Ex. 34.1. We are looking for a non-regular Hausdorff space. By Example 1 p. 197, R_K [p. 82] is such a space. Indeed, R_K is Hausdorff for the topology is finer than the standard topology [Lemma 13.4]. R_K is 2nd countable for the sets (a, b) and $(a, b) - K$, where the intervals have rational end-points, constitute a countable basis. R_K is not metrizable for it is not even regular [Example 1, p. 197].

Conclusion: The regularity axiom can not be replaced by the Hausdorff axiom in the Urysohn metrization theorem [Thm 34.1].

Ex. 34.2. We are looking for 1st but not 2nd countable space. By Example 3 p. 192, R^ℓ [p. 82] is such a space. Indeed, the Sorgenfrey right half-open interval topology R^ℓ is completely normal [Ex 32.4], 1st countable, Lindelöf, has a countable dense subset [Example 3, p. 192], but is not metrizable [Ex 30.6].

Ex. 34.3. We characterize the metrizable spaces among the compact Hausdorff spaces.

Theorem 1. Let X be a compact Hausdorff space. Then

X is metrizable $\iff X$ is 2nd countable

Proof. \Rightarrow: Every compact metrizable space is 2nd countable [Ex 30.4].

\Leftarrow: Every compact Hausdorff space is normal [Thm 32.3]. Every 2nd countable normal space is metrizable by the Urysohn metrization theorem [Thm 34.1].

We may also characterize the metrizable spaces among 2nd countable spaces.

Theorem 2. Let X be a 2nd countable topological space. Then

X is metrizable $\iff X$ is (completely) normal $\iff X$ is regular

Ex. 34.4. Let X be a locally compact Hausdorff space. Then

X is metrizable $\iff X$ is 2nd countable

$\not\Rightarrow$: Any discrete uncountable space is metrizable and not 2nd countable.

\Leftarrow: Every locally compact Hausdorff space is regular [Ex 32.3] (even completely regular [Ex 33.7]). Every 2nd countable regular space is metrizable by the Urysohn metrization theorem [Thm 34.1].

Ex. 34.5. Theorem 3. Let X be a locally compact Hausdorff space and X^+ its one-point-compactification. Then

X^+ is metrizable $\iff X$ is 2nd countable

Proof. \Rightarrow: Every compact metrizable space is 2nd countable [Ex 30.4]. Every subspace of a 2nd countable space is 2nd countable [Thm 30.2].

\Leftarrow: Suppose that X has the countable basis B. It suffices to show that also X^+ has a countable basis [Ex 34.3]. Any open subset of X is a union of elements from B. The remaining open sets in X^+ are neighborhoods of ∞. Any neighborhood of ∞ is of the form $X^+ - C$ where C is a compact subspace of X. For each point $x \in C$ there is a basis neighborhood $U_x \in B$ such that \overline{U} is compact [Thm 29.3]. By compactness, C is covered by finitely many basis open sets $C \subset U_1 \cup \cdots \cup U_k$. Now

$\infty \in X^+ - (\overline{U_1} \cup \cdots \cup \overline{U_k}) \subset X^+ - C$

where $X^+ - (\overline{U_1} \cup \cdots \cup \overline{U_k})$ is open in X^+ since $\overline{U_1} \cup \cdots \cup \overline{U_k}$ is compact in X [Ex 26.3]. This shows that if we supplement B with all sets of the form $X^+ - (\overline{U_1} \cup \cdots \cup \overline{U_k})$, $k \in \mathbb{Z}_+$, $U_i \in B$, and call the union B^+, then B^+ is a basis for the topology on X^+. Since there are only countable many finite subsets of B [Ex 7.5.(j)], the enlarged basis B^+ is still countable [Thm 7.5].

References