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1. Introduction

X = (X1, X2, · · · , Xd) ∼ G(x), x ∈ Rd,

where G is a multivariate extreme value distribution

function. WOLOG with Fréchet margins: for all j

Gj(x) = exp{−1/x} (x > 0)

and exponent function

λ(x) = − logG(x),

Gt(tx) = G(x) ⇒ tλ(tx) = λ(x), (t > 0).

Since for MEVD

min
1≤j≤d

Gj(xj) ≥ G(x) ≥
d∏

j=1

Gj(xj),

in our case

max
1

xj
≤ λ(x) ≤

∑ 1

xj
.

(complete dependence) (total independence)
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The homogeneity of λ implies that λ(tx)/Σ(txj)
−1

does not depend on t. Define the (generalized)

Pickands dependence function

A(v) = λ(v−1
1 , v−1

2 , · · · , v−1
d ) v ∈ Ω,

where Ω = {v : vj ≥ 0, Σvj = 1}
is the unit-simplex. It follows that

1

d
≤ A0(v) =: max vj ≤ A(v) ≤ 1,

λ(x) = A(v)Σx−1
j ,

where vj = x−1
j /Σx−1

i .

η = A

(
1

d
, · · · ,

1

d

)

has an interesting interpretation:

P

{
max
1≤j≤d

Xj ≤ z

}
= exp{−λ(z, z, · · · , z)}

= exp{−dη/z} = {exp{−1/z}}dη.
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Hence, θ = dη is the extremal coefficient of

(X1, X2, · · · , Xd).

θ = 1 ⇔ complete dependence

θ = d ⇔ total independence

Schlather and Tawn (2002) analyse θB = |B|ηB for

all 2d possible subsets B of {1,2, · · · , d}.
From de Haan and Resnick (1977) and Pickands

(1981)

A(v) =
∫

Ω
max vjajU(da)

for a finite positive measure U ,

U(Ω) = d and
∫

Ω
ajU(da) = 1 for all j.

The function A is convex because for 0 ≤ α ≤ 1,

max{(αvj + (1− α)wj)aj}

≤ αmax vjaj + (1− α)maxwjaj.
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Pickands dependence function for the Logistic Model

A(v) = (v1/α + (1− v)1/α)α with

α = 0, .25, .50, .75, 1.

2. Measures of Dependence: Rescaling η, a

natural measure of dependence is

τ1 =
1−A

(
1
d , · · · , 1

d

)

maxA

{
1−A

(
1
d , · · · , 1

d

)}
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=
d− θ

d− 1
=

d

d− 1
(1− η)

An alternative measure is

τ2 =

∫
Ω(1−A(v))dv

maxA
∫
Ω(1−A(v))dv

=

∫
Ω(1−A(v))dv∫
Ω(1−A0(v))dv

=:
Sd(A)

Sd(A0)
.

Which one is preferred?

Similar question: mode vs. mean.

Expect from dependence measure that for

A = αA0 + (1− α) · 1

⇒ τ = α.

Indeed, for this mixture model

τ1 = τ2 = α.
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To compute τ2 we need a formula for SA0
, the

volume above A0:

d SA0
2 1/4 = .2500
3 7/36 = .19444
4 .07986
5 .02264

Until very recently the challenge was to find a

formula for Sd(A0). My colleague Shmuel Onn

derived and proved

Sd(A0) = 1
(d−1)! −

Bd
d!

where

Bd =
(
1 +

1

2
+

1

3
+ · · ·+ 1

d

)

is the harmonic sum.
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Other (bivariate) measures of dependence:

In the literature (Beirlant et al, 2004) we encounter

τK = Kendall’s tau = 4EC(G1(X1), G2(X2))− 1,

ρS = Spearman’s rho = corr(G1(X1), G2(X2)),

ρ = corr(logG1(X1), logG2(X2)).

Tawn (1988) mentioned τ1 for d = 2. I have not

seen τ2. These are all marginal-free and for mixture

distributions (not mixture exponents):

(X1, X2) =

{
(U, V ) w.p. 1− α
(U, U) w.p. α

}

U, V independent,

τK = ρS = ρ = α.
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3. Examples.

Let V1, V2, · · · be i.i.d. unit-Fréchet.

Mixture model: For 0 ≤ α ≤ 1

λ(x, y) = αmax(x−1, y−1) + (1− α)(x−1 + y−1).

That is

X = max(αV1, (1− α)V2)

Y = max(αV1, (1− α)V3).

A(v) = αmax(v,1− v) + (1− α) · 1 (v ∈ [0,1]).

τ1 = τ2 = α.

τK = ρ =
α

2− α
≤ ρS =

3α

4− α
≤ α.

α = τ1 = τ2 ρS τK = ρ
0 0 0

1/4 1/5 1/7
1/2 3/7 1/3
3/4 9/13 3/5
1 1 1
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Mixed model:

λ(x, y) =
1

x
+

1

y
− α

x + y

A(v) = 1− α(1− v)v

τ1 =
α

2
, τ2 =

2

3
α

τK =
8tan−1(α/(4− α))1/2

α1/2(4− α)1/2
− 2

ρ =
8tan−1(α/(4− α))1/2

α1/2(4− α)3/2
− 2− α

4− α

ρS = 12

{
8tan−1(α/(8− α))1/2

α1/2(8− α)3/2
+

1

8− α

}
− 3

α τK ρ τ1 ρS τ2
0 0 0 0 0 0

.25 .0877 .0901 .1250 .1299 .1667

.50 .1853 .1958 .2500 .2702 .3333

.75 .2947 .3215 .3750 .4222 .5000
1 .4184 .4728 .5000 .5874 .6667
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de Haan - Resnick model:

λ(x, y, z) =
1

2
{max(x−1, y−1) + max(x−1, z−1)

+max(y−1, z−1)}

X1 = max(V1, V2)/2

X2 = max(V1, V3)/2

X3 = max(V2, V3)/2

A(v) =
1

2
{max(v1, v2) + max(v1, v3) + max(v2, v3)}

η = A(1/3,1/3,1/3) = 1/2, τ1 = (3/2)(1− η) = 3/4

τ2 =
36

7
· 1
8

=
9

14
= .642857

τ1(1,2) = τ2(1,2) = 1/2

(Introducing X3 to the system increases the

dependence)
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Non-symmetric model:

X1 = max(V1/2, V2/4, V3/4)

X2 = max(2V1/3, V2/3)

X3 = V3

A(v) = max(.75v1, v2) + max(.25v1, v3)

(v1 + v2 + v3 = 1)

η = 2/3, τ1 = 1/2, τ2 = (36/7).104762 = .53876

τ1(1,2) = 3/4 = .75 τ2(1,2) = 6/7 = .85714

τ1(1,3) = 1/4 = .25 τ2(1,3) = 4/10 = .4
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4. Relations between τ1 and τ2.

Theorem. For d = 2, τ1 ≤ τ2.
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Proof. Denote 1− h = A(1/2,1/2)),

⇒ τ1 = 2h.

Define the mixture model (green graph)

A∗(v) = τ1A0(v) + 1− τ1,
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⇒ τ∗1 = τ1 = τ∗2.

Since A is convex, A ≤ A∗(= at (1/2,1/2)),

∫

Ω
(1−A) ≥

∫

Ω
(1−A∗) = τ1

∫

Ω
(1−A0)

τ2 =

∫
Ω(1−A)∫
Ω(1−A0)

≥ τ1.

This is a perfect proof for d = 2. For d ≥ 3, the

picture is misleading, namely, A ≤ A∗ is not

necessarily true. Here is a counter example: de

Haan-Resnick model.

For v1 ≥ v2 ≥ v3, v1 + v2 + v3 = 1,

A(v) = v1 +
v2

2
, A∗(v) =

3

4
v1 +

1

4
.

Since v2 ≥ v3 ⇔ v2 ≥ (1− v1)/2,
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A(v)−A∗(v) =
1

4
v1 +

1

2
v2 −

1

4
≥ 0,

with equality when v1 ≥ 1/3, v2 = v3 = (1− v1)/2.

For the logistic model

A(v) = (v
1/α
1 + v

1/α
2 + v

1/α
3 )α,

A(1/3,1/3,1/3) = 3α−1.

α τ1 = (3− 3α)/2 τ2 =
∫
Ω(1−A)36/7

0 1 1
1/4 .8420 .9457
1/2 .6340 .7670
3/4 .3602 .4559
1 0 0
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For d = 2, how big can the difference τ2 − τ1 be?
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Consider all (symmetric, d = 2) models for which

A(1/2) = 1− h so that τ1 = 2h.
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All the A functions must be bounded between the

green graph and the red one. The green graph

corresponds to a mixture model with

α = 2h = τ1 = τ2:

X1 = max(2hV1, (1− 2h)V2)

X2 = max(2hV1, (1− 2h)V3).

The red A corresponds to ”cross over” model:

X1 = max(hV1, (1− h)V2)

X2 = max((1− h)V1, hV2)

for which

τ1 = 2h, τ2 = 4h(1− h) = 1− (1− τ1)
2.

max
h

(τ2 − τ1) =
1

4

occurs at h = 1/4, τ1 = 1/2, τ2 = 3/4.
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To be fair, one could hold the area (volume)

constant (i.e. τ2) and let τ1 vary. For instance, all

triangles with height h have

τ2 = 2h, (0 ≤ h ≤ 1/2)

but
h

1− h
≤ τ1 ≤ 2h = τ2.

h = 1/4, 1/3 ≤ τ1 ≤ 1/2 = τ2.
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Combining two models.

X = (X1, · · · , Xk), Y = (Y1, · · · , Ym)

are combined into

Z = (X1, · · · , Xk, Y1, · · · , Ym), k + m = d.

To study the dependence measures of Z we must

know the dependence between X and Y. If they are

independent we can compute τ1 and τ2 :

A(v) = tA1(u) + (1− t)A2(w) (v ∈ Ωd),

t = v1 + · · ·+ vk, u ∈ Ωk, w ∈ Ωm,

ui =
vi

t
, 1 ≤ i ≤ k; wi =

vk+i

(1− t)
, 1 ≤ i ≤ m.

The Jacobian of the transformation

(v1, · · · , vd−1) 7→ (t, u1, · · · , uk−1, w1, · · · , wm−1)

is J = tk−1(1− t)m−1.

1−A = t(1−A1) + (1− t)(1−A2)
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S(A) =
∫

Ωd

(1−A(v))dv =

=
∫ 1

0

∫

Ωk

∫

Ωm

(1−A)dudwtk−1(1− t)m−1dt

=
1

(m− 1)!

∫ 1

0
tk(1− t)m−1dt

∫

Ωk

(1−A1(u))du

+
1

(k − 1)!

∫ 1

0
tk−1(1− t)mdt

∫

Ωm

(1−A2(w))dw

=
k!

d!
Sk(A0)τ2,1 +

m!

d!
Sm(A0)τ2,2

τ2 = k−Bk
d−Bd

τ2,1 + m−Bm
d−Bd

τ2,2

where

Bk = 1 +
1

2
+

1

3
+ · · ·+ 1

k
.
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For k = m = 2,

τ2 =
6

23
(τ2,1 + τ2,2).

Similar, even simpler, is the treatment of τ1:

A

(
1

d
, · · · ,

1

d

)
=

k

d
A1

(
1

k
, · · · ,

1

k

)
+

m

d
A2

(
1

m
, · · · ,

1

m

)

=
k

d

(
1− k − 1

k
τ1,1

)
+

m

d

(
1− m− 1

m
τ1,2

)
.

τ1 = k−1
d−1τ1,1 + m−1

d−1 τ1,2

For k = m = 2

τ1 =
1

3

(
τ1,1 + τ1,2

)

Note, the sums of the weights are not equal to 1 but

tend to 1 as k, m both tend to ∞.

The results here are lower bounds for τ1, τ2
when the two models are dependent.
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Conclusions

- Conventional correlation coefficients measure

pair-wise dependence, while τ1, τ2 are reasonable

dependence measures for d ≥ 2.

- For the mixture model τ1, τ2 are equal to what we

desire.

- The results for combining independent models can

serve as lower bounds in case the two models are

dependent.
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