Problem 1 (20 points)
Let S_Ω denote the smallest uncountable well-ordered set.

(1) Show that S_Ω contains a subset with the order type of the positive integers \mathbb{Z}_+. [Hint: S_Ω does not have a largest element.]

(2) Find an element of S_Ω that does not have an immediate predecessor. [Hint: Use $\mathbb{Z}_+ \subset S_\Omega$.]

Problem 2 (10 points)
If Z is a topological space and $C \subset Z$ a subset, we define the boundary of C by the equation

$$\partial C = \overline{C} \cap (\overline{Z} - C)$$

Let X and Y be topological spaces, A a subset of X and B a subset of Y. Then $A \times B$ is a subset of $X \times Y$. Show that

$$\partial (A \times B) = (\partial A \times \overline{B}) \cup (\overline{A} \times \partial B)$$

[Hint: $(X \times Y) - (A \times B) = (X - A) \times Y \cup X \times (Y - B)$]

Problem 3 (20 points)
Let $f : S^1 \to \mathbb{R}$ be a continuous map of the circle to the real line.

(1) Show that there is a point x on the circle so that $f(x) = f(-x)$. [Hint: The odd map $g(x) = f(x) - f(-x)$ must take the value 0 at some point.]

(2) Is it possible to imbed the circle S^1 in the real line \mathbb{R}?

Problem 4 (40 points)
Let $X = \mathbb{Z}_+$ be the set of positive integers with the discrete topology and $\beta(X)$ its Stone–Čech compactification. We consider X as a subset of $\beta(X)$. Let A be any subset of $X \subset \beta(X)$. Let U be an open subset of $\beta(X)$.

(1) Show that there is a continuous function $F : \beta(X) \to \{0, 1\}$ defined on the compactification such that $F(A) = 0$ and $F(X - A) = 1$. Deduce that \overline{A} and $\overline{X - A}$ are disjoint where closures are taken in $\beta(X)$.

(2) Show that $\beta(X) - \overline{A} = \overline{X - A}$ and that \overline{A} is open and closed in $\beta(X)$. [Hint: You may use without proof the general fact that $\overline{C - D} \subset \overline{C} - \overline{D}$.]

(3) Show that $\overline{U} = \overline{U} \cap X$ and that \overline{U} is open and closed in $\beta(X)$.

(4) Show that the connected components of $\beta(X)$ are one-point sets.

(The End)