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Abstract
The p-coset poset of a finite group G consists of all cosets of proper p-subgroups of
G ordered by set inclusion. We determine the Euler characteristic of the p-coset poset
of the finite groups of Lie type in characteristic p.
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1 Introduction

Let G be a finite group and p a prime number. The coset poset of G consists of all
cosets of all proper subgroups, and the p-coset poset of G of all cosets of all proper
p-subgroups. By a proper subgroup of G we mean a subgroup H with H �= G. Both
C∗
G, the coset poset, and C p+∗

G , the p-coset poset, are ordered by set inclusion. In the
paper [3] from 2000, K.S. Brown investigates the coset poset of G and remarks in
Section 8.4 that it would be interesting to study the p-coset poset as well. This is what
we do here.

Thus we shall here focus mainly on the p-coset poset of G,

C p+∗
G =

⋃

P�G

G/P =
⋃

P�G

{gP | g ∈ G} (1.1)

consisting of all cosets of proper p-subgroups P � G ordered by set inclusion. We
first observe that the Euler characteristic of C p+∗

G is
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χ(C p+∗
G )

Eq. (2.3)=
∑

P�G

−μ(P,G)|G : P|

where μ is the Möbius function of the p-subgroup poset of G (supplemented by G).
As an easy consequence we see that χ(C p+∗

G ) �= 1 and that C p+∗
G is non-contractible

for all finite groups G (Corollary 2.7).
Since the index of any p-subgroup is divisible by |G|p′ , the p′-share of the group

order, |G|p′ also divides the Euler characteristic of the p-coset poset, and it is some-
times convenient to introduce the normalised Euler characteristic

χ(C p+∗
G ) = χ(C p+∗

G )

|G|p′

of the p-coset poset.
In Theorem 3.1 we show that the normalised Euler characteristic of the p-coset

poset of a characteristic p finite group of Lie type K is

χ(C p+∗
K ) =

∑

∅⊆I⊆�̂

(−)|I ||K : PI ||U∅ : UI |2

where �̂ is the set of fundamental roots, PI the parabolic subgroup associated to
I ⊆ �̂, andUI = OpPI its unipotent radical. The normalised Euler characteristics of
the p-coset posets of K and of its parabolic subgroups PI , described in Corollary 3.4,
are closely connected to the combinatorics of K .

Section 4 contains several concrete and detailed computations of normalised Euler
characteristics of p-coset posets for finite groups of Lie type in characteristic p. See
for instance Example 4.1 which contains the formulas

χ(C p+∗
SL+

2 (Fq )
) = −q2 + q + 1 χ(C p+∗

SL−
2 (Fq )

) = −q2 + q + 1

χ(C p+∗
SL+

3 (Fq )
) = q6 − 2q4 − q3 + 2q + 1

χ(C p+∗
SL−

4 (Fq )
) = q12 − q8 − 2q7 + q6 − q5 − q4 + 2q3 + q + 1

for the normalised Euler characteristics of the p-coset posets for the groups SL+
2 (Fq),

SL+
3 (Fq), SL

−
2 (Fq), SL

−
4 (Fq) where q is a power of p. The relations

q6

(q + 1)(q2 + q + 1)
= 1 − 2

χ(C p+∗
SL+

2 (Fq )
)

q + 1
+

χ(C p+∗
SL+

3 (Fq )
)

(q + 1)(q2 + q + 1)

q12

(q + 1)2(q2 + 1)(q2 − q + 1)
=

(
1 −

χ(C p+∗
SL−

2 (Fq )
)

q + 1

)
+

(χ(C p+∗
SL+

2 (Fq2 )
)

q2 + 1

−
χ(C p+∗

SL−
4 (Fq )

)

(q + 1)2(q2 + 1)(q2 − q + 1)

)
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come from Example 4.9.

1.1 Notation

For quick reference, here is a list of the posets occurring in this note:

S∗
G The poset of proper subgroups of G

S p+∗
G The poset of proper p-subgroups of G

S p+rad+∗
G The poset of proper radicalp-subgroups of G

C∗
G The poset of proper cosets in G

C p+∗
G The poset of proper p-cosets in G

C p+rad+∗
G The poset of proper p-cosets of radical p-subgroups of G

A p-group (p-coset) is a group (coset) of p-power cardinality. A p-subgroup P of
G is radical if P = OpNG(P).

The objects of the (p-)coset poset C(p+)∗
G are cosets xH , x ∈ G, H � G, of proper

(p-)subgroups of G. The cosets are ordered by set inclusion: xH ≤ yK in C(p+)∗
G if

and only if H ≤ K and yK = xK .

Let S be a finite poset. If x, y are elements of S , then x/S = {z ∈ S | x ≤ z} is
the coslice over x and x//S = {z ∈ S | x < z} the proper coslice over x . The slice
S/y and the proper slice S//y have analogous definitions.

The join (or ordinal sum [14, Chp 3.2]) S ∗ {∞} consists of S with an adjoined
extra element ∞ such that ∞ ≥ a for all a ∈ S . The Möbius function, μ, of S ∗ {∞}
restricts to the Möbius function on S , and, for all a ∈ S ,

• μ(∞,∞) = 1 and μ(∞, a) = 0
• ∑

b∈a/S μ(a, b) + μ(a,∞) = 0 and
∑

b∈a/S μ(b,∞) + 1 = 0
• χ(a//S ) = μ(a,∞) [14, 3.8.5, 3.8.6].

In this paper, S = S(p+)∗
G is the poset of proper (p-)subgroups and μ is the Möbius

function of S ∗ {∞} = S(p+)∗
G ∪ {G}.

2 The Coset Poset and the p-Coset Poset of a Finite Group

The p-coset poset C p+∗
G and the coset poset C∗

G, investigated by Brown [3], share
several properties.

Proposition 2.1 [3, Proposition 8] Let N be a normal subgroup of G.

(a) If N is contained in the Frattini subgroup, then the projection q : G → G/N
induces a homotopy equivalence C∗

G → C∗
G/N .

(b) If N is contained in the Frattini subgroup and is a p-group, then the projection
q : G → G/N induces a homotopy equivalence C p+∗

G → C p+∗
G/N .
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(c) If G is not a p-group and N is a p-group, then the projection q : G → G/N
induces a homotopy equivalence C p+∗

G → C p+∗
G/N .

Proof (a) and (b) Because N consists of nongenerators [11, 5.2.12], the projection
map takes proper subgroups of G to proper subgroups of G/N , and thus induces a
posetmorphism q : C(p+)∗

G → C(p+)∗
G/N .There is also a posetmorphism q−1 : C(p+)∗

G/N →
C(p+)∗
G in the other direction taking the (p-)subgroup coset C � G/N to q−1C � G.

These poset morphisms are homotopy equivalences because x P ⊆ x PN for all x ∈ G
and P � G, and C = qq−1(C) for all cosets C � G/N [10, 1.3].
(c) The proof is similar. 
�
Lemma 2.2 For any K ∈ S(p+)∗

G ∪ {G},
∑

H∈S(p+)∗
K

μ(H , K )|K : H | = −χ(C(p+)∗
K ) =

∑

H∈S(p+)∗
K

χ(C(p+)∗
H )|K : H |

Proof There are isomorphisms of proper coslices and isomorphisms of proper slices

H//S(p+)∗
K H//C(p+)∗

K xH//C(p+)∗
K

L L xL

∼= ∼=

C(p+)∗
L C(p+)∗

K //L C(p+)∗
K //yL

C C yC

∼= ∼=

where H , L are proper (p)-subgroups of K and x, y ∈ K . This gives two expressions
for the Euler characteristic of C(p+)∗

K ,

∑

H∈S(p+)∗
K

μ(H , K )|K : H | = −χ(C(p+)∗
K ) =

∑

H∈S(p+)∗
K

χ̃ (C(p+)∗
H )|K : H | (2.3)

as, χ̃ (H//S(p+)∗
K ) = μ(H , K ), and in general,

∑
a χ̃(a//S ) = −χ(S ) =∑

b χ̃(S//b) for any finite poset S [5, Corollary 3.8], [8, Example 2.10]. 
�
Example 2.4 When G = A5 is the alternating group on 5 elements, the table of (2-
)subgroups

H A4 D10 D6 C5 C2 × C2 C3 C2 C1

|H | 12 10 6 5 4 3 2 1
|G : NG(H)| 5 6 10 6 5 10 15 1

μ(H ,G) −1 −1 −1 0 0 2 4 −60
H C2 × C2 C2 C1

|H | 4 2 1
|G : NG(H)| 5 15 1

μ(H ,G) −1 0 4
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and Eq. (2.3) show that χ(C∗
A5

) = 1·5· 6012 +1·6· 6010 +1·10· 606 −2·10· 603 −4·15· 602 +
1·60· 601 = 1561 and χ(C2+∗

A5
) = 1·5· 604 −4·160

1 = −165 = −11·15 = −11·|A5|2′ .

Remark 2.5 Let E(G) and Ep(G) be the functions defined recursively by E({1}) =
1 = Ep({1}) and

E(G) +
∑

H∈S∗
G

E(H)|G : H | = 1, Ep(G) +
∑

H∈S p+∗
G

Ep(H)|G : H | = 1

whenG is a non-trivial finite group. Then E(G) = −χ̃ (C∗
G) and Ep(G) = −χ̃ (C p+∗

G )

by the second equality of Lemma 2.2 with K = G.

Write E(n), Ep(n) for E(Cn), Ep(Cn) where Cn is cyclic of order n ≥ 1. Then
E(pe) = 1 − p = Ep(pe) for all e > 0. E(n) = ∏

p|n E(p) is a product over the
prime divisors of n, and Ep(pem) = 1 − m when e ≥ 0, m > 1, (p,m) = 1.

The reduced Euler characteristic of the (p-)coset poset is known for p-groups.

Proposition 2.6 [3, Proposition 11] Let P be a finite p-group and �(P) its Frattini
subgroup. Then

χ̃(C p+∗
P ) = −

∏

1≤ j≤n

(1 − p j )

where n ≥ 1 and pn = |P : �(P)|.
Proof The Frattini quotient P/�(P) is the elementary abelian p-group, V (n), of
order pn [11, 5.3.2], and −χ̃ (C∗

P ) = −χ̃ (C∗
V (n)) by Proposition 2.1. The poset C∗

V (n),

which is the poset of proper affine subspaces of the affine space Fn
p, is known to have

the homotopy type of a wedge of
∏

1≤ j≤n(p
i − 1) spheres of dimension n − 1. 
�

Corollary 2.7 For any finite groupG, χ(C p+∗
G ) is amultiple of |G|p′ andχ(C p+∗

G ) �= 1.

Proof If G is a p-group, C p+∗
G = ∅ and χ(C p+∗

G ) = 0 if G = {1} is trivial, while
χ(C p+∗

P ) = 1 − ∏
1≤ j≤n(1 − p j ) �= 1 if G is nontrivial. If G is not a p-group,

|G|p′ > 1 divides χ(C p+∗
G ) by Eq. (2.3). 
�

The p-coset poset C p+∗
G is non-contractible as χ(C p+∗

G ) �= 1 for any group G
and any prime p. It is unknown if also χ(C∗

G) �= 1 for any group G. Nonetheless,
Shareshian and Woodroofe, using the classification of the finite simple groups, have
shown that C∗

G is never contractible [12].
The following result shows that only the radical p-subgroups contribute to the Euler

characteristic of the p-coset poset of a non-p-group.

Proposition 2.8 [10, Proposition 6.1] Let P be a proper p-subgroup of G.

(a) If P is radical, there are homotopy equivalences
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P//S p+∗
NG (P) P//S p+∗

G

i

r

where i is the inclusion and r(Q) = NQ(P) = Q ∩ NG(P) for all p-subgroups
Q � P.

(b) If P is not radical andG is not a p-group, P//S p+∗
G is contractible andμ(P,G) =

0.

Proof Let Q be a p-subgroup ofG properly containing P. If r(Q) = P then NQ(P) =
P. If r(Q) = NG(P) and P is radical, then NG(P) is a p-group and P = OpNG(P) =
NG(P) = NQ(P) again. But P = NQ(P) for Q � P is impossible since P satisfies
the normalizer condition [11, 5.2.4]. We conclude that P � r(Q) � NG(P), ie
that r(Q) ∈ P//S p+∗

NG (P) for all Q ∈ P//S p+∗
G . The poset morphisms i and r are

homotopy equivalences [10, 1.3] since ir(Q) = NQ(P) ≤ Q for Q ≤ G, and
ri(Q) = Q ∩ NG(P) = Q for Q ≤ NG(P).

Now assume that G is not a p-group. Then P//S p+∗
G is the poset {Q | P � Q �

G} = {Q | P � Q ≤ G} of proper p-supergroups of P. By the same argument as
above, {Q | P � Q ≤ G} and {Q | P � Q ≤ NG(P)} are homotopy equivalent
posets. The latter poset is poset isomorphic to the poset {Q | 1 � Q ≤ NG(P)/P} of
nontrivial p-subgroups of NG(P)/P which is contractible if Op(NG(P)/P) �= 1 or
P � Op(NG(P)) [10, Proposition 2.4]. 
�
Corollary 2.9 The Euler characteristic of the p-coset poset of a non-p-group G is

χ(C p+∗
G ) =

∑

P∈S p+rad+∗
G

−μ(P,G)|G : P|

where the sum runs over all radical p-subgroups of G.

Proof χ(C p+∗
G )

Eq. (2.3)= ∑
P∈S p+∗

G
−μ(P,G)|G : P| where μ(P,G) = 0 unless P is

radical by Proposition 2.8(2.8). 
�
Corollary 2.10 C p+rad+∗

G ↪→ C p+∗
G is a homotopy equivalence when G is not a p-

group.

Proof This follows from Bouc’s criterion for homotopy equivalence [2, Proposi-
tion 4.(ii)] since

x P//C p+∗
G is non-contractible ⇐⇒ P//S p+∗

G is non-contractible
Proposition 2.8�⇒

P is radical ⇐⇒ x P ∈ C p+rad+∗
G

for any proper p-subgroup P � G and any x ∈ G. 
�
Define the normalised Euler characteristic of the p-coset poset of G,

χ(C p+∗
G ) = χ(C p+∗

G )

|G|p′
(2.11)
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as the quotient of the Euler characteristic by the p′-part of the group order.

Proposition 2.12 χ(C p+∗
G ) ≡ 0 mod p if G is a p-group and χ(C p+∗

G ) ≡ 1 mod p
otherwise.

Proof Use Proposition 2.6 if G is a p-group. If G is not a p-group, Eq. (2.3) shows
that

χ(C p+∗
G ) ≡

∑

S∈Sylp(G)

−μ(S,G)|G|p′ = |Sylp(G)||G|p′ ≡ |G|p′ mod p

where Sylp(G) is the set of Sylow p-subgroups of G. 
�

Proposition 2.13 For any abelian group A that is not a p-group, χ(C p+∗
A ) = 1.

Proof χ(C p+∗
A ) = |A : Op(A)| = |A|p′ by Corollary 2.9 since, Op(A), the only

radical p-subgroup, is the Sylow p-subgroup. 
�
I finish this section with a quick review of Hall’s Eulerian functions for finite

groups [7]. Let Fs denote the free group of rank s ≥ 0, Gs = Hom(Fs,G) the
set of homomorphisms of Fs into G, and Epi(Fs,G) the set of epimorphisms of Fs
onto G. For any subgroup K of G, |Hom(Fs, K )| = ∑

1≤H≤K |Epi(Fs, H)|, and
|Epi(Fs, K )| = ∑

1≤H≤K μ(H , K )|Hom(Fs, H)| byMöbius inversion. The density
of the generating s-tuples in Gs is

P(G, s) = |Epi(Fs,G)|
|Hom(Fs,G)| =

∑

1≤H≤G

μ(H ,G)
|Hom(Fs, H)|
|Hom(Fs,G)|

=
∑

1≤H≤G

μ(H ,G)|G : H |−s .

The finite Dirichlet series P(G, s) evaluates at s = −1 to

P(G,−1) =
∑

1≤H≤G

μ(H ,G)|G : H | Lemma 2.2= −χ̃ (C∗
G).

This is the connection, pointed out in [3, (1),(4)], and attributed to Bouc, between the
function P(G, s) and the Euler characteristic of C∗

G . There seems to be no similar

interpretation of χ(C p+∗
G ).

3 Coset Posets of Finite Groups of Lie Type

In this section we determine the normalised Euler characteristic of the p-coset poset
of a characteristic p finite group of Lie type.

Let� be a reduced and crystallographic root system with fundamental and positive
roots �,�+ ⊆ � [6, Definition 1.8.1]. Suppose K (�) is a semisimple Fp-algebraic
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group with root system � [6, Theorem 1.10.4] equipped with a Steinberg endomor-
phism σ. We can assume, for some power q of p, that σ = γρϕq or σ = ψϕq (in the
notation of [6, Definition 1.15.(b), Remarks 2.2.5.(e)]) is of standard form. Assuming
� to be also irreducible [6, Definition 1.8.4], let K = Op′

CK (�)(σ ) be the finite

group in Lie(p) with σ -setup (K (�), σ ) [6, Definition 2.2.2].
The surjections � → �̃ → �̂ of [6, (2.3.1)] induce surjections � → �̃ → �̂

of sets. Here, �̃ is the twisted root system of K [6, p 41], and �̂ = �̃/∼ the set of
equivalence classes of twisted roots pointing in the same direction.

For every subset I ⊆ �̂ we have associated subgroups PI ,UI , L I ⊆ K such that
UI = Op(PI ), PI = NK (UI ) and PI = UI � L I [6, Theorem 2.6.5]. The PI are
parabolic subgroups, the UI are unipotent radical p-subgroups and the L I are Levi
complements [6, Definition 2.6.4, Definition 2.6.6]. It is a consequence of the Borel–
Tits theorem that {UI | I ⊆ �̂} is complete set of representatives for the K -conjugacy
classes of the radical p-subgroups of K [6, Corollary 3.1.5]. In the extreme cases
J = ∅, �̂, P∅ = U∅ � L∅ is a Borel subgroup of K ,U∅ a Sylow p-subgroup [6, p 41,
Theorems 2.3.4, 2.3.7], L∅ = H is a maximal torus or Cartan subgroup [6, Theorem
2.4.7, Definition 2.4.12], and P�̂ = K = L�̂, U�̂ = 1. If ∅ ⊆ J ⊆ I ⊆ �̂ then
UI ⊆ UJ ⊆ PJ ⊆ PI and UI ⊆ U∅ ⊆ P∅ ⊆ PI .

Theorem 3.1 The normalisedEuler characteristic (2.11) of the p-coset poset of K �= 1
is

χ(C p+∗
K ) =

∑

∅⊆I⊆�̂

(−)|I ||K : PI ||U∅ : UI |2.

More generally, the normalised Euler characteristic of the p-coset poset of the
parabolic subgroup PI is

χ(C p+∗
PI

) =
∑

∅⊆J⊆I

(−1)|J ||PI : PJ ||U∅ : UJ |2

for any I ⊆ �̂ such that L I �= 1.

Proof Since −μ(UI , K ) = (−1)|I ||U∅ : UI | [9, Corollary 3.3], Corollary 2.9 shows
that the Euler characteristic of the p-coset poset is

χ(C p+∗
K ) =

∑

∅⊆I⊆K

(−1)|I ||U∅ : UI ||K : UI ||K : PI |

=
∑

∅⊆I⊆K

(−1)|I ||U∅ : UI ||K : U∅||U∅ : UI ||K : PI |

= |K : U∅|
∑

∅⊆I⊆K

(−1)|I ||K : PI ||U∅ : UI |2

where |K : U∅| = |K |p′ as U∅ is a Sylow p-subgroup of K . This is the first formula
of the theorem.

123
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Assume that L I �= 1 for some I ⊆ �̂. Then PI is not a p-group. As in the proof
of [9, Theorem 3.4], we note that the radical subgroups classes in PI are the p-groups
UJ for all subsets J of I . For J ⊆ I , there is an inclusion

UJ //S p+∗
PI

↪→ UJ //S p+∗
K

and a poset morphism in the other direction that takes Q with UJ < Q < K to
NQ(UJ ) = Q ∩ NK (UJ ) = Q ∩ PJ . Observe that UJ < NQ(UJ ) [11, 5.2.4.(iii)]
and Q ∩ PJ < PJ ≤ PI since PJ is not a p-group. Thus Q ∩ PJ lies in the
cosliceUJ //S p+∗

PI
. Since these two poset morphisms are homotopy equivalences [10,

§1.3], the Euler characteristics of the two posets are identical, −χ̃ (UJ //S p+∗
PI

) =
−χ̃ (UJ //S p+∗

K ) = (−1)|J ||U∅ : UJ | by [9, Corollary 3.3]. An application of Corol-
lary 2.9 now yields

χ(C p+∗
PI

) =
∑

∅⊆J⊆I

(−1)J |U∅ : UJ ||PI : UJ ||PI : PJ |.

Rewriting this, in much the same way as we just did for χ(C p+∗
K ) and noting that

|PI : U∅| = |PI |p′ , gives the second formula of the theorem. 
�
The p-coset poset C p+∗

K is independent of the version of K since the order of the
center of the universal version of K is prime to p [6, Theorems 2.2.7, 1.12.5].

For any I ⊆ �̂, L I = HMI where MI = 〈X α̂ | ±α ∈ I 〉 [6, Definition 2.6.4].
Note that M∅ = 1 is the trivial group, L∅ = H , M�̂ = K = L�̂ and |L I |p = |MI |p
as MI = Op′

(L I ) [6, Theorem 2.6.5.(f)]. Let KB(MI ) = |PI : P∅| for any I ⊆ �̂.

In particular, the Borel index of K ,

KB(K ) = KB(M�̂) = |K : P∅| = |K : U∅H | = |K : U∅|
|H | = |K |p′

|H | = |K |/|B|

is the index in K of the parabolic subgroup B = P∅. Furthermore,

KB(MI ) = |PI : P∅| = |UI L I : U∅L∅| = |L I : L∅|
|U∅ : UI |

= |HMI : H |
|L I |p = |MI |

|H ∩ MI ||MI |p = |MI |p′

|H ∩ MI |
and, since H ∩ MI is the Cartan subgroup for MI [6, Theorem 2.6.2.(e)], this is
the product of the Borel indices for the components of MI [6, Theorem 2.6.5.(f)].
The structure of MI , the subsystem subgroup associated to I [6, Theorem 2.6.5.(f)],
can be determined from the Dynkin diagram of K with its symmetry ρ [6, Propo-
sitions 2.2..11, 2.6.2]. With this notation |K : PI | = |K :P∅|

|PI :P∅| = KB(K )
KB(MI )

= KB(M�̂)

KB(MI )

and |U∅ : UI | = |MI |p = qN where N is the degree of the Borel index KB(MI )

considered as a polynomial in q. The next corollary is a consequence of the more
general version of Theorem 3.1.

123
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Corollary 3.2 For any subset I ⊆ �̂,

χ(C p+∗
PI

) =
∑

∅⊆J⊆I

(−1)|J | KB(MI )

KB(MJ )
q2 deg(KB(MJ ))

q2 deg(KB(MI )) =
∑

∅⊆J⊆I

(−1)|J | KB(MI )

KB(MJ )
χ(C p+∗

PJ
)

with the understanding that χ(C p+∗
P∅ ) means 1.

Proof The second identity of Theorem 3.1 and its Möbius inverse [14, 3.8.3] are

χ(C p+∗
PI

)

|PI | =
∑

∅⊆J⊆I

(−1)|J | |U∅ : UJ |2
|PJ |

|U∅ : UI |2
|PI | =

∑

∅⊆J⊆I

(−1)|J | χ(C p+∗
PJ

)

|PJ | .

Use that |PI : PJ | = |K :PJ ||K :PI | = KB(MI )
KB(MJ )

and |U∅ : UJ | = qdegKB(MJ ) to bring them to
the forms displayed in the corollary. 
�

Placing the Solomon identities [4, Chapter 14], [9, Lemma 3.2], [13, Corollary 1.1]
in the first line and the identities from Theorem 3.1 and Corollary 3.2 in the second
line, we obtain a table

1 =
∑

∅⊆I⊆�̂

(−1)|I | KB(K )

KB(MI )
qdegKB(MI )

qdegKB(K ) =
∑

∅⊆I⊆�̂

(−1)|I | KB(K )

KB(MI )

χ(C p+∗
K ) =

∑

∅⊆I⊆�̂

(−1)|I | KB(K )

KB(MI )
q2 degKB(MI )

q2 degKB(K ) =
∑

∅⊆I⊆�̂

(−1)|I | KB(K )

KB(MI )
χ(C p+∗

PI
)

of four polynomial identities associated to K . These identities can also be written as

1 =
∑

∅⊆I⊆�̂

(−1)|I ||K : PI ||U∅ : UI | |K |p =
∑

∅⊆I⊆�̂

(−1)|I ||K : PI |

χ(C p+∗
K ) =

∑

∅⊆I⊆�̂

(−1)|I ||K : PI ||U∅ : UI |2 |K |2p =
∑

∅⊆I⊆�̂

(−1)|I ||K : PI |χ(C p+∗
PI

).

The two identities of each line are equivalent under Möbius inversion. (It is here
understood that χ(C p+∗

P∅ ) equals 1 in all cases. This is indeed the correct normalised

Euler characteristic of C p+∗
P∅ unless q = 2 where P∅ = U∅ is a 2-group. For instance,
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if K = A+
n (2) = SL+

n+1(F2), the (normalised) Euler characteristic of C2+∗
P∅ is not 1

but rather 1 − ∏
1≤ j≤n(1 − 2 j ) by Proposition 2.6.)

Corollary 3.2 can be reformulated as a linear equation. Let [KB](K ) be the matrix
with entries

[KB](K )(I , J ) =
{

(−1)|J | KB(MI )
KB(MJ )

I ⊇ J

0 otherwise

indexed by subsets I , J ⊆ �̂. ([KB](K ) is a lower triangular square matrix if the
subsets are ordered with decreasing cardinality.) By Corollary 3.2, the vector X =(
χ(C p+∗

PI
)
)
I⊆�̂

of normalisedEuler characteristics is the solution to the linear equation

[KB](K )I ,J⊆�̂X = (
q2 degKB(MI )

)
I⊆�̂

. (3.3)

From this follows a multiplicative principle for Euler characteristics of p-poset cosets
of parabolic subgroups.

Corollary 3.4 For any subset I ⊆ �̂,

χ(C p+∗
PI

) =
∏

L∈π0(MI )

χ(C p+∗
L )

where π0(MI ) is the multiset of components of MI [6, Theorem 2.6.5.(f)].

Proof The vector X = ( ∏
L∈π0(MI )

χ(C p+∗
L )

)
I⊆�̂

is also a solution to (3.3). 
�

The identity for I = �̂ to the right in Corollary 3.2 takes the form

q2 degKB(K )

KB(K )
=

∑

∅⊆J⊆�̂

(−1)|J | ∏

L∈π0(MJ )

χ(C p+∗
L )

KB(L)
(3.5)

thanks to the factorisations χ(C p+∗
PJ

) = ∏
L∈π0(MJ )

χ(C p+∗
L ) and KB(MJ ) =∏

L∈π0(MJ )
KB(L).

4 Calculations of �(Cp+∗
K ) for K in Characteristic p

The q-bracket of the natural number d is the polynomial [d](q) = qd−1
q−1 = qd−1 +

· · · + q + 1 ∈ Z[q] of degree d − 1 with value [d](1) = d at q = 1.
Let OP(m) = {(m1, . . . ,mk) | k ≥ 1,mi ≥ 1,

∑
mi = m} denote the set of all the

2m−1 ordered partitions ofm [14, p 14]. Themap that sends (m1, . . . ,mk) ∈ OP(m+1)
to {1, . . . ,m} − {m1,m1 + m2, . . . ,m1 + m2 + · · · + mk−1} is a bijection between
OP(m + 1) and the set of all subsets of {1, . . . ,m}, m ≥ 1.
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Example 4.1 (Aε
m(q), ε = ±1) The Borel index of Aε

m(q) is the polynomial

KB(Aε
m(q)) =

∏

2≤d≤m+1

[d](εdq)

of degree
(m+1

2

)
. The root system Am has m fundamental roots and the subsystem

generated by the subset indexed by (m1, . . . ,mk) ∈ OP(m + 1) is isomorphic to
Am1−1 × · · · × Amk−1. For instance, the ordered partition (2, 3, 4, 2, 1) ∈ OP(12)
corresponds to the subsystem

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

of type A1 × A2 × A3 × A1 × A0 of A11. The Solomon identities and Theorem 3.1
for A+

m(q) state that

q(m+1
2 ) =

∑

(m1,...,mk )∈OP(m+1)

(−1)m−k+1 KB(A+
m(q))

∏
1≤i≤k KB(A+

mi−1(q))

1 =
∑

(m1,...,mk )∈OP(m+1)

(−1)m−k+1 KB(A+
m(q))

∏
1≤i≤k KB(A+

mi−1(q))
q

∑
1≤i≤k (

mi
2 )

χ(C p+∗
A+
m(q)

) =
∑

(m1,...,mk )∈OP(m+1)

(−1)m−k+1 KB(A+
m(q))

∏
1≤i≤k KB(A+

mi−1(q))
q

∑
1≤i≤k 2(

mi
2 ).

The first terms of the sequence
(
χ(C2+∗

A+
m (2)

)
)
m≥1 (where q = 2) are −1, 29,−2561,

814309,−944455609.
The C2-subsystems of A2m−δ, δ ∈ {0, 1}, are indexed by two disjoint copies of

OP(m)with (m1, . . . ,mk) ∈ OP(m) corresponding respectively to theC2-subsystems

• (Am1−1 × Am1−1) × · · · × (Amk−1 × Amk−1)

• (Am1−1 × Am1−1) × · · · × (Amk−1−1 × Amk−1−1) × A2mk−δ.

The Solomon identities and Theorem 3.1 for the Steinberg groups A−
2m−δ(q) of twisted

rank m state that

q(2m+1−δ
2 ) =

∑

(m1,...,mk )∈OP(m)

(−1)m−k
( KB(A−

2m−δ(q))
∏

1≤i≤k KB(A+
mi−1(q

2))

− KB(A−
2m−δ(q))

∏
1≤i<k KB(A+

mi−1(q
2)) · KB(A−

2mk−δ(q))

)

1 =
∑

(m1,...,mk )∈OP(m)

(−1)m−kq
∑

1≤i<k 2(
mi
2 )

( q2(
mk
2 )KB(A−

2m−δ(q))
∏

1≤i≤k KB(A+
mi−1(q

2))

− q(
2mk+1−δ

2 )KB(A−
2m−δ(q))

∏
1≤i<k KB(A+

mi−1(q
2)) · KB(A−

2mk−δ(q))

)
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χ(C p+∗
A−
2m−δ(q)

) =
∑

(m1,...,mk )∈OP(m)

(−1)m−kq
∑

1≤i<k 4(
mi
2 )

( q4(
mk
2 )KB(A−

2m−δ(q))
∏

1≤i≤k KB(A+
mi−1(q

2))

− q2(
2mk+1−δ

2 )KB(A−
2m−δ(q))

∏
1≤i<k KB(A+

mi−1(q
2)) · KB(A−

2mk−δ(q))

)
.

(The first two of these formulas disagree with [9, Example 4.4] where some exponents
of q are incorrect.) The sequences

(
χ(C2+∗

A−
2m (2)

)
)
m≥1 and

(
χ(C2+∗

A−
2m−1(2)

)
)
m≥1 start with

−55, 1034749,−4395007776655 and−1, 3619,−1067484529. The formulas of this
example apply for instance to versions of the groups A±

m(q) = SL±
m+1(Fq) and to their

extensions GL±
m+1(Fq).

Example 4.2 (Bm(q) orCm(q)) The Borel index of Bm(q) orCm(q) is the polynomial

KB(Bm(q)) =
∏

1≤d≤m

[2d](q), m ≥ 2

of degree m2. By convention, B0, KB(B0(q)) = 1 and B1 = A1, KB(B1(q)) =
KB(A+

1 (q)). The subsystems of Bm are indexed by OP(m + 1) with (m1, . . . ,mk) ∈
OP(m + 1) corresponding to the subsystem Am1−1 × · · · × Amk−1−1 × Bmk−1 of Bm .

The polynomial identities

qm
2 =

∑

(m1,...,mk )∈OP(m+1)

(−1)m+1−k KB(Bm(q))
∏

1≤i<k KB(A+
mi−1(q)) · KB(Bmk−1(q))

1 =
∑

(m1,...,mk )∈OP(m+1)

(−1)m+1−k KB(Bm(q))
∏

1≤i<k KB(A+
mi−1(q)) · KB(Bmk−1(q))

× q
∑

1≤i<k (
mi
2 )+m2

k

χ(C p+∗
B−
m (q)

) =
∑

(m1,...,mk )∈OP(m+1)

(−1)m+1−k KB(Bm(q))
∏

1≤i<k KB(A+
mi−1(q)) · KB(Bmk−1(q))

× q
∑

1≤i<k 2(
mi
2 )+2m2

k

apply for instance to the groups Bm(q) = SO2m+1(Fq) or Cm(q) = Sp2m(Fq). The
first terms of the sequence

(
χ(C2+∗

Bm (2))
)
m≥2 = (

χ(C2+∗
Cm (2))

)
m≥2 are 181,−240841,

4219541101,−1121407861986721.

Example 4.3 (Dε
m(q), ε = ±1) The Borel index of Dε

m(q) is the polynomial

KB(Dε
m(q)) = (q2 − 1) · · · (q2m−2 − 1)(qm − ε)

(q − 1) · · · (q − 1)(q − ε)

=
{

[2](q)[4](q) · · · [2m − 2](q)[m](q) ε = +1

[2](qm)[4](q) · · · [2m − 2](q) ε = −1
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of degree m(m − 1).
The subsystems of Dm, with fundamental roots {α1, . . . , αm−1, αm}, are indexed

by the disjoint union of four copies of OP(m − 1) with (m1, . . . ,mk) ∈ OP(m − 1)
corresponding respectively to the subsystems

• Am1−1 × · · · Amk−1 (not including αm−1 nor αm)
• Am1−1 × · · · × Amk−1−1 × Amk (including αm−1 but not αm)
• Am1−1 × · · · × Amk−1−1 × Amk (including αm but not αm−1)
• Am1−1 × · · · Amk−1−1 × Dmk+1 (including both αm−1 and αm)

and we let

D00(m1, . . . ,mk) = KB(D+
m (q))

∏
1≤i<k KB(A+

mi−1(q)) · KB(A+
mk−1(q))

D01(m1, . . . ,mk) = KB(D+
m (q))

∏
1≤i<k KB(A+

mi−1(q)) · KB(A+
mk (q))

D11(m1, . . . ,mk) = KB(D+
m (q))

∏
1≤i<k KB(A+

mi−1(q)) · KB(D+
mk+1(q))

.

The polynomial identities

qm(m−1) =
∑

(m1...,mk )∈OP(m−1)

(−1)m−1−k(D00 − 2D01 + D11
)

1 =
∑

(m1...,mk )∈OP(m−1)

(−1)m−1−kq
∑

1≤i<k (
mi
2 )

× (
D00q(

mk
2 ) − 2D01q(

mk+1
2 ) + D11q

mk (mk+1))

χ(C p+∗
D+
m (q)

) =
∑

(m1...,mk )∈OP(m−1)

(−1)m−1−kq
∑

1≤i<k 2(
mi
2 )

× (
D00q

2(
mk
2 ) − 2D01q

2(
mk+1

2 ) + D11q
2mk (mk+1))

apply for instance to thegroups D+
m (q) = D+

m (q) = Spin+
2m(Fq),�

+
2m(Fq), P�+

2m(Fq)

[6, 2.7]. It also applies to SO+
2m(Fq), containing�+

2m(Fq)with index 2,when q is odd.
The first terms of the sequence

(
χ(C2+∗

D+
m (2)

)
)
m≥2 of normalised Euler characteristics are

1,−2561, 15448861,−1086597998849, 1150481040643422181. A computer calcu-
lation based on Corollary 2.9 yields χ(C2+∗

SO+
6 (F2)

) = −32009 �= χ(C2+∗
�+
6 (F2)

).

The C2-invariant subsystems of the C2-root system Dm are indexed by the set
OP(m) of ordered partitions of m with (m1, . . . ,mk−1,mk) ∈ OP(m) corresponding
to the C2-subsystem Am1−1 × · · · Amk−1−1 × Dmk of Dm . (By convention, A0 = ∅,

D1 = ∅, D2 = A1 × A1. Also, KB(A+
0 (q)) = 1 = KB(D−

1 (q)) and, following [6,
Propositions 2.2.11, 2.6.2], KB(D−

2 (q)) = KB(A+
1 (q2)).) The polynomial identities
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qm(m−1) =
∑

(m1,...,mk )∈OP(m)

(−1)m−k KB(D−
m (q))

∏
1≤i<k KB(A+

mi−1(q)) · KB(D−
mk (q))

1 =
∑

(m1,...,mk )∈OP(m)

(−1)m−k KB(D−
m (q))

∏
1≤i<k KB(A+

mi−1(q)) · KB(D−
mk (q))

× q
∑

1≤i<k (
mi
2 )+mk (mk−1)

χ(C p+∗
D−
m (q)

) =
∑

(m1,...,mk )∈OP(m)

(−1)m−k KB(D−
m (q))

∏
1≤i<k KB(A+

mi−1(q)) · KB(D−
mk (q))

× q
∑

1≤i<k 2(
mi
2 )+2mk (mk−1)

apply for instance to the groups D−
m (q) = Spin−

2m(Fq),�
−
2m(Fq), P�−

2m(Fq) [6, 2.7].
It also applies to SO−

2m(Fq), containing�−
2m(Fq)with index 2,when q is odd. The first

terms of the sequence
(
χ(C2+∗

D−
m (2)

)
)
m≥2 of normalised Euler characteristics at q = 2

are−11, 3619,−16250471, 1091026687411,−1150697986196950751.A computer
calculation based on Corollary 2.9 with Magma software [1] yields χ(C2+∗

SO−
6 (F2)

) =
−27331 �= χ(C2+∗

�−
6 (F2)

).

Example 4.4 (E−
6 (q)) The Borel index of Eε

6 is the product
∏

d [d](εdq) over d ∈
{2, 5, 6, 8, 9, 12} of degree 36. Let α1, . . . , α6 be the fundamental roots of E+

6 (q)

numbered as in [4, 13.3.3] and α̂1 = {α1, α6}, α̂2 = {α2, α5}, α3, α4 those of E
−
6 (q).

Using the data of the tables

I ∅ {̂α1} {̂α2} {α3} {α4}
MI 1 A+

1 (q2) A+
1 (q2) A+

1 (q) A+
1 (q)

I {̂α1, α̂2} {̂α1, α3} {̂α1, α4} {̂α2, α3} {̂α2, α4} {α3, α4}
MI A+

2 (q2) A+
1 (q2) × A+

1 (q) A+
1 (q2) × A+

1 (q) A−
3 (q) A+

1 (q2) × A+
1 (q) A+

2 (q)

I {̂α2, α3, α4} {̂α1, α3, α4} {̂α1, α̂2, α4} {̂α1, α̂2, α3} �̂

MI D−
4 (q) A+

1 (q2) × A+
2 (q) A+

2 (q2) × A+
1 (q) A−

5 (q) E−
6 (q)

one can extract the p-coset poset Euler characteristic χ(C p+∗
E−
6 (q)

) for E−
6 (q). For

instance, the normalisedEuler characteristicχ(C2+∗
E−
6 (2)

) = 4722361840218090928861

at q = 2.

Example 4.5 (3D4(q)) The Borel index of 3D4(q) is the polynomial [4, pp. 251–252,
Theorem 14.3.2]

KB(3D4(q)) = (q2 − 1)(q6 − 1)[3](q4)
(q − 1)(q3 − 1)

= [2](q)[2](q3)[3](q4)

of degree 12. Let � = {α1, α2, α3, α4} be the fundamental roots of D4(q) and �̂ =
{̂α1, α̂2}, α̂1 = {α1, α3, α4}, α̂2 = {α2} those of 3D4(q). The data of the table

I ∅ {̂α1} {̂α2} �̂

MI 1 A+
1 (q3) A+

1 (q) 3D4(q)
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determine the Solomon identities and the Euler characteristic

χ(C p+∗
3D4(q)

) = KB(3D4(q)) − KB(3D4(q))

KB(A+
1 (q3))

q6 − KB(3D4(q))

KB(A+
1 (q)

q2 + q24

= q24 − q15 − q14 − q13 + q12 − 2q10 + 2q8 − 2q6 + 2q4

+q3 − q2 + q + 1

of the coset poset of 3D4(q) at the defining characteristic.

Example 4.6 (2B2(q), q = 2a+ 1
2 ) The Borel index of the Suzuki group 2B2(q) [4,

pp. 251–252, Theorem 14.3.2] is

KB(2B2(q)) = (q2 − 1)(q4 + 1)

(q2 − 1)
= 1 + q4.

The data of the table

I ∅ �̂

MI 1 2B2(q)

determine the Solomon identities KB(2B2(q)) − 1 = q4, KB(2B2(q)) − q4 = 1,
and the normalised Euler characteristic

χ(C2+∗
2B2(q)

) = KB(2B2(q)) − q8 = 1 + q4 − q8.

With q2 = 2, 23, 25 the Euler characteristics are −11,−4031,−1047551.

Example 4.7 (2F4(q), q = 2a+ 1
2 ) The Borel index of the Ree group 2F4(q) is [4,

pp. 251–252, Theorem 14.3.2]

KB(2F4(q)) = (q2 − 1)(q6 + 1)(q8 − 1)(q12 + 1)

(q2 − 1)(q2 − 1)
= [4](q2)[2](q6)[2](q12)

of degree 24. Let � = {α1, α2, α3, α4} be the fundamental roots of F4 and �̂ =
{̂α1, α̂2} those of 2F4(q). The data of the table

I ∅ {̂α1} {̂α2} �̂

MI 1 A+
1 (q2) 2B2(q) 2F4(q)

determine the Solomon identities and the identity of Theorem 3.1,

1 = KB(2F4(q)) − q2
KB(2F4(q))

KB(A+
1 (q2))

− q4
KB(2F4(q))

KB(2B2(q))
+ q24

q24 = KB(2F4(q)) − KB(2F4(q))

KB(A+
1 (q2))

− KB(2F4(q))

KB(2B2(q))
+ 1
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χ(C2+∗
2F4(q)

) = KB(2F4(q)) − q4
KB(2F4(q))

KB(A+
1 (q2))

− q8
KB(2F4(q))

KB(2B2(q))
+ q48

= q48 − q28 − 2q26 + q24 − q22 − q20 + 2q18 − q16 − q14 + 2q12

− q10 − q8 + 2q6 + q2 + 1.

For example, the 2-coset poset of 2F4(2
1
2 ) has normalised Euler characteristic

16746211.

Example 4.8 (G2(q) and 2G2(q) for q = 3a+ 1
2 ) The Borel indices of the Chevalley

group G2(q) and the Ree group 2G2(q) are [4, pp. 251–252, Theorem 14.3.2]

KB(G2(q)) = (q2 − 1)(q6 − 1)

(q − 1)(q − 1)
= [2](q)[6](q),

KB(2G2(q)) = (q2 − 1)(q6 + 1)

q2 − 1
= q6 + 1.

The data of the tables

I ∅ {α1} {α2} �

MI 1 A+
1 (q) A+

1 (q) G2(q)

I ∅ �̂

MI 1 2G2(q)

explain the normalised Euler characteristics

χ(C p+∗
G2(q)) = q12 − 2q7 − q6 + 2q + 1, χ(C3+∗

2G2(q)
) = −q12 + q6 + 1,

q = 3a+ 1
2 , a ≥ 0.

For example, the normalized Euler characteristic of the 3-coset poset for 2G2(3
1
2 ) is

−701.

Example 4.9 Here are the explicit versions of Eq. (3.5)

q2 degKB(A+
m (q))

KB(A+
m(q))

=
∑

(m1,...,mk )∈OP(m+1)

(−1)m−k+1
∏

1≤i≤k

χ(C p+∗
A+
mi−1(q)

)

KB(A+
mi−1(q))

q2 degKB(A−
2m−δ(q))

KB(A−
2m−δ(q))

=
∑

(m1,...,mk )∈OP(m)

(−1)m−k
∏

1≤i<k

χ(C p+∗
A+
mi−1(q

2)
)

KB(A+
mi−1(q

2))

·
⎛

⎜⎝
χ(C p+∗

A+
mk−1(q

2)
)

KB(A+
mk−1(q

2))
−

χ(C p+∗
A−
2mk−δ(q)

)

KB(A−
2mk−δ(q))

⎞

⎟⎠

q2 degKB(Bm (q))

KB(Bm(q))
=

∑

(m1,...,mk )∈OP(m+1)

(−1)m−k+1
∏

1≤i<k

χ(C p+∗
A+
mi−1(q)

)

KB(A+
mi−1(q))
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·
χ(C p+∗

Bmk−1(q))

KB(Bmk−1(q))

q2 degKB(D+
m (q))

KB(D+
m (q))

=
∑

(m1...,mk )∈OP(m−1)

(−1)m−k+1
∏

1≤i<k

χ(C p+∗
A+
mi−1(q)

)

KB(A+
mi−1(q))

·
⎛

⎜⎝
χ(C p+∗

A+
mk−1(q)

)

KB(A+
mk−1(q))

− 2
χ(C p+∗

A+
mk (q)

)

KB(A+
mk (q))

+
χ(C p+∗

D+
mk+1(q)

)

KB(D+
mk+1(q))

⎞

⎟⎠

q2 degKB(D−
m (q))

KB(D−
m (q))

=
∑

(m1...,mk )∈OP(m−1)

(−1)m−k
∏

1≤i<k

χ(C p+∗
A+
mi−1(q)

)

KB(A+
mi−1(q))

·
χ(C p+∗

D−
mk (q)

)

KB(D−
mk (q))

for the groups A±
m(q), Bm(q), Cm(q), D±

m (q).
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