Modelling and Estimating long memory
in non linear time series
I. Introduction
Philippe Soulier
Université Paris X Long memory processes (linear or non linear) are considered
www.tst.enst.fr/~soulier mainly in two fields of applications: teletraffic and financial time
series. The topics covered in these lectures are related to mod-
elling financial time series.

1. Intr ion . .
troductio For fundamental results, references and applications, cf.
2. Definition of long memory Theory and applications of long-range dependence.
3. Linear long memory processes
4. Non linear long memory processes Edited by Paul Doukhan, George Oppenheim and Murad Taqqu (2003).
5. Estimation of long memory
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{Pt} financial time series. Returns: Deutsche Mark/ US Dollar Exchange Rate
Ry= (P, — P_1)/Pi_1.
Volatility :
2 __ 2 g
ot —E[Rt |Rt717Rt72a-~~]~ 5
“Sty”sed facts' Lecture notes of T. Mikosch (2004) Volatility of Deutsche Mark/ US Dollar Exchange Rate
e Returns are uncorrelated, martingale difference sequence.
e Non linear transformations of the returns are (strongly) corre- .

lated. E.g. log-squared returns. 5

e Issue: the returns form a stationary process. Exchange rate US $/ DM; 1985/09/26 to 1998/05/12

Not to be discussed here.




Volatility of DM/$ Exchange Rates
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Sample autocorrelation of log-squared returns.

Figures taken from Hurvich and Ray (2003).

Two issues:

e What processes can be used to model long memory in the
volatility of financial time series 7

e What are the properties of these processes, what statistical
procedures can be used?

II. Definition of long memory

A stationary process {X;} is said to have long memory if the
asymptotic behaviour of some usual statistics is very different
from that of a weakly dependent (or short memory) process,
such as i.i.d. or strongly mixing sequences.
Examples:

e Weak convergence of partial sums with an unusual normali-

sation and/or limiting distribution.

e Empirical autocorrelation;

e Discrete Fourier transforms;

e Many others, not to be discussed here.

Long memory is an asymptotic property,
with no precise definition

Working definition of long memory

A weakly stationary process {X;} exhibits second order long
memory if its autocovariance function is regularly varying:

cov(Xo, Xy) = L(t) [t 2.

H e (1/2,1) is the Hurst index;

L is slowly varying at infinity, i.e.

Yz >0, lim L(tz)/L(t) = 1.
t—o0




Consequence:
n -
var [ > X | = L(t) n2H
k=1

where L is slowly varying at infinity and equivalent to L,
up to a multiplicative constant, depending only on H.

Sometimes taken as a definition.

Equivalent formulation : the spectral density function:

1 .
f(ac) = g ZkEZ COV(X(), Xt)e'k””.

{Xt} has long memory if f is regularly varying at zero:

f(z) = L(z)xt—21.

L is slowly varyig at zero, limy_ L(t)/L(1/t) = cyy.

Not exactly equivalent. See Tauberian theorems for regularly varying functions
in Bingham, Goldie and Teugels (1987).

III. Gaussian and Linear Long Memory Processes

A Gaussian process has long memory if and only if its autocovari-
ance function is regularly varying with index 2—2H, 1/2 < H < 1.

— 2
X = Z]EZ aj€t—j, Zaj < o0,
{e:} i.i.d. sequence with zero mean and finite variance.
If {¢;} is Gaussian White Noise, then {X;} is Gaussian.

Sufficient condition for long memory:

aj = 0(3)j797Y2, de(0,1/2), ¢ slowly varying.
Then {X;} has long memory with Hurst index H =d 4 1/2.
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Examples

e Fractional Gaussian Noise:

Gaussian process with autocovariance function:

2
(o2
cov(Xo, Xp) = TAlt + 127 — 202 + |t — 127},

Spectral density:

F(@) = e 0? sin?(x/2) 3, [2km 4 2|72/ 7L,
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e ARFIMA(p,d,q) process

_ 2 M(d+39)
X;=(U-B) U =Y U
j;O Jr(d) /
U; : ARMA(p, q) stationary and invertible.

H=d+1/2.

Spectral density

fl) =1 — "2 f ().

fu is smooth and positive around zero.
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Asymptotic properties

Let X; be a Gaussian or linear long memory process with Hurst
index H.

» Convergence of partial sums
[nt] .
LYy Y X, = ouBut)
k=1
By fractional Brownian motion:

cov(Brr(s), Bir() = S{IH2" — |t = 2 + 15|}

The normalisation is the standard deviation of the partial sums.
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+ Convergence of empirical variance,
n
n)yn Y (X2-1) % Z
t=1
- a=1/2 and Z Gaussian if H < 3/4,
- a«=2H —1 and Z non gaussian if H > 3/4.

next talk
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Gaussian white noise Fractional Gaussian noise
H=1/2 H=0.7

Fractional Gaussian noise ARFIMA(O, 0.4, 0)
H=0.9 H=0.9

15
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Brownian motion Fractional Brownian Motion

ol H=1/2 H=07
s R S
20 40 60 80 100 120 140 160 180 200
Empirical autocorrelations Fractional Brownian Motion cumulative sum
Gaussian white noise, FBM 0.7, FBM 0.9, ARFIMA(0,0.4,0) H =0.9 ARFIMA(O, 0.4, 0)
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We have recalled the main properties of Gaussian and linear long

0 4
”‘WM
memory processes. They are quantitatively different from those

—200 b

of short memory processes.

e Different normalizations, but as in the short memory case,
linked to standard deviation.

-600 - b

e Asymptotic distributions are Gaussian or related to Gaussian
~1o00f ; (weighted chi-squared).

e Invariance principle to Fractional Brownian motion.

_1200 L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

cumulative sums: ARFIMA(0,0.4,0);
Brownian motion, FBM 0.7 and FGN 0.9
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IV Non linear long memory Processes

We will next describe two classes of non linear long memory
models, present some of their asymptotic properties, and see
how they differ from those of Gaussian and linear long memory
processes.

Statistical issues will be addressed in the second lecture.
There are many other models, that we will not have time to

discuss. E.g. Random coefficients AR or ARCH processes; Markov

switching processes; Stochastic unit root, processes linked to queues; etc.
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Bilinear type models
Stochastic volatility models
Ry = oy,
{&} i.i.d., E[e] =0, E[e2]=1,

012 = E[R:2 | Rs, s <t— 1] is the conditional variance,
i.e. the volatility.

{R:} is a martingale difference (hence uncorrelated) sequence.

Can {042}, {|R¢|}, {R:?}, {log(R:2)} have long memory?

21

e ARCH processes

o0
O’tz =a + Z ath,jQ, aj Z 0.
Jj=1
o If Z;‘;l aj <1, {04} is strictly stationary and has short memory.

e If 32221 a; = 1, no weakly stationary solution: E[042] = oo.
Strictly stationary solution if |aj| <epd, p< 1.
KazakeviCius et Leipus (2003)

e The “"FIGARCH problem”: does there exist a strictly stationary
solution if

aj = —T(=d+5)/(F(=d)j)) de(0,1/2)?

or more generally, a; ~ cj™"Y/2, 3% a; =1
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e Exponential models

To avoid the difficulties of ARCH type processes, model directly
the log-squared volatility:

o0
Y;/2
Ry = o, op=e/? v, = > G
i=1

{e:}, {¢;} i.i.d. sequences;
for each ¢, (; is independent of {es, s # t},
e¢; and (; can be either independent or dependent.

If v; ~ cj9=1, d € (0,1/2), then {log(c;2)} has long memory with
Hurst index H =d 4 1/2.

23




In both cases, if ¢; ~ cj971, d € (0,1/2), {o¢}, {Re}, {|R:|"}
have long memory with same Hurst index H =d+ 1/2 and

o FI-EGARCH processes (Nelson 1991, Bollerslev and Mikkelsen 1996). [ni]
"

— D
n H Z Uk = O'UBH(t)
Gt = g(et), k=1
with {U;} any of the above processes, under moment conditions, satisfied if {¢;} is Gaussian.

E.g. Nelson (1991) suggested g(z) = 6z + y(|z| — E[|eo]), Surgailis and Viano (2002)

modelizes the so-called leverage effect.
If P(¢, =0) =0,
o LMSV process (Harvey 1998, Breidt et al. 1998) 5 5
log(R") = Y; +log(e:”)

{¢:} is independent of {e:}. has long memory with Hurst index H =d+ 1/2.
Hence it is sufficient to study the memory of the log-squared

returns.
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Simulation of LMSV processes : R, =¢e'/?, {Y;} ARFIMA(0,r,0), d=0.4.
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{e:} Gaussian {e} Pareto 4

Sample autocorrelation of log-squared returns of LMSV
process.

log squared returns
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Cumulative sums of LMSV process with Gaussian shocks:
returns, absolute, squared and log-squared returns
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Duration driven long memory

Spurrious long memory:

It has been known for a long time that in finite samples, slow
decay of the autocovariance function can be an artefact:

e Of polynomial trends (Bhattacharya et al. 1983)

e Of structural break (biebold and Inoue 2000, Mikosch and Starica 2004)

But

e polynomial trends can be eliminated by differencing;

e stationary models with structural change have been introduced,
in particular as a model for volatility.

29

e Renewal-Reward (Taqqu and Levy 1986);
e Long memory shot noise (Giraitis, Molchanov and Surgailis 1993,
Kluppelberg and Kiihn 2004);

o ON-OFF process (Taqqu, Willinger and Sherman 1997, Heath, Resnick and
Samorodnitsky 1998);

e Infinite source Poisson (Mikosch, Resnick, Rootzen, Stegeman 2002), With
random transmission rate (Maulik, Resnick and Rootzén 2002);

e Error duration (Parke 1999, Hsieh, Hurvich and Soulier 2003).

® Other examples in Kulik and Szekli (2002).

30

{Sn}nez: points of a stationary renewal process: birth dates;
{Un}: i.i.d. independant of {Sp}: rewards or pulses or shocks;
{nn}: i.i.d. non-negative: durations;

g function.

Xt =) Ung({t — Sn}/mm)-
neZ

When is it defined 7

31




o Simplification: g() = 1jg 1) ().

Rules out the shot noise processes of Giraitis et al. (1993), Kliippelberg and Kiihn (2004).

Model now

Xt = ETLGZ Un 1[Sn,sn+7ln) (t)

The shock Uy, created at time S, survives for a duration ny.

The process is well defined iff only a finite number of rewards

survive at time t. Sufficient condition:

The process is then strictly stationary and weakly stationary if
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Stationary renewal process

{Tr}r>1 i.i.d. sequence of nonnegative r.v. with distribution

function /” and finite mean A\~1 = [§°(1 — F(s))ds.
7o independent of {7;};>1 with distribution function

t
Fo(t) = P(ro < t) = A/O(l — F(s))ds

Let 7_; be independent of {7;},>o distributed as —7q;
{7j}j<-1 be independent of {7;};>_1, distributed as {—7;};>1.

Point process on the line: ..S_ > <S_1 <0< 5<85 < ...,

k —k
Sk:ijoTj’ k>0, Sk:Z]‘:,]_Tj’ k<O,
N(s,t] =D 15 7(Sp)-

k

N is translation invariant. EN(s,t] = A(t — s).
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Exemples of stationary renewal processes.

e Deterministic renewal process: S, = un.
e Poisson process: ['(t) = Ip(t) =1 — e,

e Renewal process with heavy tailed inter-arrival distribution:

FO =LA+t @) =Le)A+)" l<a<?2.
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Renewal-reward: Tn41 = Mn-
Exactly one random shock at a time.

ON-OFF: U,=1, Tn41 = + Cn.
Succession of ones and zeros, at most one shock at a time.

Infinite source Poisson: {Sn} are the points of a homoge-
neous Poisson process. Uy is the transmission rate: constant or

random.

Error duration: Sn =n.

35




Autocovariance function

e Centered shocks.

cov(Xo, X¢) = )\ E[U] E[(n — t)4].

If n is regularly varying: | P(n>t) =)t P, |
then:

cov(Xo, X;) = Z(1)t17. |

Long memory with Hurst index: H = (3 — 3)/2.

36

0 5‘0 1(;0 1&0 2(‘)0 25‘10 300
Sample autocorelation
of Error Duration process, H = 0.9.
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Asymptotic properties
of duration driven long memory processes
e Centered shocks.
[nt] o
~ -1/8 fi. di. )
t(n)n k; e O Error duration, 3=1.2  ARFIMA(0,0.4,0)
- H=0.9 H=0.9
3-stable Lévy process (with independent increments).
But: n~Hyn_x, F.o
: k=1 "k '
because var (Zzzl Xk) = L) n3 0 = L(@t)n2H
and H=(3-p8)/2>1/p8. cumulative sum cumulative sum
38
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1.2-stable Levy process FBM H = 0.9

cumulative sum of log-squared returns US$-DM
Levy or Gauss ?
40

Modelling long memory in volatility:
fractional differencing or duration driven long memory?

cumulative sums: returns and log-squared returns US$/DM
FBM H = 0.9, Levy 1.2 stable process.

a1

Other problems

e Non centered shocks: tails of interarrival distribution vs. tails
of durations.

e Convergence in D?
Proved for the infinite source PoiSson (Resnick and Van den Berg, 2000)

e Convergence of empirical process ?
Finite dimensional convergence obvious for the ON-OFF process.

e Sample autocorrelatiqns: Fnlp) =n~1 Zz;lfl X Xptp)-
Centered shocks: n~ /{5, (p) — v(p)} converges weakly to a (-
stable limit.
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V. Estimation of long memory
Working definition : {X;} is a long memory process if it is weakly
stationary with spectral density f regularly varying at O:
f(x) =22 L(a),
L is a slowly varying function.
For statistical purpose, it is equivalent and more convenient to
write:

fl) = [2sin(z/2)[* 727 L(z),

43




Given this definition, estimating long memory means estimating
the Hurst index H.

Two types of methods : [fime/domain! and [ffeqUency domain.
Time domain methods: R/S, Agregated variance, DFA...
Drawbacks: asymptotic properties not always established, rates

of convergence are often bad and asymptotic variance depends
on H.

44

Frequency domain methods

The discrete Fourier transform and [the periodogram|

d elter, I =|dy|?,

— 1 n
k= V2mn Zt:l X

zp =2km/n, 1<k<n/2.

45

The periodogram is an asymptotically unbiased but inconsistent
estimator of the spectral density f of a weakly stationary process.

1

1. =
k 2nn

n—1 .
Z ’Vn(p)eltzk
p=1—-n

An(p) = n1 Zz;‘f‘ X Xp4pp|  empirical autocovariance,

estimator of the p-th Fourier coefficient of f.
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I,
=k 1<k<n/2
= <n/

are i.i.d. exponentially distributed.

Always wrong (except for Gaussian white noise),
even asymptotically, but useful:

the conclusions drawn from this wrong approximation can be

justified theoretically in some cases.*

*

ne l'est pas.
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est-ce clair 7 a chaque fois que je le dis, on me pose des questions qui montrent que ¢a




More precisely, in the case Gaussian or linear processes, for any
fixed integer u and sequences of integers kq,...,ky, the vector

( dy, dy, )
flae) 7 )

converges weakly to

e a vector of u independent standard complex Gaussian random
variables in the weakly dependent case;

e a vector of u dependent complex Gaussian random variables
with dependent complex and imaginary parts in the long memory
case.

But this dependency is concentrated on low frequencies, and
vanishes for increasing frequencies.
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The GPH estimator Geweke Porter-Hudak (1983)

Assume that the spectral density can be expanded as

| f(@) = c2sin(a/2)[- 27 {1+ 0(1)}. |

true for ARFIMA(p,d,q) and FGN.

Write then:

log(I) = log(f(zy)) + log(&x)
= log(c) + (1 — 2H) log(2[sin(zy/2)|) + l0g(€,) + bias.

49

The GPH estimator Hgpy is the OLS estimator based on m
frequencies:

m
Hopg = ) vglog(ly)
k=1

m 2
=H+ Y vlog(&) + bias ~ H + /=N (0, 1) + bias.
=1 24m

{log(2/sin(a/2))-m* Y log(2[sin(a;/2))}
S ST eGS0 1 S loa@l s D
., llog . m 109 !

Main problem : choice of m.

If m — oo and m/n — 0, Hgpy is consistent.

50

e The choice of m is linked to the bias term and depends on the
(unknown) regularity of z27=1f(z) around zero.
If f is second order regularly varying:

f(z) = c|2sin(z/2)|1 21 {1 + O(mﬂ)}.

Then: | bias = O((m/m)?). |

Optimal choice : m = n26/26+1
Optimal rate of convergence : nf/28+1,

e A rigorous theory is established in Robinson (1995), Giraitis,
Robinson et Samarov (1997,2000) for Gaussian processes, Ve-

lasco (1999) for linear processes.

Unfortunately, GPH (1983) suggested the ‘“rule of thumb” m = y/n.
This is not correct but still often used.
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Spectral density:

@) = gpsm(x/z)ﬂ*”f.

No bias term: parametric rate of convergence!

52

* ARFIMA(0,d,0)+noise.
Spectral density:
2 2
f(@) = T j2sin(z/2) )P~ 4+ 7N
21 27
2
o . _ _
=Z|25m(m/2)|2H 1{1 + O(z! 2H)}.

The bias term depends on H, the best possible rate of conver-
gence of the GPH estimator is | n(2/-1)/21 |

Moreover Hqgppy is negatively biased.

Deo and Hurvich (2001).

......... GPH : ARFIMA0.0.4.0) osimatour GPH : ARFIMA(0,0.4.0) + brut blanc

DSK/\/\“,\W\_\-\ 04)
08 OEM
B

o.
0 20 a0 40 50 60 700 800 800 1000 0 20 a0 40 50 60 700 800 800 1000

GPH estimator:

left ARFIMA(0,0.4,0)

right ARFIMA(0,0.4,0) 4+ white noise
H=0.9
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e

:
H
H
H
H
H
;
.y i
: i
@
8|

GPH estimator:

left returns US$/DM, H =1/2;
middle absolute returns, H =7
right log squarred returns, H =7

If the LMSV (or FIEGARCH) model is correct for modelling the
volatility, is there a way to estimate H more efficiently ?




Estimation of the Hurst coefficient of the LMSV process
Hurvich, Moulines and Soulier (2001-2004)
Ry = eYt/Qet,
{e:} i.i.d. sequence,

independent of the long memory process {Y;}
with spectral density fy (z) = ¢[2sin(z/2)|1 722 (1 + O(=P)).

Log-squared returns:

X; = log(R)? =Y +m + ¢,

n =log(e?) —¢, c¢=E[log(e?)].

Signal 4+ noise model.
57

The spectral density of {X;} is:

2
Ix(@) = fy(z) + i

~ CP2sin(z/2)[*27 {1 4 r|2sin(2/2) 21 + 0@}
Assumption : 8 >2H — 1.

The rate of convergence of the GPH estimator is n(2H—1)/4H
Very bad if H is close to 1/2.

Is it possible to improve this rate of convergence 7
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Yes: refine the 'heuristic approximation’.

Denote 6 = (C, H,7), f(0,z) = Cxl=2H{1 4+ 7227 -1} and
Ty
& = :
f(0,z)
Then {¢;,1 < k < m} can be considered as i.i.d. random variables
with standard exponential distribution, if

m = o(n20/20+1)

Pseudo-maximum likelihood (Whittle) estimator:
_ m I,
6 = argmin {Io 0, 7}
geeek; a(f( ark))+f(97xk)

Modification of the local Whittle estimator (Kiinsch 1986, Robinson 1995).
59

If m = o(n26/(26+1)y and n(4H-1)/4H = 5(1m),
Then mY/2(H — H) is asymptotically normal with variance
H2

(2H —1)2°

The rate of convergence is optimal, but the asymptotic variance
tends to infinity as H tends to 1/2.

Identifiability problem as H tends to 1/2.
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Estimation of H =d+1/2=0.9.
ARFIMA(0,0.4,0) + noise.
signal/noise ratio = 1.

blue : GPH without correction
red : Local Whittle with noise correction

o 500 1000 1500 2000 2500 3000 3500 4000 4500
Bandwidih

61

m = [n.OS] m = [n'06] m = [n'07] m = [n.OS]
H 0.865 0.878 0.887 1.056
Hgpy | 0.870 0.855 0.774 0.635

GPH and modified Whittle estimators

for US$/DM exchange rate, n = 3485.

Quoted from Hurvich and Ray (2003).
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Asymptotic properties of the Discrete Fourier
transforms of duration driven long memory processes.

= Z Un I[Sn,Sn'f‘Un)(t)'
nez

{Sn}nezi points of a stationary renewal process;
{Up}: i.i.d. zero mean, finite variance, independant of {S,}
{mn}: i.i.d. non-negative durations; with regularly varying tails:

P(n>t) = £(t)t 7.

Then {X.} is stationary, has long memory with Hurst index H =
(3 —p)/2, its spectral density is regularly varying:

f(z) = ¥(z)z1—2H.
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Discrete Fourier transform:

What is the behaviour of the renormalized DFT 7

k ﬁZXe

ltzk
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Two regimes:

e Low frequencies: for any fixed integers, u, k1,...,kuy
n1/271/‘6(dk1, cee 7dku)

weakly converges to a -stable vector.

e High frequencies: if k is a sequence of integers such that k/n —

0 and k/nt~1/8 — oo, then dy/\/f(x)) converges to a standard
complex Gaussian random variable.
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QQ Plots of the Normalized Fourier Cosine Coefficients Re(d;)/4/5f(x;) for
the Error duration process; n=10000, 3 =1.2, H=0.4
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‘Taqqu-Levy Process; d=0.1 Tagau-Levy Process: d=0.4
Ave d"GPH=0.0977 Ave "GPH= 0.3994

egzsaia) ogzsntiz)

Parke Process; d=0.1 Parke Process; d=0.4
Ave d"GPH=0.0978 Ave 0"GPH = 0.3986

onzsmia ogzeno2)

Scatterplots of Log Periodogram vs. log|2sin(z;/2)|; j=1,2,...,4999;
H = 0.6 (left) and H = 0.9 (right).
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Conclusion

e Non linear long memory processes form a rich class of pro-
cesses, whose properties are not fully known.

e The statistical procedures to detect long memory seem to be
robust, but their theoretical properties are far from well estab-

lished.

e Practionneers are often not aware of this and apply the GPH
estimator blindedly.
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