 1/3, Vp = v3 = (1 — ?)1)/2.

For the logistic model
A(v) = (o)™ + v/ * 4 03/,

A(1/3,1/3,1/3) = 3% 1,

a |T1=@38-3%/2|m=[o(1—-A)36/7
0 1 1
1/4 8420 9457
1/2 6340 7670
3/4 3602 4559
1 0 0
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For d = 2, how big can the difference m» — 71 be?
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Consider all (symmetric, d = 2) models for which

A(1/2) =1 — h so that m = 2h.
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All the A functions must be bounded between the
green graph and the red one. The green graph
corresponds to a mixture model with

a=2h = T1 =— T2.

X1 = max(2hV1,(1 — 2h)V5)

Xo = max(2hV1, (1 — 2h)V3).

The red A corresponds to " cross over’ model:
X1 = max(hVy,(1 —h)Vs)

X2

max((1 — h)V7, hV5)
for which
M =2h T=4h(l—h)=1-(1-1)°

1
max (7> — ==
2 (10 — 71) 1

occursat h=1/4, 11 =1/2, ™ =3/4.

18



To be fair, one could hold the area (volume)
constant (i.e. m) and let 71 vary. For instance, all

triangles with height A have
> =2h, (0<h<1/2)

but

h
EST]_SQ]’L:TQ.

h=1/4, 1/3<7<1/2=rmp.
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Combining two models.
X = (X].)"' 7Xk)7 Y = (Yla"' 7Ym)
are combined into
Z:(X]_,"',Xk,Y]_,"',Ym), k_l_m:d

To study the dependence measures of Z we must
know the dependence between X and Y. If they are
independent we can compute 71 and 7 :

A(v) = tA1(u) + (1 —t)Ax(w) (v € €2y),

t=vi+---+v, ue,, wepy,

Uk+1

v; . .
u=—, 1<:1<k, w;= 1 <2 <m.
(/ t — — 1 (1 —t) —_ =
The Jacobian of the transformation
(Ula"' ,’Ud_]_) = (t,’U,]_,"' y U —1,W1, " 7wm—1)
is J =tk —m-1

1-A=t(1-A1)+Q-t)(1-Ap)

20



S(A) = /Qd(1 —AV))dy =

1 k—1 1
:/ / (1 — A)dudwt*~1(1 — )™ 1a

_ 1 1 k m—1

= 1)!/0 F =™ e (1= Ar()du

s 1)'/ =11 —t)mdt/ (1 — Ax(w))dw
Z_:Sk(AO)TQ 1+ —Sm(Ao)TQQ

—5=B —B
™ = =21 + T prT2,2

where

1 1 1
By=1+_+_++.
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For Kk = m = 2,
6

Ty = E(TQ 1+ 12.2).

Similar, even simpler, is the treatment of 7q:

1 Nk /1 N m 1 1
AlZ.... 2y ="A,(=2.... = LA (=
(d’ ’d) d 1(k’ ’k)+d Q(m’ ’m>

k k—1 m m—1
£ ) 43 (- )

k d m
T1 =k:—%71,1+ T 1712
For k=m =2
1
1= 3 (71,1 +T1,2)

Note, the sums of the weights are not equal to 1 but
tend to 1 as k, m both tend to oc.

The results here are lower bounds for 71, ™
when the two models are dependent.
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Conclusions

- Conventional correlation coefficients measure
pair-wise dependence, while 71, 7 are reasonable
dependence measures for d > 2.

- For the mixture model 71, 7 are equal to what we
desire.

- The results for combining independent models can

serve as lower bounds in case the two models are
dependent.
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