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Why continuous time models?

e Observations are quite often irregularly spaced.

e Observations quite often come in at a very high frequency.

Then a continuous time model may provide a better approxima-
tion to the discrete data than a discrete model.

Aim: Construct continuous time models with features of GARCH.



The diffusion approximation of Nelson

= w+ (A2 [+ 6o,
Y, = o0,¢,

where (&), )nen 1.1.d.: GARCH(1,1) process.

Set )
G, = Z Y,, neN
1=0

Then
Gn — Gn—l — Yna

so the increments of (G, )nen, are a GARCH process, i.e. (G)
is “accumulated GARCH”.

Question: Can we find a sequence of processes, whose incre-
ments on finer becoming grids are GARCH processes, such that
the processes converge in distribution to a non-trivial limit pro-
cess’



Setup:
Take grid width A > 0

1Gon = wGu—vn+ Onh hEnn, M EN,

h0(2n+1)h = wp + (h_l)\h- hg?zh + 5h) ' hO_?@h? n € Ny,

( hgnh>n€N0 1.1.d. N(O, h)
( ha(z), »Go) independent of ( z€un )nen

wh>0, )\hZO, 5h20-
Then ( 1Gun — 2G—1)n)nen is GARCH(1,1) process

G = .G, haf = hagh, nh <t <(n+1)h
defines ( Gy, o) for allt € Ry

Question: When does ( Gy, 107)>0 converge weakly to a
process (G, o%) as h | 0?

(weak convergence is in the space D(R.,R?) of cadlag functions,
endowed with the Borel sets of the Skorohod topology; weak con-
vergence of processes implies in particular convergence of finite
dimensional distributions)



Theorem: (Nelson, 1990)

Suppose
d
( 1Go, wop) = (Go,05), R 10O
Plo; > 0) =1

lim h_lwh —w >0
10

imh (1 -6, —\) =

lim 2h 1A = A* > 0
h10

Then ( 4G, ,0?) converges weakly as h | 0 to the unique solu-
tion (G, %) of the diffusion equation
dG, = o0,dB", (1)
do? = (w— 002)dt + \o? dB?, (2)
with starting value (Gy, 03), where (Bt(l))tzo and (Bt(z))tzo are
independent Brownian motions, independent of (G, 03).

If 20/X* > —1 and w > 0, then the solution (07);>¢ is strictly

stationary iff o, a (1 +20/)2, 2w/ \?)

Example: wy, = wh, 0, =1 — A\/h/2 —0h, A\, = \\/h/2



Interpretation:
The solution of (1) and (2) can be approximated by a GARCH
process in discrete time.

Observe:

e The stationary limiting process o2 has Pareto like tails.

e The limit (G, 0?) is driven by two independent Brown-
ian motions. The GARCH process has only one source of
randomness!

e The processes G and ¢ are continuous. But empirical volatil-
ity can exhibit jumps.

e Eistimation of the parameters of the diffusion limit and of the
discrete GARCH processes may lead to significantly different
results (Wang, 2002)

Further literature: Drost and Werker (1996), Duan (1997)



The COGARCH(1,1) process
Kliippelberg, Lindner, Maller (2004)

Recall discrete GARCH(1,1):

0 = wWHANY?  +60°_, = w+(6+ A2 )02,

n

. n—1 n—1 n—1
=w) []G+xr)+03 ][00+ 7))
1=0 j=1+1 7=0

:( /exp{ Zlogcﬂ—As }ds+a(2))

random walk
n—1

X exp { Z log(d + As?) }

J=0

7

rando;rn Walk

Y, = o0,, = 0, (Zej Z )

7=0

\ .

increment of random walk

Both appearing random walks are linked



Idea: Replace appearing random walks by Lévy processes
(= continuous time analogue of random walk)
Replace €; by jumps of a Lévy process L.

Recall: A stochastic process (L;)¢>¢ is a Lévy process iff

e it has independent increments:
for0<a<b<ec<d L;—L.and L,— L, are independent

e it has stationary increments:
the distribution of L;, s — L; does not depend on ¢

e it is stochastically continuous

e with probability one it has right-continuous paths with finite
left-limits (cadlag paths)

o [h=0as.



Examples

e Brownian motion (has normal increments)

e Compound Poisson process:
(en)nen 1.1.d. sequence, independent of (v, )nen 1.1.d. with ex-
ponential distribution with mean c

n

T, = Z’Un

j=1
Ny =max{n e Ny : T, <t}

N
Lt = E €
j=1

Note: All Lévy processes apart from Brownian motion have
jumps.
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Lévy-Kintchine formula

(L¢)¢>0 Lévy process:
Eett = Xl g e R,

32

XL(s) = iyLs—Tg§+/(ei3x—1—isxl{x<1})HL(daz), s € R.
R
e (v1,71,111) characteristic triplet
° TE > 0 Brownian part

o [I; Lévy measure:

/ 2?11 (dw) < oo, [Ty(dz) < oo
|z]<1

|z|>1
o If fm<1 2|11 (dz) < oo and 77 = 0: finite variation case.

52

X1(8) = iyr.08 — 755 + / (e — DI (dz) s €R.
R

Lo drift of L
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Jumps of Lévy processes

o AL, :=L;— L;_ jumps
e totally described by the Lévy measure

e [} infinite (not compound Poisson) = almost surely, (L;);>o
has infinitely many jumps in finite time intervals

® > st |AL| < 00 <= flx\<1 [z |11 (dx) < o0

o Always: > ., |ALs* < oo almost surely.
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COGARCH(1,1) - definition

For II;, # 0, 0 > 0, A > 0 define auxiliary Lévy process

X; = —tlogd — Z log(1 + i(ALS)Q), t>0.

)
0<s<t

For w > 0 and a finite random variable ¢ independent of (L;);>
define the volatility process

t
o = (w/ eteds + 08) e M=, >0,
0

Define COGARCH(],Z) (Gt>t20 by
Go=0, dGy=odLsy, t>0.

Note:
G jumps at the same times as L with jump size AG; = 0;A L.

13



Properties

(1) (Xi)i>p is spectrally negative Lévy process of finite vari-

ation with Brownian part 0, drift (—logd) and Lévy measure
I1 X.

[x((—oo, —a]) = Ir({ly] = V/(e* = 1)6/A}), x> 0.

Proof By definition: ~x = —logd, 7% =0,

[x((—o0,—z]) = E Z I{—log(1+()\/5)(AL3)2)§—:c}}

0<s<1
= B| 3 Ly >0
<S<

A
/ 2|1y (dz) = / log(1 + 5y2) [z(dy) < oo.
<1 lyl<4/(e"=1)d/A
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(2) (07)>0 satisfies the SDE
do? = wdt + oet=d(e ), t>0.

and
t A
0F = 0f + wt + logé/ olds + = Z o2(AL,)?, t>0.(3)
0 )
O<s<t
Proof It0’s Lemma. ]

Compare (3) to discrete-time GARCH(1,1):

2 2 2
],::a)__(1__5>0n—1_+'kgn—18n—1

n—1 n—1
— a%:0§+wn—(1—5)ZJZZ+)\ZJE@“§.
i=1 i=1
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(3) Stationarity: Suppose

A
/ log (1 + ngQ) [My(dx) < —logd (4)
R
9 d 9 d oo X . 9 P
Then o7 — 0 =w [, e *dt . Otherwise, oy — o0.
Proof Erickson & Maller (2004) 0
Example:

L compound Poisson with rate ¢ and jump distribution ¢
— I, = cP.

(4) <= cFElog (1—|—%52> < —logd

= —clogd + Elog(d + Xe?) < —log ¥

If c=1, then
(4) <= Elog(d + Xe?) < 0
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(4) (07)s>0 is a Markov process, hence (07);> is strictly sta-

. d
tionary for o3 = 0.

(5) (07, G})i>0 is a bivariate Markov process.

(6) If (07);>0 is stationary, then (Gy)i>o has stationary incre-

ments.

17



Second order properties of (07):>¢

Xy = —tlogd — Zlog(l + i(ALS)Q), t >0

)
s<t

is a Lévy process of finite variation
t
JtQ — (w/ eXsds + 0(2)> e_Xt‘, t>0
0
Define Ee~ Xt = ¢!x(9) then

Ux(c) =log Ee “*t = clog 6 —I—/
R

((1 + %:f)c — 1) [ (dy)
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For ¢ > 0: (0¢)s>0 stationary.

(1) EFe“M<oo <= FEL?*<ooand|¥x(c)| < o0

(2) FL? < oo and Ux(l) < 0 = o} <4 52 (finite
random variable)

(3) E(c)"<oo <= FL* <ooand Ux(k)<O0.
In that case

Eo* =

(= (D))
2 1

cov(o?, 0t,) = w? — e MY x (1)
(73 11) (‘Ifx(l)‘lfx@) <\11X<1>>2>

(4) 0<d<1,A>0 = o has always infinite moments.
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Second order properties of (G})i>g

th = O'tst
—> (G jumps at the same times as L does: AG; = o;ALy
— Vt>0fix : E(AG)" =0

Define for r > 0 fix :

Ggr) — G?H—?“ — Gt — / O-SdLS

(t,t+7]

Take (07);>q stationary = (G’y) )i>0 stationary.
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Theorem (ACF of (Gg )))
(L¢)¢>0 pure jump process (17 = 0),
EL? < 0o, EL; = 0, Wx(1) < 0.
Then
EG" = 0
B(G) =

COV(Ggr),G£T+h)> =0
If EL{ < 00, U(2) < 0, then
cov((GY)2, (G )

2
_ <€T|‘I’X(1)\_1) EL COV(UTQ,,Gg)G_hWX(l)‘- ()
(W x(1)]

If EL} < 00, ¥(4) <0, [’ (dr) =0 = (5) > 0.
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Theorem (Tail behaviour):
Suppose for D = {d € [0, 00) : E|L{|*? < oo} we have
supD &€ D
— 3C >0,k € D: lim 2"P(c* > 2)=C

T—00

If furthermore: Ja > 4k : F|L1|* < oo and
(Lt )4 of finite variation and not negative of a subordinator

— V¢>0dC, >0: lim ZCQKP<Gt>I>:Cl,t

T—00
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Proof:

1
of =e Mgl + w/ et - ds,
0

1 x._
0 e s A1 ds).
Hence for stationary solution o

o4 independent of (e_Xl—, »

a random fixed point equation

o> L Mo® + Q,
1

Mie_Xl, in/ e s ds.
0

Then apply Theorem of Goldie (1991).
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Figure 1: Simulated compound Poisson process (L:)o<t<10000 With rate 1 and standard normally dis-
tributed jump sizes (first) with corresponding COGARCH process (G;) (second), volatility process (o)

(third) and differenced COGARCH process (Ggl)) of order 1, where G\ = G, — G, (last). The param-
eters were: =1, 0 = 0.95 and A = 0.045. The starting value was chosen as oy = 10.
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Figure 2: Sample autocorrelation functions of a; (top left), o2 (top right), G (bottom left) and (Ggl))2

(bottom right), for the process simulated in Figure 1. The dashed lines in the bottom graphs show the
confidence bounds £1.96/+/9999.
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