Munkres §32

Ex. 32.1. Let \(Y \) be a closed subspace of the normal space \(X \). Then \(Y \) is Hausdorff [Thm 17.11]. Let \(A \) and \(B \) be disjoint closed subspaces of \(Y \). Since \(A \) and \(B \) are closed also in \(X \), they can be separated in \(X \) by disjoint open sets \(U \) and \(V \). Then \(Y \cap U \) and \(V \cap Y \) are open sets in \(Y \) separating \(A \) and \(B \).

Ex. 32.3. Look at [Thm 29.2] and [Lemma 31.1]. By [Ex 33.7], locally compact Hausdorff spaces are even completely regular.

Ex. 32.4. Let \(A \) and \(B \) be disjoint closed subsets of a regular Lindelöf space. We proceed as in the proof of [Thm 32.1]. Each point \(a \in A \) has an open neighborhood \(U_a \) with closure \(\overline{U_a} \) disjoint from \(B \). Applying the Lindelöf property to the open covering \(\{U_a\}_{a \in A} \cup \{X - A\} \) we get a countable open covering \(\{U_i\}_{i \in \mathbb{Z}_+} \) of \(A \) such that the closure of each \(U_i \) is disjoint from \(B \). Similarly, there is a countable open covering \(\{V_i\}_{i \in \mathbb{Z}_+} \) of \(B \) such that the closure of each \(V_i \) is disjoint from \(A \). Now the open set \(\bigcup U_i \) contains \(A \) and \(\bigcup V_i \) contains \(B \) but these two sets are not necessarily disjoint. If we put \(U'_i = U_1 - V_1, U'_2 = U_2 - V_1 - V_2, \ldots, U'_i = U_i - V_1 - \cdots - V_i, \ldots \) we subtract no points from \(A \) so that the open sets \(\{U'_i\} \) still form an open covering of \(A \). Similarly, the open sets \(\{V'_i\} \), where \(V'_i = V_i - U_1 - \cdots - U_i \), cover \(B \). Moreover, the open sets \(\bigcup U'_i \) and \(\bigcup V'_i \) are disjoint for \(U'_i \) is disjoint from \(V_1 \cup \cdots \cup V_i \) and \(V'_i \) is disjoint from \(U_1 \cup \cdots \cup U_i \).

Ex. 32.5. \(R^\omega \) (in product topology) is metrizable [Thm 20.5], in particular normal [Thm 32.2]. \(R^\omega \) in the uniform topology is, by its very definition [Definition p. 124], metrizable, hence normal.

Ex. 32.6. Let \(X \) be completely normal and let \(A \) and \(B \) be separated subspaces of \(X \); this means that \(A \cap B = \emptyset = \overline{A} \cap B \). Note that \(A \) and \(B \) are contained in the open subspace \(X - (\overline{A} \cap \overline{B}) = (X - A) \cup (X - B) \) where their closures are disjoint. (The closure of \(A \) in \(X - (\overline{A} \cap \overline{B}) \) is \(\overline{A} - \overline{B} \) [Thm 17.4].) The subspace \(X - (\overline{A} \cap \overline{B}) \) is normal so it contains disjoint open subsets \(U \supset A \) and \(V \supset B \). Since \(U \) and \(V \) are open in an open subspace, they are open [Lemma 16.2].

Conversely, suppose that \(X \) satisfies the condition (and is a \(T_1 \)-space). Let \(Y \) be any subspace of \(X \) and \(A \) and \(B \) two disjoint closed subspaces of \(Y \). Since \(\overline{A} \cap Y \) and \(\overline{B} \cap Y \) are disjoint [Thm 17.4], \(\overline{A} \cap B = \overline{A} \cap (Y \cap B) = (\overline{A} \cap Y) \cap (B \cap Y) = \emptyset \), and, similarly, \(A \cap \overline{B} = \emptyset \). By assumption, \(A \) and \(B \) can then be separated by disjoint open sets. If we also assume that \(X \) is \(T_1 \) then it follows that \(Y \) is normal.

References