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1. Classification of White Noise

As we have already seen from financial data, such as log(returns),
and from residuals from some ARMA model fits, one needs to
consider time series models for white noise (uncorrelated) that
allows for dependence.

Classification of WN (in increasing degree of “whiteness”).

W1: {Z;} ~ WN(0,0?), i.e.

EZ: =0,
2 ifh=0
12(h) = {7 ,
0 otherwise.

(Pp(z,,5<t} %t = 0.)

MaPhySto Workshop 9/04



1. Classification of White Noise (cont)

W2: {Z;} is a homoscedastic martingale difference.
E(Zi|Zs,s <t) =0
Var(Z) = o2, Vt.

W3: {Z;} is conditional white noise.
E(Zi|Zs,s <t) =0

Var(Zi|Zs,s < t) = o2, Vt.
(An ARCH(1) process is W2 but not W3.)

W4: {Z:} is strict white noise.
{Z:} ~1ID(0, 0?).
W5: {Z;} is Gaussian white noise.

{Z;} ~1ID N(0,c?).
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2. Examples

(1) All-pass processs. Satisfies W1 and not W2.

(2) _A Deterministic AR Model:

Consider the deterministic autoregression,

Y =g(Yi—1),
where,
2y, 0<y<1/2,
g(y) =
2(1—-y), 1/2<y<1
and

Yp has density f(z) = 1,z € [0, 1].

MaPhySto Workshop 9/04



2. Examples (cont)

Properties:

1. {Y;:} is strictly (and weakly ) stationary with marginal density

f(x).
2. {Y:} ~WN(0.5,var(Yp)).

3. The BLP of Y; is 0.5 with MSE= var(Yy). The BP of Y} is
g(Y;_1) with MSE = 0.

4. Plotting Y vs. Y;_q1 reveals the deterministic dynamics.
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2. Examples (cont)

(3) Logistic Process

The logistic equation defines a sequence {z,}, for any given zq,
via
rn = 4x,_1(1 —xHp_1), 0 <z0<1.

The values of x, are, for even moderately large values of n,
extremely sensitive to small changes in xg, as can be seen from
the solution,

zn = sin?(2"%arcsin(y/zg), n=0,1,2,....

(Clearly a very small change ¢ in arcsin(,/zg) leads to a change
2"§ in the argument of the sin function defining z,,.)
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2. Examples (cont)

CHAOS.TSM: The series  {z1,...,2200},

(correct to nine decimal places) was generated from the logistic
equation with zg = #n/10 . T he calculation requires specification
of zg to at least 70 decimal places and the use of correspondingly
high precision arithmetic.

The sample ACF and the AICC criterion both suggest white noise
with mean .4954 as a model for the series. Under this model the
best linear predictor of X»g1 would be .4954. However the best
predictor of X»g7 to nine decimal places is in fact 4xo00(1 —
T-o00) = 0.016286669, with zero mean-squared error.
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2. Examples (cont)

(4) ARCH(1) Model:

Stationary solution {Z;} of

Zt = Vhtet, {et} ~1ID N(O,1),
where
ht = ag + a1 275,
with ag > 0and a1 > 0. The name ARCH signifies autoregressive

conditional heteroscedasticity. h; is the conditional variance of
Z given {Zs,s < t}.
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2. Examples (cont)

Iterating these equations gives

N
I
|

2 2 2
ape; + a1Zi q€;

2 22 272 2.2
agef + arageref 1+ aisiserer

T
J 2.2 2
a0 Z vierer e +
J=0
n+1 2 2 2 2
X7 Zt—n.—let €—1"""€—n

& @
_ Jj 2.2 2
— «Q Z Oclfjlt E'J’t—l 0 DL Eit_j,
7=0
provided 0 < ay < 1 and {Z;} is stationary and causal (i.e., Z; is
a function of {eg, s < t}).
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2. Examples (cont)

Solution of the ARCH(1) Equations:

If 0O < a1 <1, the unique causal stationary solution

of the ARCH(1) equations is given by

_ | o j 2 2
Z; = et\/ao (l + Zj:l e |- et_j)

It has the properties
E(Z:) = E(E(Ztles,s <t)) =0,
Var(Z:) = ag/(1 — ay),
and
E(ZiynZt) = E(E(ZiynZiles,s <t+h)) =0

for h > 0.
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2. Examples (cont)

Properties of ARCH(1) process:

1.
2.

N 0 b

Strictly stationary solution if 0 < o, <1.
{Z} ~ WN(0,0,/(1-a,)).
Not IID since
E(Z{|Zi—1) = (a0 + a1 Z7 1) E(ef| Zi—1) = oo + a1Z7 ;.
Not Gaussian.
Z, has a symmetric distribution (Z, =4, - Z,)
EZ* <o if and only if 3,2 < 1. (More on moments later.)

If EZ* < oo, then the squared process Y,= Z? has the same
ACF as the AR(1) process

W= oW, + €
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2. Examples (cont)

Likelihood function:

The ARCH(1) process is conditionally Gaussian, in the sense that for given
Zo, {Zi,t > 1} is Gaussian with known distribution. This makes it easy to
write down the likelihood of Z;,..., 4, conditional on Zp and hence, by nu-
merical maximization, to compute conditional maximum likelihood estimates
of the parameters. For example, the conditional likelihood of the observations
{z1,...,2n} of an ARCH(1) process given Zg = zg is

= = — > .
=1 \/271'((10 —I— {1123_1) Q(CU'D + alzt_l)
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2. Examples (cont)

A realization of the process Z; = E¢\/1 + 0.527 ;.
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2. Examples (cont)

Sample &CF

LB O —]
B0
LA 0 —]

LEO0

PPN i3, o 1 1 I 1 : I : b

AR

-.A 00—

- B0

-.E20—

The sample ACF.

MaPhySto Workshop 9/04

15



2. Examples (cont)

Re=sidual ACF: Ab=s walues Re=sidual ACF: Squares
L.0o0 L.00
Rinp LB
L&D LB
Ll 0 RAnE
L2004 L2004
D e S (8 h “““““““““““““““““““““
ao . IIIl....I | | I"IllJlIIII '.'II Qo 1 I ||| | 7 = I.I'llll'llll .....
- 204 - 204
-0 -4 04
-. B0 -.B0+
- =20 -.E204
-L.00- T T T T T T T T -L.00- T T T T T T T T
ju] = Lo 1= Z0 B =0 =5 40 ] = jpu) 1= Z0 Z5 20 25 A0

The sample ACF of the absolute values and squares.
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(5) A Bilinear Model:

Consider the model,

t=Zi+ .5Y; 221, {Z:i} ~1ID(0,0?).

Assuming the existence of a causal stationary solution, {Y:}, it
has the following properties.

Properties:

1. EFY; = 0.

2. Var(Yi) = o2(1 + .25Var(Yy)). Hence

o2

. 2
ok it o° < 4.

vy (0) =

3. Assuming invertibility (i.e. Z; € F(Ys, s < t)),

E(Y;|Ys,s <t) = .5Y;_»Z;,_1 and Var(¥;|Ys,s <t) = o2
MaPhySto Workshop 9/04
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3. “Stylized Facts” of Financial Returns

Define X, =100*(In (P, - In (P,,)) (log returns)

* heavy tailed
P(X{>x)~Cx?% 0<a<4.

® uncorrelated

Py (h) near 0 for all lags h > 0 (MGD sequence?)

* | X, and X? have slowly decaying autocorrelations

px () andp,, () converge to 0 slowly as h increases.

* process exhibits ‘stochastic volatility’.

MaPhySto Workshop 9/04
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Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)
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ACF
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(a) ACF of IBM (1st half)
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Sample ACF IBM (a) 1962-1981, (b) 1982-2000
(b) ACF of IBM (2nd half)
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Remark: Both halves look like white noise.
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ACF of squares for IBM (a) 1961-1981, (b) 1982-2000
(b) ACF, Squares of IBM (2nd half)
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Remark: Series are not independent white noise?
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Plot of M,(4)/S(4) for IBM

1.0

0.8

M(4)/S(4)
0.6

0.4

0.2

0.0

\ \ \ \ \ \
0 2000 4000 6000 8000 10000

t
Remark: For IID data, M(K)/S(k) - 0 as t — oo iff E[X'|¥ < o0, where
t
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Hill's estimator of tail index

The marginal distribution F for heavy-tailed data is often modeled using
Pareto-like tails,

1-F(Xx) = x“L(x),

for x large, where L(x) is a slowly varying function (L(xt)/ L(x)—1, as x
—0). Now if

X~ F, then P(log X > x) = P(X > exp(x))=exp(-ax)L(exp(x)),

and hence log X has an approximate exponential distribution for large Xx.
The spacings,

log( X)) — log(X:p) , j=1,2,. . . ,m,

from a sample of size n from an exponential distr are approximately
iIndependent and Exp(aj) distributed. This suggests estimating a~! by

o 1 m .
ol 1 :aZl(log X(j) - Iog)((j+1))J
j=
1 m
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Hill's estimator of tail index

Def: The Hill estimate of ¢ for heavy-tailed data with distribution given
by
1-F(Xx) = x“L(x),

IS
" 1 & :
6t == (logX;, —logX ., )
m43
1 m
:EZ(IogX(D — IogX(m+1))
j=1

The asymptotic variance of this estimate for « is

a?/m and estimated by &2 /m.

(See also GPD=generalized Pareto distribution.)
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Hill’s plot of tail index for IBM (1962-1981, 1982-2000)

Hil

I
0 200

MaPhySto Workshop 9/04

T
400

m

I
600

I
800

I
1000

Hil

I I I I
200 400 600 800

25



4. ARCH and GARCH Models

ARCH(p) (Engle(1982))

{Z:} is a causal strictly and weakly stationary solution of

Zi = Vhiey, {es} ~1ID(0, 1),

p
he=a0+ Y o 22,
1=1

where ag >0 and o; >0, i =1,...,p.
ARCH = AutoRegressive Conditional Heteroscedasticity.

(See later for existence conditions.)

MaPhySto Workshop 9/04
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4. ARCH and GARCH Models (cont)

Properties:

If {Z:} is a causal stationary solution, then
1. E(Zi|Zs,s <t) = FE[E(Ztles,s < t)|Zs,s <t] = 0.
2. EZ, = 0.
3. E(Z:Z) =0,s # t.
4. E(ZZZs,s <t) = hE(ef|Zs,s < t)
= hiE(e?) = ht = a0 + P a; Z2 .,
sO hy=conditional variance of Z; given Z,s < t.
5. E(Z) =FEhi= a0+ > _aEZZ,.

so that EZ? = ao/(1 =D 0_ 1 ai).
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4. ARCH and GARCH Models (cont)
Theorem 1 (Proof later)

(i) A NS condition for the existence of a causal SS and WS
solution {Z;} of the ARCH(p) equations is

p
Z@i{: 1 (1)
=1

and {Z:} is the unique such solution.
(ii) If (1) is satisfied and

P
(Ee) (Y a)? < 1, (2)
1=1

then EZ} < co.
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4. ARCH and GARCH Models (cont)

Further Properties:

If conditions (1) and (2) are both satisfied then

0. {ZE} is an AR(p) process and all of its correlations are non-
negative (generating persistence of volatility). To see this, note
that Uy = ZI? — ht is a MGD sequence and hence WN. It follows

that
72 =72 —hs + hy
=Ut+ap+a1ZZ 1+ +apZi,

7. Z: has heavier tails than e; in the sense that its kurtosis
(EZ}/(EZ?)?) is greater than or equal to that of e;.

MaPhySto Workshop 9/04
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4. ARCH and GARCH Models (cont)

Illustration: The following graphs show the time-series plot, sam-
ple ACF and qq plot of 10000 simulated values of an ARCH(2)
process {Z;} with

apg=1, a1 =04, ar,=0.2

and Gaussian noise {e;}. The sample ACF's of {|Z¢} and {Zf}
are also shown.

The sample ACF of {Z;}, unlike that of {Z7}, shows no evidence
of the dependence in the series. For this particular ARCH process
the model ACF of {Z?} has the values 0.5 at lag 1 and 0.4 at lag
2. These are in good agreement with the sample ACF shown.

MaPhySto Workshop 9/04
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4. ARCH and GARCH Models (cont)

ARCH{ZY fL,0.4,0.2)

Lo, —

-l0.—

=

20, —

T T
u) 4000 Z000
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4. ARCH and GARCH Models (cont)

Sample &CF
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4. ARCH and GARCH Models (cont)

e Residual &4CF: &bs walues e Re=sidual &CF: Sgquares
Roinp LEOA
N =inE .50
Lol 04 Aa
L2004 =04
.00 :::___:!:Il':'f::ZII[[CC-:-:::::::::::::E::Z::: =l :::___:!:IZI:I:'EZZZZZ-:-::::::::::::::::::::::
- 204 - 204
..A04 .40
- 504 - 504
-.=204 - =20
-l.00- T T T T T T T T -l.00- T T T T T T T T
m] =] Lo 15 =0 25 =0 =5 40 ju] =] 1o 15 =20 Z25 =0 =5 <40
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4. ARCH and GARCH Models (cont)

-0 {MNormal) Flot Residuals, R™2Z = . 261350

Lo, —

-1L0. — o

-l5,. —

-Z0, —
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4. ARCH and GARCH Models (cont)
GARCH(p.qa) (Bollerslev(1986))

{Z:} is a causal strictly and weakly stationary solution of

Zy = Vher, {er} ~1D(0,1),

p q
ht =ap+ > . ZE i + > Bihi—i,

=1 =1

where ag > 0, a; > 0 and 3; > 0 for each z.

GARCH = Generalized ARCH.

(See later for existence conditions.)

MaPhySto Workshop 9/04

35



4. ARCH and GARCH Models (cont)
If >8; <1 and EZ2 < o

then 1 -7 32! #0 V|z| <1 and so

1 s :
o= 2 Gt =zl <l
1 —> 52 =0
where  g=1, §20 Y, Tl¢l <o

Hence -
ht = £(B)(ap + Y a;BYZZ,

le
— -'I.t -'I-q 2
j=1

where v = £&(B)ag = ag/(1 — X 3;). In particular we see that
hi € o(es,s <t) and {Z;} is an ARCH(oc) process.

MaPhySto Workshop 9/04
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4. ARCH and GARCH Models (cont)

Properties:
If {Z:} is causal and stationary and > 7_, 3 < 1, then

1. B(Zi|Zs,s < t) = E[h/?ei|Zs,5 < t] = hi'°B(e;) = 0.
> EZ =0.

3. B(Z:7) =0,s % t.

4. E(Z7|Zs,s <t) = E(hef|Zs, s < t)

= hiEe? = h,tag—l—z 1O i 22 E—I—Zi_l Bihi_;,

so h;=conditional variance of Z; given Z,,s < t.
598 E(ZQ) = Fht = ag + Z —q E22 + Z 1 BiEhe,

so that EZ=FEh =ao/(1 =" 0, =37 5

MaPhySto Workshop 9/04
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6. {Z7} follows an ARMA(m, g)process, where m = max(p, q).

Z: =

MaPhySto Workshop 9/04

4. ARCH and GARCH Models (cont)

Zt —hf—l—hf
[}f—|—ao—|—ZC}.Zt 1—|—Z 3}11t 7

m

Ut + ap + Z(az+3)zt I_ZS(ZT ) ht—z’)

i=1 3—1
m
aO‘l‘Z(az_l_S))Ztl‘l_Lt_ZaLz‘z
=1 =1
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Theorem 2 (ARCH(0)) (see Giraitis, Kokoszka and Leipus (2000)
Economic Theory,16, 3-22).

For the equations,

Zg = hgef, {e;} ~1ID(0, 1),

=1

1=
(i) there is a unique causal finite-mean SS solution {Z?}

(with EZ2 = 40 /(1 — X521 4;)) if

o0
i=1
(ii) If (1) is satisfied and
o0
(Be)(Y 40)® < L, (2)
1=1

Ma then EZf' < 0.
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4. ARCH and GARCH Models (cont)

Theorem 3 (GARCH(p,q)) (see Bollerslev (1986)). The equa-
tions,

Zt = Vhiey, {es} ~1ID(0, 1),

p q
2 i
ht =a0+ > oiZi_;+ > Bihi—i,
=1 =1

where ag > 0, a; > 0 and 3; > 0 for each 1,
have a causal weakly stationary solution if and only if

p

q
S+ Y Gi<l

i=1 i=1
There is exactly one such solution.

MaPhySto Workshop 9/04
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4. ARCH and GARCH Models (cont)

SS but not WS GARCH Processes

Stochastic recurrence eguations

To examine conditions for existence of SS but not nec-
essarily WS causal solutions of the GARCH equations
it is convenient to consider a general class of equations
defined by

Y= A Y1+ Bt, (1)

where { (A, Bt} is an iid sequence, Y, B; are dx1 random
vectors, and A; is a d x d random matrix.

Embrechts, Klluppelberg and Mikosch, Modelling EXx-
tremal Events, Springer (1997)

Davis and Mikosch, in Nonlinear and Nonstationary Sig-
nal Processing, eds Fitzgerald et al., Cambridge Univer-
sity Press, 2000.

MaPhySto Workshop 9/04
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4. ARCH and GARCH Models (cont)
Examples

(i) ARCH(1)

Z¢ = (a0 4+ auZ{ 1)e; = (1€f) Z{ 1 + aoef.

These equations is equivalent to the stochastic recur-
rence equation (1)

Y = AtYi—1 + By,

with
d=1
Y: = Z;,
A = alef,
B: = agpey.

MaPhySto Workshop 9/04
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(i) GARCH(1,1)

ZE = h,-f,ef = (ap + a-'lzf_l + ,Slh,.f_l)ef
hi = ao+ai1Z7,+ Bihi_1.

The required SRE is two-dimensional which can be ex-
pressed as

ZZ | _ | a1e? [r€? Z2 n ape?
hy | a1 31 hy_1 Qo

Alternatively, a one-dimensional SRE can be developed
for the volatility process h;. Note that

he = a0+ a1Z7 , + Brhi—1 = a0 + arhi—1€f 1 + Brhe—1
so that the SRE has the form

hy = (alef_l + B1)he_1 + ao.
In this case,
Yt — hf_, f-ﬂlt — C};'lell?_l —I— ...'31, Bf_ — &Xp.
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4. ARCH and GARCH Models (cont)
(iii) GARCH(p. q)

p q
Zi=Vhe, h=oa0+ Y aZl +> B
1=1 1=1

These equations are equivalent to Z; = hie; and the
stochastic recurrence equation (1) with

d=p-+q,
Yt — (Zfz ..... Zf_p+1 ht ..... hf_q+]_);
B, = (aoef,0,...,0,00,0,..., 0)’
[ e’ aye? [ref Beef |
1

. 1 0

Ar = ar ey Br - LBy
1

1 0

MaPhySto Workshop 9/04 — -

44



4. ARCH and GARCH Models (cont)

(iv) A Bilinear Model

Xf — ant_]_ —I— be_1Zt_1 —I— Zt, {Zf} ~ IID(O,O'Q)

Define Y; = a Xy 4+ bX:Z;. Then {Y;} satisfies the SRE
(1) with
d=1,

flt — —I— bZt,

Bf — ((1 —I— bZt)Zt

MaPhySto Workshop 9/04
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Theorem 4 (Causal SS solution of (1))

If the following three conditions are satisfied:
(i) EInT||A1]] < oo,

(i) EInT |B;| < oo,

(ii)y ;== inf{n " 1EIn||A;--- A,||,n € N} <O,

then ~
Y: =B+ Z Ap - A1 Big (2)

k=1

is the unique (in distribution) causal strictly stationary
solution of (1) (and the series converges with probability
one).

Note: [|A|| := supp=1 |AX
norm of the vector x.

, Where |x| is the Euclidean

Under condition (i), v for the sequence {A,} can also
be expressed as v = liM,—oc = IN[|A1 -+ A,]|.

MaPhySto Workshop 9/04
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Corollary (Case d =1)

Ifd=1 and EInt|A;| < oo, then EIn|A;| < o and so,
by the strong law of large numbers,

1
vy= Ilim —In|A1---Ax| = EIn |A;1].

n—oo 1,

(Unfortunately there is no simple explicit expression for
~v when d > 1.)

Hence if d =1, —oo < EIn|A1| <0, and EInT |B1| < oo,
then the unique SS causal solution of (1) is given by

(2).

Theorem 5 (GARCH(1,1) with ag > 0, a;,3; > 0, and
P(Eﬁf — O) — O)

A necessary and sufficient condition for existence of a
causal SS solution of the GARCH equations (which is
necessarily unique) is

Ein(aief + B1) < 0. (3)
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Parameter Estimation for Finite-Variance GARCH Models

Qur model is

Zt — ht €t, {E’t} ~ IID(O 1)

p q
he=ao+ Y @Zi,+ ) Bihii,
=1 1=1
ag >0, a;,08;, 20 for y > 1, and

p q
ZOC@'_ -+ Zﬁi < 1.
=1 =1

For modeling purposes it is usually assumed in addition
that either

with

e: ~ N(0O,1),

or that
L/
et ~ ty, v >2,

v — 2
where t, denotes Student's ¢t-distribution with v degrees
of freedom. Other distributions for e; can however be
used.

MaPhySto Workshop 9/04
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4. ARCH and GARCH Models (cont)

Note:

In the analysis of empirical financial data such as per-
centage daily stock returns (defined as 100In(F;/Fi—1),
where P, is the closing price on trading day t), it is of-
ten found that better fits to the data are obtained by
using the heavier-tailed Student’'s t-distribution for the
distribution of Z; given {Zs,s < t}.

The “persistence of volatility” (large (small) fluctua-
tions in the data tend to be followed by fluctuations of
comparable magnitude) is reflected by GARCH models
through the correlation in the sequence {h;} of condi-
tional variances.

MaPhySto Workshop 9/04
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Example (Fitting a GARCH model to stock returns.)

The top graph shows the percentage daily returns of
the Dow-Jones Industrial Index for the period July 1st,
1997, through April 9th, 1999, contained in the file
E1032. TSM. The dgraph suggests that there are sus-
tained periods of both high volatility (in October, 1997,
and August, 1998) and of low volatility in between.
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The sample autocorrelation function of this series, has
very small values, however the sample autocorrelations
of the absolute values and squares of the data are sig-
nificantly different from zero, indicating dependence in
spite of the lack of autocorrelation. These properties
suggest that an ARCH or GARCH model might be ap-
propriate for this series.
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4. ARCH and GARCH Models (cont)

T he model,

Yi = a+ Z,

where {Z;} is Gaussian-driven GARCH(p, g) can be fitted
using ITSM as follows.

Open the project E1032. TSM and click on the red but-
ton labeled GAR at the top of the ITSM screen. In the

resulting dialog box enter the desired values of p and g,
e.g. 1 and 1 for GARCH(1,1).

With Use normal noise selected, click on 0K and then
click on the red MLE button. Subract the sample mean,
which will be used as the estimate of a (unless you wish
to assume that the parameter a is zero).

The GARCH Maximum Likelihood Estimation box will then
open. When you click on 0K the conditional likelihood
Mmaximization will proceed.
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4. ARCH and GARCH Models (cont)

Denoting by {Z;} the (possibly) mean-corrected obser-
vations, the program ITSM maximizes the likelihood of
Zﬁl....,Z;1 conditional on the known values Zl....,Zp,
and with assumed values QO for each Z;, t < 0, and &2
for each hs, t < 0, where &2 is the sample variance of

{Z1,...,Z,}. In other words the program maximizes
T 1 Z
L{ao,...,ap, B1,...,34) = H —C)( f) ,
Tt at
t=p+1
with respect to the coefficients ag,...,ap and B1,...,3,,

where ¢ denotes the standard normal density, and the
standard deviations o; = vhs, t > 1, are computed from
the GARCH recursions with Z; replaced by Z;, and with
Z; =0 and h; = 67 for t < 0.
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4. ARCH and GARCH Models (cont)

Comparison of models with different orders p and g can
be made with the aid of the AICC, which is defined in
terms of the conditional likelihood L as

n

AICC := -2

nL+2(p+qg+2)n/(n—p—q—3).

n—p

The factor nﬁp multiplying the first term on the right

has been introduced to correct for the fact that the
number of factors in he conditional likelihood is only

n — p. Notice also that the GARCH(p,q) model has
p+ g+ 1 coefficients.
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4. ARCH and GARCH Models (cont)

Estimated mean:
a = 0.0608

Minimum-AICC Gaussian GARCH model for Z; = Y; — a:
GARCH(1,1) with

&o = 0.1300,41 = 0.1266, 3, = 0.7922,

AICC value = 1469.02.

The bottom graph shown earlier shows the correspond-

ing estimated conditional standard deviations, o; :f\/E,
which clearly reflect the changing volatility of the series
{Y;}. This graph is obtained from I'TSM by clicking on
the red SV (stochastic volatility) button.
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4. ARCH and GARCH Models (cont)

Model-checking:

Under the fitted model, the GARCH residuals, {Z;/5:},
should be approximately IID N(O,1).

Check independence: Sample ACF’'s of the absolute val-
ues and squares of the residuals (fifth red button at the
top of the ITSM window) look OK.

Check normality: Garch>Garch residuals> QQ-Plot(normal)
should give approximately a straight line through the
origin with slope 1. But deviations are large for large
values of \Z\, suggestng a heavier-tailed model, e.g. one
with conditional t-distribution. Jarque-Bera test for nor-
mality has p-value=.00000 to 5 decimal places - reject
normality!
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4. ARCH and GARCH Models (cont)

Fitting a t-GARCH Model:

To fit a t-GARCH model the conditional likelihood is
replaced by

| | S oot L o /v
L(ag,...,ap,B1,...,8q V) = ﬁ v Ztﬁ .

Maximization is now carried out with respect to the
coefficients ap, ..., ap, B1, .- -, B4 and the degrees of free-

£ £ 4 40

dom v of the t-density, t,.

Proceed as before but select t-distribution for noise
in each of the dialog boxes where it appears.

Good idea to initialize the coefficients by first fitting
a Gaussian GARCH model and then optimizing with t-
distributed noise.
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4. ARCH and GARCH Models (cont)

Estimated mean:
a = 0.0608

Minimum-AICC t-GARCH model for Z; = Y; — a:
t-GARCH(1,1) with

do = 0.1324 a4, = 0.0672,3; = 0.8400,7 = 5.714

AICC value = 1437.89.
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4. ARCH and GARCH Models (cont)

Model-checking:

Under the fitted model, the GARCH residuals, {Z;/5;},
should be approximately IID and t-distributed with 5.714
degrees of freedom.

Check independence: Sample ACF’s of the absolute val-
ues and squares of the residuals (fifth red button at the
top of the ITSM window) look OK.

Check t-distribution: Selecting the 6th red button at
the top of the ITSM window will give a gqg plot using
quantiles of the t-distribution with the fitted degrees of
freedom (5.714 in this case). The graph is closer to
linear than for the Gaussian model.

The improvement in AICC strongly suggests the supe-
riority of the ¢-driven model.
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4. ARCH and GARCH Models (cont)

The estimated mean is a = 0.0608 as before, and the
minimum-AICC GARCH model for the residuals, Z;, =
Y; —a, is the GARCH(1,1) with estimated parameter
values

do = 0.1324, &1 = 0.0672, 31 = 0.8400,7 = 5.714,

and an AICC value (as in (10.3.17) with g replaced by
g+1) of 1437.89. Thus from the point of view of AICC,
the model with conditional t-distribution is substantially
better than the conditional Gaussian model. T he sample
ACF of the absolute values and squares of the GARCH
residuals are much the same as those found using Gaus-
sian noise, but the qq plot (obtained by clicking on the
red QQ button) is closer to the expected line than was
the case for the model with Gaussian noise. []
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4. ARCH and GARCH Models (cont)
ARMA and regression models with GARCH errors

ITSM can be used to fit an ARMA or regression model
with GARCH errors by using the procedure described in
the last lecture to fit a GARCH model to the residuals
{Z;} from the ARMA (or regression) fit.

Example Open the file SUNSPOTS. TSM, subtract the
mean and use the option Model>Estimation>Autofit with
the default ranges for p and gq.

This gives an ARMA(3,4) model for the mean-corrected
data.

Clicking on the second green button at the top of the
ITSM window, we see that the sample ACF of the
ARMA residuals is compatible with iid noise.

However the sample ACF’'s of the absolute and squared
residuals suggest dependence.
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To fit a GARCH(1,1) model to the ARMA residuals:

(i) Click on the red GAR button, enter the value 1 for
both p and g and click OK.

(i) Click on the red MLE button, click 0K in the dia-
log box, and the GARCH ML Estimates window will open,
showing the estimated parameter values.

(iii) Repeat the steps in the previous sentence two more
times and the window will display the following ARMA(3,4)
model for the mean-corrected sunspot data and the fit-
ted GARCH model for the ARMA noise process {Z;}.

Xy =2.4637411 —2.248%4; o+ . (5773 + Z; — 948741

—.2967;_ >+ .3137;_3+ .1367;_4,
where
Zr = \/ hiey
and
h

MaPhySto WorkshoprI(f
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4. ARCH and GARCH Models (cont)

The AICC value for the GARCH fit (805.12) should
be used for comparing alternative GARCH models for
the ARMA residuals. The AICC value adjusted for the
ARMA fit (821.70) should be used for comparison with
alternative ARMA models (with or without GARCH noise).
Standard errors of the estimated coefficients are also
displayed.

Simulation using the fitted ARMA(3,4) model driven
by GARCH(1,1) noise can be carried out by selecting
the option n Model>Simulate. If you retain the default
settings in the ARMA Simulation dialog box and click 0K
you will see a simulated realization of the model for the
original data in SUNSPOTS. TSM.
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4. ARCH and GARCH Models (cont)

The AICC value for the GARCH fit (805.12) should
be used for comparing alternative GARCH models for
the ARMA residuals. The AICC value adjusted for the
ARMA fit (821.70) should be used for comparison with
alternative ARMA models (with or without GARCH noise).
Standard errors of the estimated coefficients are also
displayed.

Simulation using the fitted ARMA(3,4) model driven
by GARCH(1,1) noise can be carried out by selecting
the option n Model>Simulate. If you retain the default
settings in the ARMA Simulation dialog box and click 0K
you will see a simulated realization of the model for the
original data in SUNSPOTS. TSM.
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5. Forecasting with GARCH

Since the GARCH process {Z;} is a martingale difference
sequence,

E(Ziym|Zs,s <t) =0 VYm. (1)

The past is therefore of no help in predicting Z;4; and
the best (in terms of MSE) predictor is the same as the
best linear predictor.

However
E(Z21|Zsy s <t) = hyy1 = ao—I—Za Zir1it Y Biberii,

so that the past is valuable for forecasting the future
variance of {Z;}. (This is in contrast with the case
{Z:} ~ 1ID(0,0°), when E(Z7, |Zs,s < t) = E(Z7,) =

52.)
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5. Forecasting with GARCH (cont)

Calculation of E(Zfﬂ\ﬂ) for an ARCH(1) process:
E(Zf+1|Ft) = hiy1 = ao + a1 Z7
E(ZZ 5| Ft) = Elhsy2e] 5| Fi]
= E[E(hit2€7 5les, s <t + 1)|Fi]

= Elhi42|Fi]

= Elao 4+ a1 22| F]

= ao(1l 4+ a1) + a2 Z?.

Repeating this argument gives

E(Z2,|F) =aoc(l+ o1+ +af ')+ k22
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6. IGARCH
IGARCH

It
(1 -08(2) —a(z)) = (1 = B)¢(z) and ¢(1) # 1,

i.e. @(B)VZQ = ag+ (1 — B(B))W.. (1)

then {Z;} is said to be IGARCH(p, q) (Engle and Boller-
slev, Econometric Reviews 5, 1-50, 81-87, 1986).

Bougerol and Picard (J.Econometrics 52, 115-128, 1992)
showed that if the distribution of e; has unbounded sup-
port and no atom at zero then there is a unique station-
ary causal solution for {Z;} in this case, but EZ? = cc.

In practice when fitting GARCH models it is often found
that (1) 4+ 3(1) ~ 1, supporting the practical relevance
of the IGARCH model even though EZ? = occ.
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7. Stochastic Volatility Models

These differ from GARCH models by taking h; to depend
on unobserved or “latent” variables. The most popular
is the log-normal SV model (Taylor, 1986, Modelling
financial time series, Wiley).

Zt — h,tE.’.t, {E’t} ~ [ID N(O.. 1)..
INhe =0+ 1IN he1 +me-1, {me} ~ 1D N(O,02),

where {e:} and {n:} are independent.

Assume |y1| < 1. Then {¢ :=Inh;:} is a Gaussian AR(1)
process with

and
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7. Stochastic Volatility Models (cont)

Properties of Z;

(i) {Z:} is strictly stationary.
(i) E(Z]) = E(e})E exp(rt:/2)

O if r is odd,

T2, (20 — 1)] exp (22 4 #2205 if 7 = 2m,

(iii) Kurtosis:
EZ} 2
_—2t2:3exp( i 2)23.
(EZf) 1 —~1

As in Gaussian GARCH models, the tails are heavier
than normal.
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7. Stochastic Volatility Models (cont)

(iv) ACVF of {Z?}:
Define F; = o(es,ns, s <t). Then

{Z} is an Fi-martingale-difference sequence since
E(Zt\}_t—l) — '\/EE(ef.‘}_t—l) = 0.

{Z:} has finite fourth moments by (ii).
If t > s,

E(Z2Z2|Fi_1) = hshe?E(e?|Fi_1) = hshie?.
and so

E(Z27Z?%) = exp(ls + 44).,

where {/¢;} is the causal stationary AR(1) process defined
by

b = vo + v1bi—1 + n:.

MaPhySto Workshop 9/04

70



7. Stochastic Volatility Models (cont)

So for h > 0,
Cov(ZZ ,, Z7) = Eexp(bynlt) — Eexp(beyn)E exp(f).

= exp[2us + Jf(l + f}f? | — exp[2u, + O‘% .
From (ii),

Var(Z7) = 3exp(2ue + 207) — exp[2ue + of].

Hence, for h = 0,

I
exp (o2~ —1
pra(h) = ST )

3exp(of) — 1

__orexp(af)
3exp(o2) — 11"

This approximation is the ACF of an ARMA(1,1) so
the SV model has some resemblance to a GARCH(1,1)
process. Notice that if v1 < 0 the ACF of a SV model
can have negative values.
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7. Stochastic Volatility Models (cont)
[The ACVF of an ARMA(1,1) process:

Yi — oY1= Zi+0Z,_1, {Z} ~WN(0.02.

Multiplying each side by Y;_,;, 7 = 0,1,2,..., taking ex-
pectations and using the expansion,

Yi=Zi+ @+ P)Zi1+ -,
gives the equations,
7(0) — dv(1) = 02(1 + (6 + ¢)),
v(1) — ¢v(0) = 070,
Y(J) =y —-1)=0, j=2,3,...,

with solution

O+ ¢)?
v(0) = o [1—|— G+ ¢) } , v(1) =07 [9—|—(;}—|—

1 — @2
and

~ Ay — ~s / F—1 —
MaPhySto Worksﬁog‘é%4_ ! (1)(-")3 s J 2: 33 IR ]
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7. Stochastic Volatility Models (cont)

(v) The process {In Z?} :
INnZ2 = 4 + Ine?

Since {In Z?} is the sum of the iid sequence {Ine?} and
the independent AR(1) process {/¢:}, it isan ARMA(1,1)
process. Ife; ~ N(0,1) then Elnef = —1.27 and Var(Ine?
—=4.93. (The distribution of Ine? has a very long left
tail.) Hence,

2_ I~

a
2(h) = 7’1 ph£0.
pin z2(h) o2+ 4.03 =
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7. Stochastic Volatility Models (cont)

[ AR(1) with observation noise

If X =Y+ Z;, where {Y:} is an AR(1) process, {Z:} is
white noise and Y, 1 Z; Vs, t,

then the spectral density of {X;} is

2 2
01 05

fx(w) = 27(1 4+ ¢2 — 2¢pcosw) b 27

. a+ bcosw
14+ ¢2 —2¢pcosw’

showing that {X;} is an ARMA(1,1) process.]
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7. Stochastic Volatility Models (cont)

Estimation for SV Models

Zy = Vher, {edy ~1ID N(0, 1),

INh: =0 +v1INnhi—1 +ne—1, {m} ~IID N(O,0o?),

The parameters to be estimated are o2,v9 and v;. We
know that {Z?} resembles an ARMA(1,1) process and
we have explicit formulae for the moments, u = EZ?
and y(h) =Cov(Z7,,, Z7) in terms of 02,70 and 71.

A method of moments procedure for estimating the pa-
rameters would be to equate p, v(0) and (1) to the cor-
responding sample estimates u, 5(0) and (1) respec-
tively and to solve the resulting three nonlinear equa-
tions for o2, and ~1. However this method has low
asymptotic efficiency (see TSTM p.253).
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7. Stochastic Volatility Models (cont)
(i) Generalized Method of Moments (GMM)

This method was proposed by Hansen (1982), Econo-
metrica 50, 1029-1054, in an attempt to improve the
efficiency of the moment method.

Instead of using exactly p moment equations, where p is
the number of parameters to be estimated, he suggested
specifying a larger number of equations.

Since these cannot all be simultaneously satisfied, the
parameters are estimated by minimizing a specified norm
of the vector of errors.

In our particular case this method can be implemented
by considering the s-dimensional vector,

| io—p
7(0) —~(0)

 A(s—2)—(s-2)

g(0,X,) =
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7. Stochastic Volatility Models (cont)

The GMM estimate of @ = (¢?,~0,71)" is the value which
minimizes
g'Wae,

where W, is an sx s matrix of weights. Hansen computes
the asymptotic distribution of the estimators and it turns
out that the optimal weighting matrix is the inverse of
the covariance matrix S(0) of g.

He proposes the iterative scheme:

1. Minimize g'W,g with W,, = I, (the s x s identity
matrix).

2. Use the estimated 6 to compute S(0).

3. Obtain a new estimate of 8 by minimizing g'W,g
W, = S(0)~! and return to Step 2.
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7. Stochastic Volatility Models (cont)

Theorem (Asymptotic behavior of GMM)
(see Hamilton, Time Series Analysis, chap.14). If

g is differentiable in 8,

and if the GMM estimator Qn of 6 is computed using a
positive definite weighting matrix S-! such that S,, == S

~n

and if for any 6,, converging in probability to 8o,

e R e Y 2

9910, 99510,
and the sxp matrix D' has linearly independent columns,
then the GMM estimators satisfy

'\/H(én — 90) d_> N(O V)
where
V = [Ds D1t
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7. Stochastic Volatility Models (cont)
(ii) Maximization of the Gaussian (quasi-)Likelihood (MGL)

T he equations defining the SV model,

Zr = vVhier, {e:} ~1ID N(O,1),

INnhi =~v0+~1Inhi—1 +n-1, {m} ~ 1D N(O,0?),
can be rewritten in the state-space form,

Y :=In(Z?) =t + In(e?), {e:} ~1ID N(O,1),

by = o+ v1l—1 + ni—1, {me} ~IID N(O,0%).

If {Y,*} were Gaussian, we could write the likelihood of
Yl* ..... ,Y," in terms of the best linear one-step predictors
Y* and their mean square errors {v;_1}. These can be
computed (for any given parameter values o, 71 and
o2) using the Kalman recursions, and maximized with
respect to the parameters to get the MGL estimators
of v, v1 and o?.
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(iii) Estimation using the Whittle likelihood

Another estimation procedure is based on the Whittle
approximation to the likelihood for Y; = In Z? was con-
sidered by Breidt, Crato, Lima (1998). Instead of max-
imizing the MGL, they suggest minimizing

n—1

Z In(wj)/g(wj)a

where I,,(w;) and g(w;) are the periodogram and model
spectral density of Y; at the Fourier frequency w; =
2jm/n respectively. In this case the spectral density of
Y; has a rather simple form,

9(w) = finn(w) +4.93/(27)

where finn (w) is the spectral density of the Inh; pro-
cess. Notice that in the case Inhs is a long memory
process, such as a fractionally integrated process,then
this spectral density has a very simple form.
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7. Stochastic Volatility Models (cont)

(iv) Simulation Based Estimation

Since computation of the likelihood function function re-
quires an n-fold integration over the latent process, an
explicit formula for the likelihood does not exist. How-
ever, one can compute this integral using simulation
based methods such as MCMC and importance sam-
pling. The latter will be discussed in more detail in the
section on parameter-driven state-space models.
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8. Regular variation and application to financial TS models
8.1 Regular variation — univariate case
Def: The random variable X is regularly varying with index a. if
P(X|> t X)/P(]X|>t) - x= and P(X> t)/P(|X|>t) —p,
or, equivalently, if
P(X> t X)/P(|X|>t) —» px and P(X< -t X)/P(|X|>t) > gx=,

where 0 <p <1 and p+qg=1.
Equivalence:
Xis RV(a) if and only if P(X € te) /P(|X|>t)—, u(e)

(—, vague convergence of measures on R\{0}). In this case,

u(dx) = (pa x-11(x>0) + qa. (-x)11(x<0)) dx

Note: w(tA) =t* u(A) for every t and A bounded away from O.
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8.1 Regqular variation — univariate case (cont)

Another formulation (polar coordinates).
Define the £ 1 valuedrv e, PO=1)=p,PO=-1)=1-p=aq.
Then

Xis RV(a) if and only if

P(IX|>t x, X/| X|eS)
P(IX[>1)

—>X*P(@eS)

or

P(| X|>tx,X/| X|eo)
P(| X|>1)

—, X "P(0 o)

(—, vague convergence of measures on S%= {-1,1}).
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8.2 Regular variation — multivariate case

Multivariate regular variation of X=(X,, ..., X): There exists a
random vector 8 € S™1 such that

P(X|> tx, X/|X| € ¢ )/P(IX|>t) >, x*“P(0 € o)
(—, vague convergence on S™1!, unit sphere in R™) .
* P( 6 e9) is called the spectral measure

e a IS the index of X.

Equivalence:
P(X ete)

P(X]|>1)

—, u(e)

u Is a measure on R™ which satisfies for x > 0 and A bounded away
from O,
n(xB) = x=* u(xA).
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8.2 Regular variation — multivariate case (cont)

Examples:
1. If X;>0and X,> 0 are iid RV(a), then X= (X, X,) Is
multivariate regularly varying with index a and spectral distribution

P(6=(0,1))=P(06=(1,0)) =5 (mass on axes).

Interpretation: Unlikely that X; and X, are very large at the same
time.

o |
<

Figure: plot of
(X1, X,p) for realization

of 10,000. |t

30
!

X

10
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2. 1f X, = X,>0, then X= (X, X,) is multivariate regularly varying
with index o and spectral distribution

P(0=(1N2,1N2))=1.

3. AR(1): X=.9 X, + Z;, {Z}~IID symmetric stable (1.8)
+
et of 6 {_(1,.9)/Sqrt(1.81), W.P. .9898

+0,1), W.P. .0102

30
|

Figure: plot of (X,

20
|

Xi.1) for realization
of 10,000.

x_{t+1}

10
|

0
|

-10
|
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8.3 Applications of multivariate regular variation

e Domain of attraction for sums of iid random vectors
(Rvaceva, 1962). That is, when does the partial sum

n
-1
a2 X,
t=1
converge for some constants a,?

* Spectral measure of multivariate stable vectors.

* Domain of attraction for componentwise maxima of iid
random vectors (Resnick, 1987). Limit behavior of

n
-1
X
a, VA
* Weak convergence of point processes with iid points.

e Solution to stochastic recurrence equations, Y =AY, ;+ B,

* \Weak convergence of sample autocovariances.
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8.3 Applications of multivariate regular variation (cont)

Linear combinations:

X ~RV(a) = all linear combinations of X are regularly varying

l.e., there exist o and slowly varying fcn L(.), s.t.
P(c™X> t)/(t*L(t)) —»w(c), exists for all real-valued c,

where

w(tc) = tow(c).

Use vague convergence with A_.={y: c'y > 1}, i.e.,

P(XetA) P(c'X>1)
teLit)  P(X|>t)

— WA,) = w(c),

N

where t*L(t) = P(|X| > t).
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8.3 Applications of multivariate regular variation (cont)

Converse?

X ~RV(a) < all linear combinations of X are regularly varying?

There exist o and slowly varying fcn L(.), s.t.

(LC) P(c™X> t)/(t“L(t)) »w(c), exists for all real-valued c.

Theorem (Basrak, Davis, Mikosch, 02). Let X be a random vector.

1. |If X satisfies (LC) with a non-integer, then X is RV(a).

2. If X > 0 satisfies (LC) for non-negative ¢ and a is non-integer,
then X'is RV(a).

3. If X > 0 satisfies (LC) with oo an odd integer, then X is RV(a).
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8.4 Applications of theorem

1. Kesten (1973). Under general conditions, (LC) holds with L(t)=1

for stochastic recurrence equations of the form
Y=A Yt By (A, BY ~ 1D,
A, dxd random matrices, B,random d-vectors.

It follows that the distributions of Y,, and in fact all of the finite dim’l

distrs of Y, are regularly varying (if a is non-even).

2. GARCH processes. Since squares of a GARCH process can be

embedded in a SRE, the finite dimensional distributions of a

GARCH are regularly varying.
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8.5 Examples

Example of ARCH(1): X&=(agto, X2,)Y2Z, {Z}~1ID.

a found by solving E|o, Z2|*? = 1.

a, | .312 577 100 157
a | 800 4.00 200 1.00

Distr of 0:

P® < o) = E{||(B,2)I|* I(arg((B,2)) < )}/ E||(B,2)||*
where

PB=1)=P(B=-1)=5
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x_{t+1}

8.4 Examples (cont)

Example of ARCH(1): og=1, a;=1, a=2, X=(og+0o, X2, ,)2Z,, {Z}~1ID

Figures: plots of (X, X,;) and estimated distribution of 8 for
realization of 10,000.

20

10

-10

-20

0.06 008 0.10 0.2 014 0.16 0.18
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8.4 Applications of theorem (cont)

Example: SV model X, = o, Z,
Suppose Z, ~ RV(a) and

loge? = > wie ;, > ' <o{e}~1IDN(0,G).

-

Then Z =(Z,,...,Z,)" is regulary varying with index a and so is
X,= (X,...,X) =diag(cy,..., o,) Z,

with spectral distribution concentrated on (£1,0), (0, £1).

Figure: plot of
(X, Xy,1) fOr

realization of 10,000.
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8.6 Extremes for GARCH and SV processes

Setup
= X =0,Z, {Z}~1D(0,1)
= X, ISRV (o)
= Choose {b}s.t. nP(X;>Db,) —1

Then
P"(b*X, <X) > expfx“}.

Then, with M = max{X,, ..., X/},

(i) GARCH:
P(b*M_<x)—exp{yx“},
yis extremal index (0 <y<1).

(i) SV model:
P(b:*M_<x) —exp{-x°},

extremal index y = 1 no clustering.
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8.6 Extremes for GARCH and SV processes (cont)

() GARCH: P(b'M, <x) —expfyx 3}
(i) SV model: P(b;*M_ <x) —>exp{-x}

Remarks about extremal index.
() vy <1implies clustering of exceedances
(i)  Numerical example. Suppose c is a threshold such that
P"(b,*X, <¢)~.95
Then, if y=.5,P(0;*M_<c) ~(.95)°=.975
(i) 1/yis the mean cluster size of exceedances.
(iv) Use v to discriminate between GARCH and SV models.

(v) Even for the light-tailed SV model (i.e., {Z;} ~IID N(0,1), the
extremal index is 1 (see Breidt and Davis 98)
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8.6 Extremes for GARCH and SV processes (cont)

20

10
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8.7 Summary of results for ACF of GARCH(p,q) and SV models

GARCH(p,q)
ae(0,2):

(ﬁx (h))h=1,...,m L)(Vh /VO)h=1,...,m’

ae(2,4):
(N (1) B (/)

o€ (4,0):

(nllzﬁx (h))hzl,...,m —d_)y;(l (O)(Gh )hzl,...,m'

Remark: Similar results hold for the sample ACF based on |[X| and
X2.
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8.7 Summary of results for ACF of GARCH(p,g) and SV models (cont)

SV Model
ae(0,2):
(n/Inn}*“p, (h)—i— 610“;1“& S
foull, S
oe(2, ):

(nllzfs x (h) )hzl,. . L>Y;<1 (O)(Gh )hzl,. m’
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Sample ACF for GARCH and SV Models (1000 reps)

10000

(a) GARCH(1,1) Model, n

L]

LLliidlidy

8
8

i

10000

(b) SV Model, n

90°0-

99
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Sample ACF for Squares of GARCH (1000 reps)

10000

(a) GARCH(1,1) Model, n

100000

b) GARCH(1,1) Model, n

100
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Sample ACF for Squares of SV (1000 reps)

(c) SV Model, n=10000

=3
o

N Ny

(d) SV Model, n=100000

0.0 0.05 0.10 0.15

0.0 0.01 0.02 0.03 0.04
1 1 1

Plidiiisddaaaddiidiiy
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Example: Amazon returns May 16, 1997 to June 16, 2004.

:W wwwwfmwpwWHMMWMMWM WM‘J MWWM%‘MHWMW{WWMMMW“’MWWWW"“WWW
20| |
T T — .

5 ©» ® 20 2 32 B 40 0o 5 ®©» ® 20 2 3 B 40

MaPhyStu VVUIRDIIUY /U4 102



Wrap-up

* Reqgular variation is a flexible tool for modeling both dependence

and tail heaviness.

» Useful for establishing point process convergence of heavy-tailed

time series.

» Extremal index y < 1 for GARCH and y =1 for SV.

Unresolved issues related to RV< (LC)
°o=2n7?

* there is an example for which X, X, >0, and (c, X,) and (c, X,)
have the same limits for all ¢ > 0.

« o = 2n-1 and X 4 0 (not true in general).
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