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As we have already seen from financial data, such as log(returns), 
and from residuals from some ARMA model fits, one needs to 
consider time series models for white noise (uncorrelated) that 
allows for dependence.

1. Classification of White Noise

Classification of WN (in increasing degree of “whiteness”). 
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1. Classification of White Noise (cont)
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2. Examples

(1) All-pass processs.  Satisfies W1 and not W2.
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2. Examples (cont)
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2. Examples (cont)
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2.  Examples (cont)
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2.  Examples (cont)
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2.  Examples (cont)
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2.  Examples (cont)
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2.  Examples (cont)

Properties of ARCH(1) process:

1. Strictly stationary solution if 0 < α1 <1.

2. {Zt} ~ WN(0,α0/(1-α1)).

3. Not IID since

4. Not Gaussian.

5. Zt has a symmetric distribution (Z1 =d – Z1)

6. EZt
4 < ∞ if and only if 3α1

2 < 1. (More on moments later.)

7. If EZt
4 < ∞, then the squared process Yt = Zt

2 has the same 
ACF as the AR(1) process

Wt = α1Wt-1 + et
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2.  Examples (cont)

Likelihood function:
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2.  Examples (cont)

A realization of the process 
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2.  Examples (cont)

The sample ACF. 
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2.  Examples (cont)

The sample ACF of the absolute values and squares. 
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Define Xt = 100*(ln (Pt) - ln (Pt-1))   (log returns)

• heavy tailed

P(|X1| > x) ~ C x-α,     0 < α < 4.

• uncorrelated

near 0 for all lags h > 0 (MGD sequence?)

• |Xt| and Xt
2 have slowly decaying autocorrelations

converge to 0 slowly as h increases.

• process exhibits ‘stochastic volatility’.

)(ˆ hXρ

  )(ˆ and  )(ˆ 2|| hh
XX ρρ

3. “Stylized Facts” of Financial Returns 
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Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)
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(b) ACF of IBM (2nd half)

Sample ACF IBM (a) 1962-1981, (b) 1982-2000

Remark: Both halves look like white noise.
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(a) ACF, Squares of IBM (1st half)
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(b) ACF, Squares of IBM (2nd half)

ACF of squares for IBM (a) 1961-1981, (b) 1982-2000

Remark: Series are not independent white noise?  
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Hill’s estimator of tail index
The marginal distribution F for heavy-tailed data is often modeled using
Pareto-like tails,

1-F(x) = x-αL(x),

for x large, where L(x) is a slowly varying function (L(xt)/ L(x)→1, as x
→∞). Now if

X~ F, then P(log X > x) = P(X > exp(x))=exp(-αx)L(exp(x)), 

and hence log X has an approximate exponential distribution for large x. 
The spacings,

log( X(j)) − log(X(j+1)) , j=1,2,. . . ,m,

from a sample of size n from an exponential distr are approximately 
independent and ExpExp(αj) distributed.  This suggests estimating α−1 by
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Hill’s estimator of tail index

Def: The Hill estimate of α for heavy-tailed data with distribution given 
by

1-F(x) = x-αL(x),

is
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The asymptotic variance of this estimate for α is 

and estimated by

(See also GPD=generalized Pareto distribution.)

m/2α ./ˆ 2 mα
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Hill’s plot of tail index for IBM (1962-1981, 1982-2000)
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4. ARCH and GARCH Models
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)



29MaPhySto Workshop 9/04

4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)

i
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)



41MaPhySto Workshop 9/04

4. ARCH and GARCH Models (cont)

SS but not WS GARCH Processes
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)

MaPhySto Workshop 9/04
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4. ARCH and GARCH Models (cont)
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Parameter Estimation for Finite-Variance GARCH Models
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)



54MaPhySto Workshop 9/04

4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)



56MaPhySto Workshop 9/04

4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)

MaPhySto Workshop 9/04
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4. ARCH and GARCH Models (cont)
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4. ARCH and GARCH Models (cont)
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5. Forecasting with GARCH
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5. Forecasting with GARCH (cont)
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6. IGARCH
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7. Stochastic Volatility Models
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7. Stochastic Volatility Models (cont)
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7. Stochastic Volatility Models (cont)
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7. Stochastic Volatility Models (cont)

MaPhySto Workshop 9/04
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7. Stochastic Volatility Models (cont)

MaPhySto Workshop 9/04
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7. Stochastic Volatility Models (cont)
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7. Stochastic Volatility Models (cont)
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7. Stochastic Volatility Models (cont)
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7. Stochastic Volatility Models (cont)
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7. Stochastic Volatility Models (cont)
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7. Stochastic Volatility Models (cont)
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7. Stochastic Volatility Models (cont)
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7. Stochastic Volatility Models (cont)
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8. Regular variation and application to financial TS models

8.1 Regular variation — univariate case

Def: The random variable X is regularly varying with index α if

P(|X|> t x)/P(|X|>t) → x−α and P(X> t)/P(|X|>t) →p,

or, equivalently, if 

P(X> t x)/P(|X|>t) → px−α and P(X< −t x)/P(|X|>t) → qx−α ,

where 0 ≤ p ≤ 1 and p+q=1.
Equivalence:

X is RV(α)  if and only if P(X ∈ t • ) /P(|X|>t)→v µ(• )

(→v vague convergence of measures on RR\{0}).  In this case, 

µ(dx) = (pα x−α−1 I(x>0) + qα (-x)-α−1 I(x<0)) dx

Note: µ(tA) = t-α µ(A) for every t and A bounded away from 0.
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Another formulation (polar coordinates):

Define the ± 1 valued rv θ, P(θ = 1) = p, P(θ = −1) = 1− p = q.
Then

X is RV(α)  if and only if

or

(→v vague convergence of measures on SS0= {-1,1}). 
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8.1 Regular variation — univariate case (cont)
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Equivalence:

µ is a measure on RRm which satisfies for x > 0 and A bounded away 
from 0,  

µ(xB) = x−α µ(xA).

Multivariate regular variation of X=(X1, . . . , Xm): There exists a 
random vector θ ∈ Sm-1 such that

P(|X|> t x, X/|X| ∈ • )/P(|X|>t) →v x−α P( θ ∈ • )

(→v vague convergence on SSm-1, unit sphere in Rm) .  

• P( θ ∈•) is called the spectral measure

• α is the index of X.

)(
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8.2 Regular variation — multivariate case
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1. If X1> 0 and X2 > 0 are iid RV(α), then X= (X1, X2 ) is 
multivariate regularly varying with index α and spectral distribution

P( θ =(0,1) ) = P( θ =(1,0) ) =.5 (mass on axes).

Interpretation:  Unlikely that X1 and X2 are very large at the same 
time.
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Figure: plot of  
(Xt1,Xt2) for realization 
of 10,000.

8.2 Regular variation — multivariate case (cont)
Examples:
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2. If X1 = X2 > 0, then X= (X1, X2 ) is multivariate regularly varying 
with index α and spectral distribution

P( θ = (1/√2, 1/√2) ) = 1.

3. AR(1): Xt= .9 Xt-1 + Zt ,  {Zt}~IID symmetric stable (1.8)

±(1,.9)/sqrt(1.81), W.P.  .9898

±(0,1), W.P.  .0102
{
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Figure: plot of (Xt, 
Xt+1) for realization 
of 10,000.

Distr of θ:
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• Domain of attraction for sums of iid random vectors
(Rvaceva, 1962). That is, when does the partial sum

converge for some constants an?

• Spectral measure of multivariate stable vectors.

• Domain of attraction for componentwise maxima of iid
random vectors (Resnick, 1987). Limit behavior of

• Weak convergence of point processes with iid points.

• Solution to stochastic recurrence equations, Y t= At Yt-1 +  Bt

• Weak convergence of sample autocovariances. 

∑
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8.3 Applications of multivariate regular variation
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Use vague convergence with Ac={y: cTy > 1}, i.e.,

where t-αL(t) = P(|X| > t).

Linear combinations:

X ~RV(α) ⇒ all linear combinations of X are regularly varying 

),(w:)A(
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i.e., there exist α and slowly varying fcn L(.), s.t.

P(cTX> t)/(t-αL(t)) →w(c), exists for all real-valued c,

where

w(tc) = t−αw(c).
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8.3 Applications of multivariate regular variation (cont)
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Converse?

X ~RV(α) ⇐ all linear combinations of X are regularly varying? 

There exist α and slowly varying fcn L(.), s.t.

(LC)           P(cTX> t)/(t-αL(t)) →w(c), exists for all real-valued c.

Theorem (Basrak, Davis, Mikosch, `02). Let X be a random vector.

1. If X satisfies (LC) with α non-integer, then X is RV(α).

2. If X > 0 satisfies (LC) for non-negative c and α is non-integer, 

then X is RV(α).

3. If X > 0 satisfies (LC) with α an odd integer, then X is RV(α).

8.3 Applications of multivariate regular variation (cont)
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1. Kesten (1973). Under general conditions, (LC) holds with L(t)=1

for stochastic recurrence equations of the form

Yt= At Yt-1+ Bt, (At , Bt) ~ IID,

At  d×d random matrices, Bt random d-vectors.

It follows that the distributions of Yt, and in fact all of the finite dim’l

distrs of Yt are regularly varying (if α is non-even).

2. GARCH processes. Since squares of a GARCH process can be 

embedded in a SRE, the finite dimensional distributions of a 

GARCH are regularly varying.

8.4 Applications of theorem
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Example of ARCH(1):   Xt=(α0+α1 X2
t-1)1/2Zt, {Zt}~IID. 

α found by solving  E|α1 Z2|α/2 = 1.

α1 .312 .577 1.00 1.57
α 8.00 4.00 2.00 1.00

Distr of θ:   

P(θ ∈ •) = E{||(B,Z)||α I(arg((B,Z)) ∈ •)}/ E||(B,Z)||α

where

P(B = 1) = P(B = -1) =.5

8.5 Examples
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Figures: plots of (Xt, Xt+1) and estimated distribution of θ for 
realization of 10,000.

Example of ARCH(1):   α0=1, α1=1, α=2, Xt=(α0+α1 X2
t-1)1/2Zt, {Zt}~IID
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8.4 Examples (cont)
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Example: SV model Xt = σt Zt

Suppose Zt ~ RV(α) and

Then Zn=(Z1,…,Zn)’ is regulary varying with index α and so is

Xn= (X1,…,Xn)’ = diag(σ1,…, σn) Zn

with spectral distribution concentrated on (±1,0), (0, ±1).
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Figure: plot of 
(Xt,Xt+1) for 
realization of 10,000.

8.4 Applications of theorem (cont)
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Setup

Xt = σt Zt ,     {Zt} ~ IID (0,1)

Xt is RV (α)

Choose {bn} s.t.  nP(Xt > bn) →1

Then     
}.exp{)( 1

1 α−− −→≤ xxXbP n
n

Then, with Mn= max{X1, . . . , Xn},

(i) GARCH:

γ is extremal index ( 0 < γ < 1). 

(ii)  SV model:

extremal index γ = 1 no clustering. 

},exp{)( 1 α−− γ−→≤ xxMbP nn

},exp{)( 1 α−− −→≤ xxMbP nn

8.6 Extremes for GARCH and SV processes
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(i) GARCH:                                                       

(ii)  SV model: 

}exp{)( 1 α−− γ−→≤ xxMbP nn

}exp{)( 1 α−− −→≤ xxMbP nn

Remarks about extremal index.

(i) γ < 1 implies clustering of exceedances

(ii) Numerical example.  Suppose c is a threshold such that   

Then, if  γ = .5, 

(iii) 1/γ is the mean cluster size of exceedances.

(iv) Use γ to discriminate between GARCH and SV models.

(v) Even for the light-tailed SV model (i.e., {Zt} ~IID N(0,1), the 
extremal index is 1 (see Breidt and Davis `98 )  

  95.~)( 1
1 cXbP n

n ≤−

975.)95(.~)( 5.1 =≤− cMbP nn

8.6 Extremes for GARCH and SV processes (cont)
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8.6 Extremes for GARCH and SV processes (cont)
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α∈(0,2):

α∈(2,4):

α∈(4,∞):

Remark:  Similar results hold for the sample ACF based on |Xt| and
Xt

2.
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8.7 Summary of results for ACF of GARCH(p,q) and SV models

GARCH(p,q)
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α∈(0,2):

α∈(2, ∞):
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8.7 Summary of results for ACF of GARCH(p,q) and SV models (cont)

SV Model
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Sample ACF for GARCH and SV Models (1000 reps)
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(b) SV Model, n=10000
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Sample ACF for Squares of GARCH (1000 reps)

(a) GARCH(1,1) Model, n=10000
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b) GARCH(1,1) Model, n=100000
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Sample ACF for Squares of SV (1000 reps)
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(c) SV Model, n=10000



102MaPhySto Workshop 9/04

 -1.00

  -.80

  -.60

  -.40

  -.20

   .00

   .20

   .40

0 400 800 1200 1600

Series

Example: Amazon returns  May 16, 1997 to June 16, 2004.  

 -1.00

  -.80

  -.60

  -.40

  -.20

   .00

   .20

   .40

   .60

   .80

  1.00

0 5 10 15 20 25 30 35 40

Residual ACF: Abs values

 -1.00

  -.80

  -.60

  -.40

  -.20

   .00

   .20

   .40

   .60

   .80

  1.00

0 5 10 15 20 25 30 35 40

Residual ACF: Squares



103MaPhySto Workshop 9/04

Wrap-up

• Regular variation is a flexible tool for modeling both dependence 

and tail heaviness.

• Useful for establishing point process convergence of heavy-tailed 

time series.

• Extremal index γ < 1 for GARCH and γ =1 for SV.

Unresolved issues related to RV⇔ (LC)

• α = 2n?

• there is an example for which X1, X2 > 0,  and (c, X1) and (c, X2)
have the same limits for all c > 0.

• α = 2n−1 and X > 0 (not true in general).


