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GARCH(p,q) on N0

(εt)t∈N0 i.i.d., P (ε0 = 0) = 0 (1)

α0 > 0, α1, . . . , αp ≥ 0, β1, . . . , βq ≥ 0.

(σ2
0, . . . , σ

2
max(p,q)−1) independent of {εt : t ≥ max(p, q)− 1}

Yt = σtεt, (2)

σ2
t = α0 +

p∑
i=1

αiY
2
t−i︸ ︷︷ ︸

ARCH

+

q∑
j=1

βjσ
2
t−j

︸ ︷︷ ︸
GARCH

, t ≥ max(p, q). (3)

(Yt)t∈N0 GARCH(p,q) process
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GARCH(p,q) on Z

(1), (2) and (3) for t ∈ Z, and

εt independent of

Yt−1 := {Ys : s ≤ t− 1}.

ARCH(p): Engle (1981)

GARCH(p,q): Bollerslev (1986)

Generalized AutoRegressive Conditional Heteroscedasticity
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Why conditional volatility?

Suppose σ2
t ∈ Yt−1,

or equivalently σ2
t ∈ εt−1, ∀ t ∈ Z

(the process is “causal”)

Suppose Eεt = 0, Eε2
t = 1, EYt <∞. Then

E(Yt|Yt−1) = E(σtεt|Yt−1) = σtE(εt|Yt−1) = 0,

V (Yt|Yt−1) = E(σ2
t ε

2
t |Yt−1) = σ2

tE(ε2
t |Yt−1) = σ2

t

Hence σ2
t is the conditional variance
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Markov property

(a) GARCH(1,1):

(σ2
t )t∈Z is a Markov process, since

σ2
t = α0 + (α1ε

2
t−1 + β1)σ2

t−1

(σ2
t , Yt)t∈Z is Markov process, but (Yt)t∈Z is not.

(b) GARCH(p,q), max(p, q) > 1

(σ2
t )t∈Z is not Markov process

(σ2
t , . . . , σ

2
t−max(p,q)+1)t∈Z is Markov process.
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Strict stationarity - GARCH(1,1)

σ2
t = α0 + α1σ

2
t−1ε

2
t−1 + β1σ

2
t−1

= (α1ε
2
t−1 + β1)σ2

t−1 + α0

=: Atσ
2
t−1 + Bt (4)

(At, Bt)t∈Z is i.i.d. sequence.

(4) is called a random recurrence equation.

σ2
t = Atσ

2
t−1 + Bt

= AtAt−1σ
2
t−1 + AtBt−1 + Bt

...

= At · · ·At−kσ
2
t−k−1 +

k∑
i=0

At · · ·At−i+1Bt−i︸︷︷︸
=α0

. (5)

Let k →∞ and hope that (5) converges.
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Strict stationarity - continued

Suppose γ := E logA1 < 0

1

k
(logAt + logAt−1 + . . . + logAt−k+1)︸ ︷︷ ︸

random walk!

k→∞−→ E logA1 a.s.

=⇒ a.s.∀ ω ∃n0(ω) :
1

k
log (At · · ·At−k+1) ≤ γ/2 < 0 ∀k ≥ n0(ω)

=⇒ |At · · ·At−k+1| ≤ ekγ/2 ∀k ≥ n0(ω)

Hence (5) converges almost surely.
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Theorem: (Nelson, 1990)
If

E log(α1ε
2
1 + β1) < 0, (6)

then GARCH(1,1) has a strictly stationary solution.
Its marginal distribution is given by

α0

∞∑
i=0

(α1ε
2
−1 + β1) · · · (α1ε

2
−i + β1) (7)

If β1 > 0 (i.e. GARCH but not ARCH) and a strictly stationary
solution exists, then (6) holds.

Remark:
If E log+ |A1| <∞, then

γ = inf

{
E

(
1

n + 1
log |A0A−1 · · ·A−n|

)
: n ∈ N

}
is called the Lyapunov exponent of the sequence (An)n∈Z.
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When is EY 2
t <∞?

σ2
0 = α0

∞∑
i=0

(α1ε
2
−1 + β1) · · · (α1ε

2
−i + β1)

Eσ2
0 = α0

∞∑
i=0

(
E(α1ε

2
1 + β1)

)i
<∞

⇐⇒ α1Eε
2
1 + β1 < 1

EY 2
t = Eσ2

t Eε
2
t

So stationary solution (Yt)t∈Z has finite variance iff

α1Eε
2
1 + β1 < 1
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Tail behaviour of stochastic recurrence equations

Theorem (Goldie 1991, Kesten 1973, Vervaat 1979)
Suppose (Zt)t∈N satisfies the stochastic recurrence equation

Zt = AtZt−1 + Bt, t ∈ N,

where ((At, Bt))t∈N, (A,B) i.i.d. sequences. Suppose ∃κ > 0
such that
(i) The law of log |A|, given |A| 6= 0, is not concentrated on rZ
for any r > 0
(ii) E|A|κ = 1
(iii) E|A|κ log+ |A| <∞
(iv) E|B|κ <∞
Then Z

d
= AZ+B, where Z independent of (A,B), has a unique

solution in distribution which satisfies

lim
x→∞

xκP (Z > x) =
E[((AZ + B)+)κ − ((AZ)+)κ]

κE|A|κ log+ |A|
=: C ≥ 0

(8)
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Tail behaviour of GARCH(1,1)

Corollary: Suppose ε1 is continuous, P (ε1 > 0) > 0 and all of
its moments exist.
Further, suppose that

E log(α1ε
2
1 + β1) < 0.

Then ∃κ > 0 and C1 > 0, C2 > 0 such that for the stationary
solutions of (σ2

t ) and (Yt):

lim
x→∞

xκP (σ2
0 > x) = C1

lim
x→∞

x2κP (Y0 > x) = C2

Mikosch, Stărică (2000): GARCH(1,1)

de Haan, Resnick, Rootzén, de Vries: ARCH(1)
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Extremal behaviour of GARCH(1,1)

Mikosch and Stărică (2000) and de Haan et al. (1989) gave ex-
treme value theory for GARCH(1,1) and ARCH(1).

Suppose a stationary solution (Yt)t∈N0 exists.

Let (Ỹt)t∈N0 be an i.i.d. sequence with Ỹ0
d
= Y0.

Then under the previous assumptions, ∃ θ ∈ (0, 1) such that for
a certain sequence ct > 0, t ∈ N:

lim
t→∞

P

(
max
i=1,...,t

Yi ≥ ctx

)
= exp(−θx−2κ), x ∈ R

lim
t→∞

P

(
max
i=1,...,t

Ỹi ≥ ctx

)
= exp(−x−2κ), x ∈ R.

The GARCH(1,1) process has an extremal index θ, i.e. ex-
ceedances over large thresholds occur in clusters, with an average
cluster length of 1/θ
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What can be done for GARCH(p,q)?

τt := (β1 + α1ε
2
t , β2, . . . , βp−1) ∈ Rp−1

ξt := (ε2
t , 0, . . . , 0) ∈ Rp−1

α := (α2, . . . , αq−1) ∈ Rq−2

Ip−1: (p− 1)× (p− 1) identity matrix
Mt: (p + q − 1)× (p + q − 1) matrix

Mt :=


τt βp α αq
Ip−1 0 0 0
ξt 0 0 0
0 0 Iq−2 0


N := (α0, 0, . . . , 0)′ ∈ Rp+q−1

Xt := (σ2
t+1, . . . , σ

2
t−p+2, Y

2
t , . . . , Y

2
t−q+2)′

Then (Yt)t∈Z solves the GARCH(p,q) equation if and only if

Xt+1 = Mt+1Xt + N, t ∈ Z (9)
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GARCH(p,q) - continued

(9) is a random recurrence equation. Theory for existence of
stationary solutions can be applied.

For example, if Eε1 = 0, Eε2
1 = 1, then a necessary and sufficient

condition for existence of a strictly stationary solution with finite
second moments is

p∑
i=1

αi +

q∑
j=1

βj < 1. (10)

(Bougerol and Picard (1992), Bollerslev (1986))

But stationary solutions can exist also if
p∑
i=1

α1 +

q∑
j=1

βj = 1.

A characterization for the existence of stationary solutions is
achieved via the Lyapunov exponent (whether it is strictly nega-
tive or not).
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GARCH(p,q) is White Noise

Suppose Eεt = 0, Eε2
t = 1 and (10). Then for h ≥ 1,

EYt = E(σtεt) = E(σtE(εt|Yt−1)) = 0

E(YtYt+h) = E(σtσt+hεt E(εt+h|Yt+h−1)︸ ︷︷ ︸
=0

) = 0

But (Y 2
t )t∈Z is not White Noise.

ut := Y 2
t − σ2

t = σ2
t (ε

2
t − 1)

Suppose Eu2
t <∞ and let h ≥ 1:

Eut = 0

E(utut+h) = E(σ2
t (ε

2
t − 1)σ2

t+h) E(ε2
t+h − 1) = 0

Hence (ut)t∈Z is White Noise
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The ARMA representation of Y 2
t

σ2
t = α0 +

p∑
i=1

αiY
2
t−i +

q∑
j=1

βjσ
2
t−j

Substitute σ2
t = Y 2

t − ut. Then

Y 2
t −

p∑
i=1

αiY
2
t−i −

q∑
j=1

βjY
2
t−j = α0 + ut −

q∑
j=1

βjut−j

Hence (Y 2
t )t∈Z satisfies an ARMA(max(p, q), q) equation.

Hence autocorrelation function and spectral density of (Y 2
t )t∈Z is

that of ARMA(max(p, q), q) process with the given parameters.
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Drawbacks of GARCH

• Black (1976): Volatility tends to rise in response to “bad
news” and to fall in response to “good news”

• The volatility in the GARCH process is determined only by
the magnitude of the previous return and shock, not by its
sign.

• The parameters in GARCH are restricted to be positive to
ensure positivity of σ2

t . When estimating, however, sometimes
best fits are achieved for negative parameters.
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Exponential GARCH (EGARCH) (Nelson, 1991)

(εt)t∈Z i.i.d.(0, 1)

Yt = σtεt

log(σ2
t ) = α0 +

p∑
i=1

αig(εt−i) +

q∑
j=1

βj log(σ2
t−j)

g(εt) = θεt + γ(|εt| − E|εt|), θ2 + γ2 6= 0

Most often, εt i.i.d. normal.

EGARCH models often fit the data nicely, but

• log(σ2
t ) has tails not much heavier than Gaussian tails (like

xce−dx
2
, x→∞, c, d > 0)

• tails of Yt are approximately like

P (Y0 > x) ≈ e−(log x)2
= x− log x, x→∞

• Neither (log σ2
t )t∈Z nor (Yt)t∈Z show cluster behaviour.

(Lindner, Meyer (2001))

Similar results for stochastic volatility models by Breidt and
Davis (1998)
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Other GARCH type models

Many many other GARCH type models exist, like

• MGARCH (multiplicative GARCH)

• NGARCH (non-linear asymmetric GARCH)

• TGARCH (threshold GARCH)

• FIGARCH (fractional integrated GARCH)

• · · ·
• · · ·

See Gouriéroux (1997) or Duan (1997) for some of them.
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