9th June 2005
Munkres §33

Ex. 33.1 (Morten Poulsen). Let r € [0, 1]. Recall from the proof of the Urysohn lemma that
if p < q then U, C U,. Furthermore, recall that U, =0 if ¢ <0 and U, = X if p > 1.

Claim 1. f~'({r}) =Ny, Up = Uy, Ug, 2 € Q.

Proof. By the construction of f: X — [0, 1],

NU-UJUs=Up=r"{0})

p>0 q<0 p>0
and
NU-JUs=x-JU,=F1{1D.
p>1 g<1 g<1

Now assume 7 € (0,1).

"C”: Let x € f7Y({r}), ie. f(x) = r = inf{p|z € U,}. Note that = ¢ Ug<r Uq, since
f(z) = r. Suppose there exists t > r, t € Q, such that = §é U;. Since f(x) = r, there exists
s € Qsuch that r < s <tand x € Us. Now z € U; C Uy C Uy, contradiction. It follows that
T € ﬂp>r Up — Uq<r Uq

"D" Let v € (-, Up — U,<, Ug- Note that f(z) <r, since x € (), Up. Suppose f(z) <r

Y
i.e. there exists t < 7 such that x € U; C U, ., Uy, contradiction. It follows that x € f~'({r}). O

Ex. 33.4 (Morten Poulsen).

Theorem 2. Let X be normal. There exists a continuous function f : X — [0,1] such that
f@)=0 forx € A, and f(z) >0 forx ¢ A, if and only if A is a closed G5 set in X.

Proof. Suppose A = f~*({0}). Since
A=) /) = () £H0,1/n)

neZz4 neZ,
it follows that A is a closed Gy set.

Conversely suppose A is a closed Gy set, i.e. A = ﬂnez+ U,, U, open. Then X —U,, and A are
closed and disjoint for all n. By Urysohn’s lemma there exists a continuous function f, : X — [0, 1],
such that f,(A) = {0} and f,(X —U,) = {1}.

Now define f: X — [0,1] by

= Z%fi(x)
i=1

Clearly f is well-defined. Furthermore f is continuous, by theorem 21.6, since the sequence of
continuous functions (Zf 157 L fi(x )) converges uniformly to f, since

neZy
=1 > 1 = 1
=1 1= n+1 1=n—+1

for n — ooc.
Clearly f(x) =0 for x € A. Furthermore note that if ¢ A then z € X — U, for some n, hence

f(x)Z%fn(:c): 5w > 0. O
Ex. 33.5 (Morten Poulsen).

Theorem 3 (Strong form of the Urysohn lemma). Let X be a normal space. There is a continuous
function f: X — [0,1] such that f(x) =0 forx € A, and f(x) =1 forx € B, and 0 < f(z) <1
otherwise, if and only if A and B are disjoint closed G sets in X.
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Proof. Suppose f : X — [0,1] is a continuous function. Then clearly A = f~1({0}) and B =
~1({1}) are disjoint. Since
o)y =) 0,1/m) = () £H(0,1/n))
neZy neZy
and
Sy = ) A= na) = () £ - 1/n,1])

neZy neZy
it follows that A and B are disjoint closed Gs sets in X.

Conversely suppose A and B are disjoint closed G sets in X. By ex. 33.4 there exists continuous
functions f4 : X — [0,1] and fg5 : X — [0, 1], such that f;'({0}) = A and f5'({0}) = B. Now
the function f : X — [0, 1] defined by

fal(x)

0= @ + 1o
is well-defined and clearly continuous. Furthermore f~1({0}) = A and f~({1}) = B, since
f@)=0& fa(x)=0szecA

and
f(x) =1 fa(x) = fa(z) + fp(r) & fp(z) =0z € B.

Ex. 33.7. For any topological space X we have the following implications:

X is locally compact Hausdorff

Cor 29.4
°="" X is an open subspace of a compact Hausdorff space

Thm 32 2
X is a subspace of a normal space

I3 X is a subspace of a completely regular space

IS X s completely regular

Ex. 33.8. Using complete regularity of X and compactness of A, we see that there is a continuous
real-valaued function g: X — [0,1] such that g(a) < 1 for all a € A and g(B) = {1}. (There are
finitely many continuous functions gi,...,gx: X — [0,1] such that A C J{g; < 1} and ¢;(B) =1
for all i. Put g = + " g;.) The continuous [Ex 18.8] function f = 2max{0,g — 1} maps X into
the unit interval, g(A) = {0}, and g(B) = {1}.
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