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NILPOTENT SPACES OF SECTIONS
JESPER MICHAEL M@LLER

ABSTRACT. The space of sections of a fibration is nilpotent provided the base is finite
CW-complex and the fiber is nilpotent. Moreover, localization commutes with the
formation of section spaces.

1. Introduction. In their famous book on localization theory and later in the
proceedings of the Vancouver 1977 conference, Hilton et al. showed that (any
component of) the space of maps of a finite CW-complex into a nilpotent space is
itself nilpotent [5, II. 2.6; 6, Theorem A]. The main purpose of this paper is to state
and prove a twisted and relative version of their result.

To be more precise, let now, and throughout the paper, 4 5 X bea cofibration,
p: Y — B a fibration with fiber F, u: X — Y a continuous map, and let

F(X,A;Y,B):= {v: X > Y|vi=ui, pv = pu}

be the space of all lifts of pu: X — B which agree with u on A. In this set-up,
F,(X,A;Y, B) is a nilpotent space provided F is nilpotent and (X, 4) is a finite
relative C W-complex (Theorem 4.1).

The proof of this assertion proceeds essentially as in the case considered by Hilton
et al. of ordinary mapping spaces. A key move, though, is to establish a usable
generalization of the principally refined Postnikov systems of nilpotent spaces. This
is done in §3 and could be of some independent interest.

The content of the remaining sections is as follows. §2 contains the basic
definitions, a few preliminary lemmas, and nilpotency of the function space is
proved in a particularly easy case corresponding to the easy construction of
localization functors in the simply connected category. Nilpotency in the general
case is proved in §4 by means of the refined Postnikov towers of §3. This
corresponds to the standard way of constructing localization functors in the nilpo-
tent category. Finally, in §5, we show that fiberwise localization induces localization
of the function space.

The following conventions are in force throughout the paper: X, the base B, and
the fiber F are O-connected spaces; a space is said to be nilpotent if all its
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734 J. M. M@LLER

components are nilpotent; G denotes an arbitrary group and M a G-module; the
function space F,(X, 4;Y, B) is equipped with the compactly generated topology
associated to the compact-open topology.

2. The case of a simple fiber. In this section we recall some basic facts, introduce
the notation, and prove the main result in a particularly easy case.

The G-action on M can be realized geometrically as a based, cellular action on the
Eilenberg-Mac Lane space K(M,n + 1), n > 0. Let EG be a free, contractible
G-space and put

L(M,n+1)= EGX;K(M,n+1).

The obvious maps
k
L(M,n+1)2K(G,1)
k

make L(M,n + 1) into an object in the category J K(G,1) of spaces over and
under K(G, 1) [10].

Let now N be another G-module and Homg (M, N) the set of G-module
homomorphisms of M into N. Also, let {(L(M,n + 1), L(N,n + 1)) k1, denote
the set of 7 K (G, 1)-homotopy classes of maps of L(M, n + 1) into L(N, n + 1).

LEMMA 2.1. There is a bijective correspondence
. Homg(M,N) & (L(M,n+ 1), L(N,n + 1)) x6.1)-

PROOF. By the universal nature of k: L(N,n+1)— K(G,1),
(L(M,n+1),L(N,n+1)) g1, =H" " (L(M,n+1),K(G,1); N).

The Serre spectral sequence for k: L(M, n + 1) - K(G, 1) with local coefficients N
shows [10, (5) p. 4] that H"*Y(L(M, n + 1), K(G,1); N) = Hom4 (M, N). O
Recall that we have a path fibration
PL(M,n+1) > L(M,n+ 1)
in I K(G,1). The path space is defined [10] as
PL(M,n+1):= {o0: I > L(M,n +1)|ko(I) = ka(0),0(0) = kko(0)}

and the projection onto L(M,n + 1)is evaluation at 1 € I = [0, 1] as usual.
Let now v: X —» PL(M,n + 1) be any map into this path space. Using the fact
that k: PL(M,n + 1) > K(G,1) is a homotopy equivalence, one may prove

LEMMA 2.2. F (X, A; PL(M,n + 1), K(G,1)) is contractible.

Let Z —/> K be a space over some other space K and let L 2 K be an object of
JK.

DEFINITION 2.3. A K-principal fibration over Z is any fibration obtained as the
pullback of the path fibration PL — L in JK along a map k: Z — L over K.

Suppose for instance that the base space B is a space over K, B —f> K, so that any
space over B also becomes a space over K. Suppose furthermore that we have a
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commutative diagram of the form

k _
Y - PL
] l l
k
Y, - L
Py ! l
f
B - K

where p = p,p, and p,: Y — Y, is the K-principal fibration defined by k. Put
u, = pou and u; = p,u,. In this situation we have the simple but important

LEMMA 2.4. IfFuz( X, A;Y,, B) is nilpotent, so is F, (X, A;Y, B).

ProoOF. The pullback diagram of the K-principal fibration p, induces another
pullback diagram

F(X,4;Y,B) - F,X, 4;PL,K)
! l
F(X,4;Y,,B) - F, (X, A4;L,K)

of function spaces. Here, Fy, (X, 4; PL. K ) is contractible by Lemma 2.2, so the
assertion follows from [S5, 11.2.2]. The requirement of [5, I1.2.2] that all spaces be
connected can be met, as in the proof of [6, Theorem A], by introducing suitable
covering spaces of F, (X, A4; L, K). O

The material introduced at this point suffices to verify the nilpotency statement in
a special case. Recall that F is simple if «(F) acts trivially on m,(F), that F is
finitely anticonnected if ;(F') = 0 for j sufficiently large, and that (X, 4) is finitely
coconnected if H/(X, A; M) =0 for any local coefficient system M for j suffi-
ciently large.

PROPOSITION 2.5. Suppose that the fiber F is simple and that either (X, A) is finitely
coconnected or F is finitely anticonnected. Then F,(X, A; Y, B) is nilpotent.

ProOOF. Make B into a space over K(G, 1), where G:= m(B), by choosing a map
B — K(G,1) which is the identity on .
Since F is simple, G acts on 7, ( F') and we may erect Postnikov towers [10]

L(mF,i+1)
T
Y-v,»> - - Y, - Y - - - Y, -1 =8B
T T
K(mF,i) K(mF,1)

where Y — Y, is (r + 1)-connected and each stage Y, .; = Y, 1 <i<r,is a
K(G, 1)-principal fibration. F, (X, A4;7Y,, B) is nilpotent, even simple, by [12], so
repeated applications of Lemma 2.4 show that F,(X, 4;7,,,, B) is nilpotent. But
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the stated finiteness assumptions assure that this space converges to F,(X, 4;Y, B)
as r goes to infinity. Hence the latter space is nilpotent. O

It is not true in general that F, (X, 4;Y, B) is simple even though F is simple:
The fundamental group of the space of degree 0 maps S! X S! — S$? is not abelian
[2,8].

3. Refinements of Postnikov towers. Nilpotent spaces have the important property
that their Postnikov systems admit principal refinements. In this section we shall
relativize this concept.

First, we consider fibrations with acyclic fibers.

Let N be a nilpotent group. The lower central series of N,

TY(N)ST2(N)> - bTHNTHY(N)S - - -,
defined inductively by TY(N)= N, I'"*}(N) =[N, T/(N)], i > 1, is finite, in the
sense that T“*}(N) = {1} for some ¢, by the very definition of nilpotency. Any
automorphism of N restricts to an automorphism of T''(N) for all i > 1. In other
words, Aut(N) acts on I''(N) and hence also on T(N)/T'*{(N) for all i > 1.
Moreover, inner automorphisms act trivially on T/(N)/T*Y(N) and hence
Out(N):= Aut(N)/N acts on these subquotients. Similarly, Aut(N)/T'(N) acts on
T'/(N)/T'"*Y(N) and even on H,(T/(N)) = T(N)/[T/(N),T/(N)]. .

Now assume that K(N,1) - Y — B is a fibration with an acyclic, nilpotent fiber.
The associated semiaction [4, p. 142] of m(B) on N is a homomorphism ¢:
7,(B) = Out(N). B, and hence also Y, becomes a space over K(Out(N),1) if we
realize Y geometrically as a map of B into K(Out(N),1).

LEMMA 3.1. Suppose that the fibration p: Y = B has an acyclic, nilpotent space
K(N,1) as fiber. Then there is a factorization

L(ri/l"i+1,2)
1
Y=Y, =Y~ o = Y, - Yoo o oY=B
)
K(I‘i/l‘i+1, 1)

of p: Y — B into a finite string of K(Out(N), 1)-principal fibrations.

PrOOF. W.lo.g., p is the universal example [4, Theorem 2.1] of such a fibration.
Then Y = K(Aut(N),1) and 7,;(B) = Out(N). In the Serre spectral sequence for p

with local coefficients Out(N) — Aut(T'(N)/T?(N)) one has, as in the proof of
[10, Theorem 4.1], that

E)' = HomAut(N)/I‘l(N)(lel(N)’ FI(N)/P2(N))
— Hom y, (T(N), TY(N)/T2(N)).

Hence the projection map T''(N) — T''(N)/T'*(N), which is Aut(N )-equivariant, is
geometrically realizable [10, p. 5 and Theorem 3.1] by a map Y, —
L(TY(N)/T?*(N),2) over K(Out(N),1). By pullback of the path fibration we get a
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factorization
Y - Yy, - Y, =B
1 T
K(Th1) K(T'/T21)

of Y — B such that ¥, - Y, is a K(Out(N),1)-principal fibration and the restric-
tion of ¥ — Y, to the fibre induces the projection T''(N) - I'}(N)/T'*(N) on .
This implies that the homotopy fiber of ¥ — Y, is K(I'>(N),1) and = (Y,) =
Aut(N)/T?(N).

Repeat the argument with Y, replaced by Y,, etc. The process eventually stops,
because the homotopy fiber, K(T'“*}(N),1), of Y - Y.,, is contractible if
r<*}(yv)y=1. o

Next, we consider the abelian case. Suppose that the group G fits into an exact
sequence of groups of the form

K A
N-G- Q-1
Then N acts on M through k. Define the lower central N-series of M,
Ty(M)DTR(M)D - DTY(M)D T (M)> -,
by setting I'},(M) = M and letting T'4;*}(M) be the subgroup generated by {nm —
m|n € N,m € T} (M)}. N acts nilpotently on M if T*'(M) = 0 for some c.
LEMMA 3.2. Ty (M) is a G-submodule for all i > 1.

PrROOF. Foralln € N, m € T\(M), and g € G,
g(nm —m) = (gng™")gm — gm € T (M),
for gng™' € k(N) and, arguing by induction, we may assume that gm € Ty(M).
O

Thus all the subquotients 'y (M)/T} (M) are G-modules and even Q-modules
since N acts trivially here.

Assume now that K(M,n) - Y — B is a K(G,1)-principal fibration, n > 1.

LEMMA 3.3. Suppose that N acts nilpotently on M. Then there is a factorization
L(T'/T* 0 4 1)

T
Y=Yo=Y=> = = Y, > ¥ > o oY=
)
K(I‘I/I‘i+1,n)

of p: Y — B into a finite string of K(Q, 1)-principal fibrations.

PrOOF. W.lo.g, B=L(M,n+1)=EG X ;K(M,n+1), Y=PL(M,n+1),
and p: Y — B is the path fibration in K (G, 1).

Since the Milnor construction [7] of universal numerable, principal bundles is
functorial, there exists a map EA: EG — EQ over A: K(G,1) > K(Q,1) such that
EX(eg) = EX(e)N(g), e € EG, g € G. By Lemma 2.1, there also exists a G-equi-
variant, based map

p: K(Ty(M),n+ 1) » K(Ti(M)/Ti (M),n + 1)
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corresponding to the projection Ty, (M) — Ty (M)/Ti (M) of G-modules. Consid-
ering the target as a Q-space, this means that p(gx) = A(g)p(x) for all g € G and
x € K(IT'hy(M),n + 1). EX X p induces, by passing to orbit spaces, a map
L(Ty(M),n+1) - L(Ty(M)/TiF (M),n+1)
L1 1
A
K(G,1) - K(Q.,1)

over and under A. Since this map lifts to the path spaces, we obtain, by forming
pullback, a factorization

PL(Ty(M),n+1) - Y., > L(Ty(M),n+1)
) 1
K(T',n) K(T'/T"* ' n)

of the path fibration over L = L(I'y,(M),n + 1). Here, Y,,, » L is a K(Q,1)-
principal fibration and the homotopy fiber of PL — Y, is K(T';"'(M), n). This
implies that Y, | = L(T4" (M), n + 1) and PY,,, = PL.

If N acts nilpotently on M, then this process eventually stops, for the homotopy
fiber K(T$T (M), n) of PL(T(M),n + 1) > Y., is contractible if T*'(M) = 0.
O

A combination of Lemma 3.1, Lemma 3.3, [4], and [10] yields

THEOREM 3.4. Let p: Y — B be a fibration with nilpotent fiber F. For r > 1 there
exist factorizations

Y-Y, - =2Y,2Y-> - >Y,>Y =B

s 1

of p: Y = B such that Y - Y, ., is (r + 1)-connected and each stage Y, , — Y,

1 <ixs, is a K-principal fibration where either K = K(Outm(F),1) or K=
K(m(B),1).

PROOEF. There exist Postnikov decompositions of the form [4, 10]:

Y-v, »-> Y, » Y -2 T, - Y, =8
T )
K(7,(F),i) K(m(F).1)

The first stage, Y, — Y, is a fibration of the type discussed in Lemma 3.1. The next
stages, Y., = Y, i > 2, are K(m(Y),1)-principal fibrations corresponding to the
action of m(Y)on w(F) =« (B, Y). But 7;(Y) fits into the exact sequence

m(F) > m(Y) > m(B)—>1

and ,(F) acts nilpotently on «,(F). Thus Y, ; — Y, is a fibration of the type
discussed in Lemma 3.3. O
The converse of Theorem 3.4 is also true, for the restriction to the fiber of

factorizations as in the theorem are principal refinements of the Postnikov tower of
F.
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4. The case of a nilpotent fiber. In this section we shall prove the main result in its
full generality.

In fact, all preparations have been made already so we proceed straightway to the
formulation of

THEOREM 4.1. Suppose that the fiber F of p: Y — B is nilpotent and that either
(X, A) is finitely coconnected or F is finitely anticonnected. Then F (X, A;Y, B) is
nilpotent.

In order to prove this statement, replace the “crude” Postnikov tower by the
refined one of Theorem 3.4 and proceed as in Proposition 2.5.

For an application of Theorem 4.1, suppose that F is a G-space and X a free
(principal) G-space such that (X/G, A/G) = (X, A) for some G-invariant subspace
A c X. Denote by F,(X, 4; F)° the space of all G-equivariant extensions of f |4,
where f: X — F is some G-map.

COROLLARY 4.2. Fy( X, A; F)Cis nilpbtent under the assumptions of Theorem 4.1.

PROOF. Apply the theorem to the space of sections of the associated fiber bundle
XX F->X 0O

In particular, section spaces and equivariant function spaces admit localizations.
That these localizations behave as expected will be shown in the next, final section.

5. Localizations of section spaces. Throughout this section we make the additional
assumption that (X, A4) is a relative CW-complex with finite skeleta.

For any family P of primes, the P-localized module M, is canonically a G-module
and the localization map e: M — M, a G-homomorphism.

Given a homomorphism m(X) = G, M and M, become local coefficient systems
in X.

LeEMMA 5.1. The coefficient group homomorphism
ex: H¥(X,A; M) > H*(X, A; M,)
is a P-localization.

PROOF. Let I'*( X, 4; M), I'*( X, 4; M) denote the cellular cochain complexes of
(X, A) with local coefficients M, Mp. Since localization commutes with direct sum,
the commutative diagram

@® M(h(E)) > TUX, A M)
le | es
@ M(ha(EO))P i I"’(X,A;MP)

where {h,: A7 —> X} are the g-cells of (X, A4) and E, € A? the base point, shows
that e, P-localizes on the cochain level. To complete the proof, observe that e, is a
cochain map and localization an exact functor. O
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Let also e: L — L p, denote the I K(G,1)-morphism of L:= L(M,n + 1) into
L py:= L(Mp,n+ 1), n> 0, corresponding to e: M — M.
In the following,
Fo(=.=i=.-)
denotes the path-component of F,(—, —; —, —) containing u; m, where m is a fiber
map, denotes the map on function spaces defined as post composition with .

LEMMA 5.2. For any map v: X - PL,
Pe : FX(X,A; PL,L) - F{,, (X, 4; PLp); L p))

is a P-localization.

ProoF. This follows from Lemma 5.1 and the decomposition [12] of the function
spaces in question as products of Eilenberg-Mac Lane spaces. O

Consider the fiberwise P-localization e: Y — Y., constructed in [1,9] for any
fibration with nilpotent fiber.

THEOREM 5.3. Suppose that F is nilpotent and that either (X, A) is finite or F is
finitely anticonnected. Then

e: F)(X,4,Y,B) » FS(X, A; Y, B)

is a P-localization.

The proof is again by induction in the refined Postnikov tower of p and proceeds
as that of [6, Theorem B] once [6, Theorem 2.1] has been replaced by Lemma 5.2.

In the situation of Corollary 4.2 and under the same assumptions as in Theorem
5.3 we have

COROLLARY 5.4. F(X, 4; F)§ = FJ(X, A; Fp)°.

PROOF. (X X ;F)py= X XGFp. O

We Tinish this paper by considering an application of Corollary 5.4.

EXAMPLE 5.5. The antipodal map defines a Z/2-action on S”". Suppose that n is
even (and positive) and let 1 denote the identity map. Then any component of
F\(S", 8™ S")%/? is rationally homotopy equivalent to S”"~”~! if m is even,
0<m<n,andtoS*" ™ 2if misodd, -1 < m < n (where S™! = @).

The assertions in Example 5.5 follow from the decomposition [12] of the section
space for S" X4, S, — RP”" induced from the Postnikov tower; cf. [3,13]. Note
that the results of [3 or 15] cannot be used as neither the fibration nor the base is
nilpotent.

Added in proof. Only K(m,(B),1)-principal fibrations are needed in Theorem 3.4
since in Lemma 3.1, Out(N ) can easily be replaced by =,( B).
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