Munkres §38

Ex. 38.4. Let $X \to \beta X$ be the Stone–Čech compactification and $X \to cX$ an arbitrary compactification of the completely regular space X. By the universal property of the Stone–Čech compactification, the map $X \to cX$ extends uniquely

$$
\begin{array}{c}
X \to cX \\
\beta X
\end{array}
$$

to a continuous map $\beta X \to cX$. Any continuous map of a compact space to a Hausdorff space is closed. In particular, $\beta X \to cX$ is closed. It is also surjective for it has a dense image since $X \to cX$ has a dense image. Thus $\beta X \to cX$ is a closed quotient map.

T

Ex. 38.5.

(a). For any $\varepsilon > 0$ there exists an $\alpha \in S_\beta = [0, \Omega)$ such that $|f(\beta) - f(\alpha)| < \varepsilon$ for all $\beta > \alpha$. For if no such element existed we could find an increasing sequence of elements $\gamma_n \in (0, \Omega)$ such that $|f(\gamma_n) - f(\gamma_{n-1})| \geq \varepsilon$ for all n. But any increasing sequence in $(0, \Omega)$ converges to its least upper bound whereas the image sequence $f(\gamma_n) \in \mathbb{R}$ does not converge; this contradicts continuity of the function $f: (0, \Omega) \to \mathbb{R}$. So in particular, there exist elements α_n such that $|f(\beta) - f(\alpha_n)| < 1/n$ for all $\beta > \alpha_n$. Let α be an upper bound for these elements. Then f is constant on (α, Ω).

(b). Since any real function on $(0, \Omega)$ is eventually constant, any real function, in particular any bounded real function, on $(0, \Omega)$ extends to the one-point-compactification $(0, \Omega]$. But the Stone–Čech compactification is characterized by this property [Thm 38.5] so $(0, \Omega] = \beta(0, \Omega]$.

(c). Use that any compactification of $(0, \Omega]$ is a quotient of $(0, \Omega]$ [Ex 38.4].

Ex. 38.6. ([1, Thm 6.1.14]) Let X be a completely regular space and $\beta(X)$ its Stone–Čech compactification. Then

- X is nonconnected \iff There exists a continuous surjective function $X \to \{0, 1\}$

- \Rightarrow There exists a continuous surjective function $\beta(X) \to \{0, 1\} \iff \beta(X)$ is nonconnected

If X is connected then also βX is connected since it has a connected dense subset [3, Thm 23.4]

Ex. 38.7. ([Exam June 03, Problem 4] [5, 6, 4]) Let X be a discrete space; A a subset of $X \subset \beta(X)$ and U an open subset of $\beta(X)$.

1. Let $F: \beta(X) \to \{0, 1\}$ be the extension [Thm 38.4] of the continuous function $f: X \to \{0, 1\}$ given by $f(A) = 0$ and $f(X - A) = 1$. Then $\overline{A} \subset F^{-1}(0)$ and $\overline{X - A} \subset F^{-1}(1)$ so these two subsets are disjoint; in other words $X - \overline{A} \subset \beta(X) - \overline{A}$. The inclusions

$$
\beta(X) - \overline{A} \equiv X - \overline{A} \supset \overline{X - A} \subset \beta(X) - \overline{A}
$$

tell us that $\beta(X) - \overline{A} = X - \overline{A}$. In particular, \overline{A} is open (and closed).

2. Since $U \cap X$ is a subset of U, it is clear that $U \cap X \subset \overline{U}$ [Ex 17.6.(a)]. Conversely, let x be a point in \overline{U} and V any neighborhood of x. Then $V \cap U \neq \emptyset$ is nonempty for x lies in the closure of U, and hence $(V \cap U) \cap X = V \cap (U \cap X) \neq \emptyset$ is also nonempty as X is dense. Thus every neighborhood V of x intersects $U \cap X$ nontrivially. This means that $x \in U \cap X$. We conclude that $U \cap X = \overline{U}$. From (1) (with $A = U \cap X$) we see that \overline{U} is open (and closed).

3. Let Y be any subset of $\beta(X)$ containing at least two distinct points, x and y. We shall show that Y is not connected. Let $U \subset \beta(X)$ be an open set such that $x \in U$ and $y \notin U$; such an open set U exists because $\beta(X)$ is Hausdorff [Definition, p. 237]. Then $Y = (Y \cap U) \cup (Y - U)$ is a separation of Y, so Y is not connected.
A Hausdorff space is said to be extremally disconnected if the closure of every open set is open. A space is totally disconnected if the connected components are one-point sets. Any extremally disconnected space is totally disconnected. We have shown that \(\beta(X) \) is extremally disconnected.

Ex. 38.8. The compact Hausdorff space \(I' \) is a compactification of \(\mathbb{Z}_+ \) since [3, Ex 30.16] it has a countable dense subset (and is not finite). Any compactification of \(\mathbb{Z}_+ \) is a quotient of the Stone–Čech compactification \(\beta\mathbb{Z}_+ \) [3, Ex 38.4]. In particular, \(I' \) is a quotient of \(\beta\mathbb{Z}_+ \) so \(\text{card} \beta\mathbb{Z}_+ \geq \text{card} I' \).

Ex. 38.9. ([Exam June 04, Problem 3])

(a). Suppose that \(x_n \in X \) converges to \(y \in \beta X - X \). We will show that then \(y \) is actually the limit point of two sequences with no points in common. The first step is to find a subsequence where no two points are identical. We recursively define a subsequence \(x_{n_k} \) by

\[
n_k = \begin{cases} 1 & k = 1 \\ \min\{n > n_{k-1} \mid x_n \notin \{x_{n_1}, \ldots, x_{n_{k-1}}\} \} & k > 1 \end{cases}
\]

This definition makes sense since the set we are taking the minimal element of a nonempty set. Since \(x_n \) converges to \(y \), the subsequence \(x_{n_k} \) also converges to \(y \). Clearly, no two points of the subsequence \(x_{n_k} \) are identical. We call this subsequence \(x_n \) again.

Let now \(A = \{x_1, x_2, \ldots\} \) be the set of odd points and \(B = \{x_2, x_4, \ldots\} \) the set of even points in this sequence. We claim that \(\overline{A} = A \cup \{y\} \) and \(\overline{B} = B \cup \{y\} \).

Any neighborhood of \(y \) contains a point from \(A \), so \(y \) is in the closure of \(A \). Since \(A \subset A \cup \{y\} \subset \overline{A} \), it suffices to show that \(A \subset A \cup \{y\} \) is closed, ie that the complement of \(A \cup \{y\} \) is open: Let \(z \) be a point in the complement. Since \(z \) is not the limit of the sequence \((x_{2n+1}) \) (there is just one limit point, namely \(y \), in the Hausdorff space \(\beta X \)) there exists a neighborhood of \(z \), even one that doesn’t contain \(y \), containing only finitely many elements from this sequence. Since \(z \) is not in \(A \) we can remove these finitely many points from the neighborhood to get a neighborhood of \(z \) that is disjoint from \(A \cup \{y\} \).

This shows that \(\overline{A} = A \cup \{y\} \). Similarly, \(\overline{B} = B \cup \{y\} \). Therefore the intersection \(\overline{A} \cap \overline{B} = \{y\} \neq \emptyset \).

On the other hand, the sets \(A \) and \(B \) are disjoint since no two points of the sequence \(x_n \) are identical. They are closed subsets of \(X \) for Cl\(_X\) \(A = X \cap \overline{A} = X \cap (A \cup \{y\}) = A \) and similarly for \(B \), of course. By Urysohn’s characterization of normal spaces, there exists a continuous function \(f: X \to [0,1] \) such that \(A \subset f^{-1}(0) \) and \(B \subset f^{-1}(1) \). The universal property of the Stone–Čech compactification [2, §27] says that there exists a unique continuous map \(\beta f \) into the compact Hausdorff space \([0,1] \) such that the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & [0,1] \\
\downarrow{\beta} & & \downarrow{\beta f} \\
\beta X & & \\
\end{array}
\]

commutes. Since \(\overline{A} \subset \beta f^{-1}(0) \) and \(\overline{B} \subset \beta f^{-1}(1) \), \(\overline{A} \) and \(\overline{B} \) are disjoint.

We have now shown that \(\overline{A} \cap \overline{B} \) is both empty an nonempty. This contradiction means that no point in \(\beta X - X \) can be the limit of a sequence of points in \(X \).

(b). Assume that \(X \) is normal and noncompact. \(X \) is a proper subspace of \(\beta X \) since \(\beta X \) is compact which \(X \) is not. No point in \(\beta X - X = \overline{X} - X \) is the limit of a sequence of points in \(X \). Thus \(\beta X \) does not satisfy the Sequence lemma so \(\beta X \) is not first countable, in particular not metrizable.
References

