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INTRODUCTION

| Jesper M. Moller® |

Bob Oliver* | Albert Ruiz'?

Abstract

A saturated fusion system over a finite p-group S is a cat-
egory whose objects are the subgroups of S and whose
morphisms are injective homomorphisms between the
subgroups satisfying certain axioms. A fusion system
over S is realized by a finite group G if S is a Sylow p-
subgroup of G and morphisms in the category are those
induced by conjugation in G. One recurrent question in
this subject is to find criteria as to whether a given satu-
rated fusion system is realizable or not. One main result
in this paper is that a saturated fusion system is realiz-
able if all of its components (in the sense of Aschbacher)
are realizable. Another result is that all realizable fusion
systems are tame: a finer condition on realizable fusion
systems that involves describing automorphisms of a
fusion system in terms of those of some group that real-
izes it. Stated in this way, these results depend on the
classification of finite simple groups, but we also give
more precise formulations whose proof is independent
of the classification.

MSC 2020
20D20 (primary), 20D05, 20D25, 20D45 (secondary)

Let p be a prime. The fusion system of a finite group G over a Sylow p-subgroup S of G is the cate-
gory Fs(G) whose objects are the subgroups of S and whose morphisms are the homomorphisms
between subgroups induced by conjugation in G, thus encoding G-conjugacy relations among
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subgroups and elements of S. With this as starting point and also motivated by questions in repre-
sentation theory, Puig defined the concept of abstract fusion systems (see [41] and Definition 1.1)
and showed that they behave in many ways like finite groups.

By analogy with finite groups, a component C of a fusion system F is a subnormal fusion
subsystem that is quasi-simple (i.e., OP(C) = C and C/Z(C) is simple). The basic properties of
components were shown by Aschbacher [4, Theorem 6] (see also Lemma 4.1 below).

A fusion system F over a finite p-group S is realized by a finite group G if S € Syl,(G) and
F = F(G), and is realizable if it is realized by some finite group. One of our main theorems is the
following.

Theorem A. Let p be a prime, let F be a saturated fusion system over a finite p-group, and let
& A F be a normal fusion subsystem that contains all components of F. If £ is realizable, then F is
also realizable.

The following is an immediate corollary to Theorem A.

Corollary B. Let p be a prime, and let F be a saturated fusion system over a finite p-group. If all
components of F are realizable, then F is realizable.

Corollary B is just the special case of Theorem A where £ is the generalized Fitting subsystem
of 7': the central product of the components of 7 and O,(F). Note, however, that a fusion system
can be realizable even when some of its components are not.

For each component C of F, C/Z(C) is simple, and is a composition factor of F (see [5, § I1.10]).
Hence, one consequence of Corollary B is that F is realizable if all of its composition factors are
realizable. However, the converse of this is not true either: F can be realizable without all of its
composition factors being realizable.

In order to prove Theorem A, we need to work with linking systems and tameness. The con-
cept of linking systems associated to fusion systems was first proposed by Benson in [8] and in
unpublished notes, and was developed in detail by Broto, Levi, and Oliver [11]. See Definition 1.7
for precise definitions. This was originally motivated by questions involving classifying spaces of
fusion systems and of the finite groups that they realize, but also turns out to be important when
studying many of the purely algebraic properties of fusion systems.

A fusion system F is tamely realized by G if it is realized by G, and in addition, the natural homo-
morphism from Out(G) to Out(£(G)) is split surjective (Definitions 2.8 and 2.9). Here, L(G) is
the linking system associated to G and to 7. We say that F is tame if it is tamely realized by some
finite group.

Tameness was originally defined in [2, §2], motivated by questions of realizability and exten-
sions of fusion systems, and that is how it is used here in the proof of Theorem A. In this way, it
also plays a role in Aschbacher’s program for classifying simple fusion systems over 2-groups and
reproving certain parts of the classification of finite simple groups. See [6, §2.4] for more detail.

Tameness can also be interpreted topologically. For a finite group G, let BGS be the classifying
space of G completed at p in the sense of Bousfield and Kan, and let Out(BGg) be the set of
homotopy classes of self-homotopy equivalences of BGS. Then for S € Syl,(G), the fusion system
Fs(G) is tamely realized by G if and only if the natural map from Out(G) to Out(BGg) is split
surjective. We refer to [10, Theorem B], [11, Lemma 8.2], and [2, Lemma 1.14] for the proof that
Out(LL(G)) = Out(BGg).

We can now state our second main theorem.



REALIZABILITY AND TAMENESS OF FUSION SYSTEMS 3

Theorem C. For each prime p, every realizable fusion system over a finite p-group is tame.

One of the original motivations for defining tameness in [2] was the hope that it might provide
a new way to construct exotic fusion systems; that is, fusion systems not realized by any finite
group. By [2, Theorem B, if F is a reduced fusion system that is not tame, then there is an exten-
sion of 7 whose reduction is isomorphic to 7 and is exotic. However, Theorem C tells us that
this procedure does not give us any new exotic examples, since if 7 is not tame, then it is itself
exotic.

A saturated fusion system F is reduced if OP(F) =1and OP(F)=F = OP,(F) (see Defini-
tions 1.3 and 1.14). The reduction red(F) of an arbitrary saturated fusion system F is the fusion
system obtained by taking C»(O p(F)) /Z(0 p(F)), and then alternately taking OP(—) or OP'(—)
until the sequence becomes constant. By [2, Theorem A], F is tame if red(F) is tame. So, one
immediate consequence of Theorem C is as follows.

Corollary D. If F is a saturated fusion system over a finite p-group S, and red(F) is realizable, then
F is also realizable.

The proofs of Theorems A and C as formulated above, as well as those of Corollaries B and
D, require the classification of finite simple groups. But they will be reformulated in Section 5
in a way so as to be independent of the classification. Our main theorem there, Theorem 5.4, is
independent of the classification and includes Theorems A and C as special cases (the latter is
reformulated as Theorem 5.6).

The first two sections of the paper contain mostly background material: some basic definitions
and properties of fusion and linking systems are in Section 1, and those of automorphism groups
and tameness in Section 2. We then deal with products in Section 3 and components of fusion sys-
tems in Section 4. Theorems A and C, as well as some other applications, are shown in Section 5,
as Theorems 5.4 and 5.6.

The authors would like to thank the Universitat Autdonoma de Barcelona and the Univer-
sity of Copenhagen for their hospitality while the four authors met during early stages of this
work; and also the French CNRS and BigBlueButton for helping us to meet virtually at frequent
intervals to discuss this work during the covid-19 pandemic. We would especially like to thank
the referee, whose very careful reading of the paper and many suggestions helped us to greatly
improve it.

Notation. The notation used in this paper is mostly standard, with a few exceptions.
Composition of functions and functors is always from right to left. Also, C,, denotes a (multi-
plicative) cyclic group of order n. When G is a (multiplicative) group, 1 € G always denotes its
identity element.

When f : C — D is a functor, then for objects c,c’ in C, we let f. ., be the induced map from
Mor(c,c’) to Morp(f(c), f(c')), and also set f,. = f, . for short.

When G is a group, we indicate conjugation by setting %x = c (x) = gxg~! and 9H =
cg(H) =gHg™!' for g,x €G and H <G. Also, for P,Q <G, we let Hom;(P,Q) be the
set of (injective) homomorphisms from P to Q induced by conjugation in G, and set
Aut;(P) = Homg(P, P).

Throughout the paper, p will always be a fixed prime.
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1 | FUSION SYSTEMS AND LINKING SYSTEMS

This is a background section intended to provide the reader with the necessary basic definitions
and properties of fusion and linking systems that will be used throughout the paper. Fusion sys-
tems and saturation were originally introduced by Puig, first in unpublished notes, and then in
[41]. Abstract linking systems were defined in [11]. As general references for the subject, we refer
to [5] and [15].

1.1 | Fusion systems

For a prime p, a fusion system over a finite p-group S is a category whose objects are the subgroups
of S, and whose morphisms are injective homomorphisms between subgroups such that for each
P,Q<S:

* Homz(P,Q) 2 Homg(P, Q); and
« for each ¢ € Hom(P,Q), ¢~! € Hom(¢(P), P).

Here, Hom(P, Q) denotes the set of morphisms in 7 from P to Q. We also write Isor(P, Q) for
the set of isomorphisms, Autz(P) = Isox(P, P), and Outz(P) = Autz(P)/Inn(P). For P < S and
g € S, we set

P ={p(P)|p € Homp(P,S)}  and ¢ ={p(9)|p € Hom((g),S)}

(the sets of subgroups and elements F-conjugate to P and to g).
The following version of the definition of a saturated fusion system is the most convenient one
to use here. (See Definitions 1.2.2 and 1.2.4 and Proposition 1.2.5 in [5].)

Definition 1.1. Let F be a fusion system over a finite p-group S.

(a) A subgroup P < S is fully normalized (fully centralized) in F if [Ng(P)| = |[Ns(Q)| (ICs(P)| =
|C5(Q)]) for each Q € P”.

(b) A subgroup P < S is fully automized in F if Autg(P) € Syl p(Autr(P)).

(c) A subgroup P < S is receptive in F if each isomorphism ¢ € Isor(Q,P) in F extends to a
morphism ¢ € Hom(N,, S), where

N, ={g € N5(Q) | pc,¢™" € Autg(P)}.

(d) The fusion system F is saturated if it satisfies the following two conditions:
(I (Sylow axiom) each subgroup P < S fully normalized in F is also fully automized and
fully centralized; and
(IT) (extension axiom) each subgroup P < S fully centralized in F is also receptive.

The above definition is motivated by fusion systems of finite groups. When G is a finite group
and S € Syl,(G), the p-fusion system of G is the category F(G) whose objects are the subgroups of
S, and where Mor;sS(G)(P, Q) = Homg(P, Q) for each P, Q < S. For a proof that Fg(G) is saturated,
see, for example, [5, Lemma 1.1.2]. In general, a saturated fusion system F over a finite p-group S
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will be called realizable if F = F¢(G) for some finite group G with S € Syl » (G), and will be called
exotic otherwise.

The following lemma lists relations between some of these conditions that hold for all fusion
systems, not just those that are saturated.

Lemma 1.2 [5, Lemma 1.2.6]. If F is a fusion system over a finite p-group S, then each recep-
tive subgroup of S is fully centralized, and each subgroup that is fully automized and receptive is
fully normalized.

We next list some of the terminology used to describe certain subgroups in a fusion system.

Definition 1.3. Let F be a fusion system over a finite p-group S. For a subgroup P < S,

(a) Pis F-centricif C4(Q) < Q for each Q € P7;

(b) Pis F-radical if Op(Outr(P)) =1;

(c) P is F-quasi-centric if for each Q € P” that is fully centralized in 7, the centralizer fusion
system Cr(Q) (see Definition 1.5(b)) is the fusion system of the group C5(Q);

(d) P isweakly closed in F if P¥ = {P};

(e) P isstrongly closed in F if for each x € P, xF cp;

(f) Pisnormalin F (P < F) if each ¢ € Hom(Q, R) (for Q, R < S) extends to a morphism ¢ €
Homy(PQ, PR) such that (P) = P; and

(g) P is central in F if each ¢ € Homz(Q,R) (for Q,R < S) extends to a morphism ¢ €
Hom(PQ, PR) such that ¢|, = Idp.

Let F¢ C F¢ C F4 denote the sets of F-centric F-radical, F-centric, and F-quasi-centric sub-
groups of S, respectively, or (depending on the context) the full subcategories of F with those
objects. Let O,(F) > Z(F) denote the (unique) largest normal and central subgroups, respectively,
inF.

The following result is one of the versions of Alperin’s fusion theorem for fusion systems.

Theorem 1.4. Let F be a saturated fusion system over a finite p-group S. Then each morphism in F
is a composite of restrictions of automorphisms of subgroups that are F-centric, F-radical, and fully
normalized in F.

Proof. This follows from [5, Theorem 1.3.6] (the same statement but for F-essential subgroups),
together with [5, Proposition 1.3.3(a)] (all F-essential subgroups are F-centric and F-radical).
Alternatively, the result as stated here is shown directly (without mention of essential subgroups)
in [11, Theorem A.10]. O

Definition 1.5. Let F be a saturated fusion system over a finite p-group S, and let Q < S be a
subgroup.

(a) Foreach K < Aut(Q), set N5 (Q) = {x € N5(Q) | ¢, € K}, and let N¥(Q) be the fusion system
over NX (Q) in which for P,R < NX(Q),

HomNI;(Q)(P,R) = {¢ € Hom;(P,R) | there is ¢ € Hom;(PQ, RQ)

such that ¢|p = ¢, 9(Q) = Q, ¢l € K}.
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(b) Set N£(Q) = NA"D(Q) and €,-(Q) = Q).

If Q is fully normalized (fully centralized) in F, then N-(Q) (Cr(Q)) is a saturated fusion system
(see [11, Proposition A.6] or [5, Theorem 1.5.5]). There is a similar condition (see [5, Theorem 1.5.5])
that implies that N?(Q) is saturated. Note that Q < F if and only if N~(Q) = F, and Q is central
in F (ie.,Q < Z(F))ifand only if Cr(Q) = F.

Lemma 1.6. Let G be a finite group with S € Syl ,(G), and set F = Fg(G).

(a) Foreach Q < S, Q is fully normalized (fully centralized) if and only if Ng(Q) € Sylp(NG(Q))

(C5(Q) € Syl (Cs(Q))). If this holds, then Nz(Q) = F ) (Ng(Q)) (Cr(Q) = Fry()(Ca(Q))).
(b) Inall cases, 0,(G) < 0,(F) and 0,(Z(G)) < Z(F).

Proof. Point (a)is shown in [5, Proposition I.5.4]. In particular, when Q = O,(G), we have N1 (Q) =
Fs(G) = F and hence Q < O, (F). Similarly, when Q = 0,(Z(G)), it says that Cr(Q) = F5(G) = F
and hence that Q < Z(F).

O

1.2 | Linking systems

Before recalling the definition of linking systems, we need to introduce more notation. If P,Q < G
are subgroups of a finite group G, the transporter set T;(P, Q) is defined by setting

Ts(P,Q)={g €G|P<Q}.

The transporter category of G is the category 7 (G) whose objects are the subgroups of G, and whose
morphisms sets are the transporter sets:

MOTT(G)(P, Q) = TG(P’ Q)

Composition in 7 (G) is given by multiplication in G. If H is a set of subgroups of G, then 7,(G) C
T (G) denotes the full subcategory with object set H.
The following definition of linking system taken from [5, Definition I11.4.1].

Definition 1.7. Let F be a fusion system over a finite p-group S. A linking system associated to
F is a triple (£, 8, ) where L is a finite category, and § and 7 are a pair of functors

8 T
Tovey(S) c F,

which satisfy the following conditions.

(A1) Ob(L) is a set of subgroups of S closed under F-conjugacy and overgroups, and contains
F¢". Each object in L is isomorphic (in £) to one that is fully centralized in F.

(A2) & is the identity on objects, and 7 is the inclusion on objects. For each P,Q € Ob(£) such
that P is fully centralized in 7, C;(P) acts freely on Mor (P, Q) via § and right composition,
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and
Ttp o - Mor,(P,Q) — Homy(P, Q)

is the orbit map for this action.

(B) For each P,Q € Ob(£) and each g € T5(P,Q), 7p sends Sp(g) € Mor,(P,Q) to ¢, €
Hom(P, Q).
(C) Forallyp € Mor,.(P,Q) and all g € P, the diagram

Pt

PL

Q
op(8) l%(ﬂ(lp)(g))
Q

commutes in L.

When the functors § and 7 are understood, we refer directly to the category £ as a linking system.

A centric linking system associated to F is a linking system £ associated to F such that Ob(£) =
Fe.

Linking systems associated to a fusion system were originally motivated by centric linking
systems of finite groups. For a finite group G, a p-subgroup P < G is p-centric in G if Z(P) €
Sylp(CG(P)); equivalently, if C;(P) = Z(P) X Op,(CG(P)). For S € Sylp(G), the centric linking sys-
tem of G over S consists of the category L£(G) whose objects are the subgroups of S that are
p-centric in G and whose morphism sets are given by

Mor e (P, Q) = Tg(P,Q)/Op (C(P))  (all P,Q € Ob(L(5))),

together with functors TOb(cg(G))(S) 2, LL(G) N F5(G) defined in the obvious way.

When G is a finite group and S € Syl,,(G), then P < S is F-centric (see Definition 1.3) ifand only
if P is p-centric in G (see [10, Lemma A.5]). Moreover, F4(G) is always saturated (see [5, Theorem
1.2.3]), and (Cg(G), 8, ) is a centric linking system associated to F¢(G).

Some of the basic properties of linking systems are listed in the next proposition.

Proposition 1.8. Let (L, 6, ) be a linking system associated to a saturated fusion system F over
a finite p-group S. For each pair of subgroups P < Q < S with P,Q € Ob(L), set tp 5 = 6p (1) €
Mor (P, Q) (the inclusion in L of P into Q). Then

(a) ¢ isinjective on all morphism sets; and
(b) all morphisms in L are monomorphisms and epimorphisms in the categorical sense.

Conditions for the existence of restrictions and extensions of morphisms are as follows:

(c) For every morphism ¥ € Mor (P, Q), and every Py, Q, € Ob(L) such that P, < P, Q, < Q, and
m()(Py) < Qy, there is a unique morphism | PyQ € Mor (P, Q) (the “restriction” of i) such

thatotp, p = 1,0 °Plp,0,
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(d) Let P,Q,lg, é € Ob(L) and ¥ € Mor (P, Q) be such that P P, Q< é, and for each g € P,
there is h € Q such that 10.6° P odp(g) = SQ é(h)o Y. Then there is a unique morphism ¢ €

Morﬁ(f’, é) such that 1])|P’Q =1
Proof. See points (c), (f), (b), and (e), respectively, in [32, Proposition 4]. O

We note here the existence and uniqueness of linking systems shown by Chermak, Oliver, and
Glauberman-Lynd. Two linking systems (£, §;, ;) and (£,, §,, r,) associated to the same fusion

system F are isomorphic if there is an isomorphism of categories p : £, — L, such that pod; =
8, and my0p = ;.

Theorem 1.9 ([13, 18, 33]). Let F be a saturated fusion system over a finite p-group S, and let H be
a set of subgroups of S such that F" C H C F1, and such that H is closed under F-conjugacy and
overgroups. Then up to isomorphism, there is a unique linking system £ associated to F with object
set H.

Proof. The existence and uniqueness of a centric linking system associated to 7 was shown by
Chermak. See [13, Main theorem] and [33, Theorem A] for two versions of his original proof,
and [18, Theorem 1.2] for the changes to the proof in [33] needed to make it independent of the
classification of finite simple groups.

More generally, if <" C H C F¢, the uniqueness of an H-linking system follows by the same
obstruction theory (shown to vanish in [33, Theorem 3.4] and [18, Theorem 1.1]) as that used in the
centric case (by the same argument as in the proof of [11, Proposition 3.1]). For arbitrary H C F4
containing F", the existence and uniqueness now follows from [5, Proposition II1.4.8], applied
with H 2 H N F¢ in the role of 7 2 H. O

1.3 | Normal fusion and linking subsystems

Let 7 be a fusion system over a finite p-group S. A fusion subsystem of F is a subcategory &€ C F
that is itself a fusion system over a subgroup T < S (in particular, Ob(€) is the set of subgroups of
T). We write £ < F when £ is a fusion subsystem, and also sometimes say that £ < F is a pair of
fusion systems over T < S.

Definition 1.10. Let F be a fusion system over a finite p-group S.
(a) Let R be another finite p-group and let o : S — R be an isomorphism. We denote by “F the
fusion system over R with morphism sets

Homer(P, Q) = aoHom(a '(P),a 1(Q))oa ™

for each pair of subgroups P,Q < R.
(b) Let & be another fusion system over a finite p-group T. We say that £ and F are isomorphic
fusion systems if there is an isomorphism « : S — T such that & = “F.

A more general concept of morphism between fusion systems is given in [5, Definition I1.2.2].
Consider now the following definition from [5, Definition 1.6.1].
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Definition 1.11. Fix a saturated fusion system F over a finite p-group S.

(a) A fusion subsystem € < F over T < S is weakly normal if € is saturated, T is strongly closed
in 7, and the following conditions hold:
* (invariance condition) “¢€ = £ for each a € Autp(T), and
* (Frattini condition) for each P < T and each ¢ € Homy(P,T), there are € Autz(T) and
@, € Hom,(P,T) such that ¢ = axog,,.
(b) A fusion subsystem € < F over T < S is normal (€ & F) if € is weakly normal in 7 and
* (Extension condition) each « € Autg(T) extends to o € Autp(TC4(T)) such that
[&, C5(T)] < Z(T).
(c) Asaturated fusion system F over a finite p-group S is simple if it contains no proper nontrivial
normal fusion subsystem.

It will be convenient to say that “€ < F is a normal pair of fusion systems over T' < S” to mean
that F is a fusion system over S and £ < F is a normal subsystem over T.

Note that if 7 is a saturated fusion system over a finite p-subgroup S, and P < S, then P & F if
and only if Fp(P) S F [4, (7.9)].

Note also that what are called “normal fusion subsystems” in [2, Definition 1.18] are what we
are calling “weakly normal” subsystems here.

When (L, 8, 7) is a linking system associated to the fusion system F over S, and F, < F is
a fusion subsystem over S, < S, then a linking subsystem associated to 7, is a linking system
(Ly, 8y, ) associated to ), where L, is a subcategory of £ and

8o o

Tob(z4)(So) L Fo

are the restrictions of § and 7. In this situation, we write £, < £, and sometimes say that £ <
L is a pair of linking systems. Note in particular the special case where S, = S and 7, = F but
Ob(L;) C Ob(L): a pair of linking systems with possibly different object sets associated to the
same fusion system.

Definition 1.12. Fix a pair of saturated fusion systems £ < F over finite p-groups T < S such that
& < F, and let M < L be a pair of associated linking systems. Then, M is normal in L (M < L)
if:

(@) Ob(L)={P<S|PNT € Ob(M)}, and
(b) forally € Aut,(T)and ) € Mor(M), y3y~! € Mor(M).

If M < L, then we define £/ M = Aut.(T)/Aut,,(T).

Notice that not every normal pair of fusion systems has an associated normal pair of
linking systems.

Definition 1.12 differs from Definition 1.27 in [2] in that there is no “Frattini condition” in the
definition we give here. We have omitted it because it follows from the Frattini condition for
normal fusion subsystems, as shown in the next lemma.

Lemma 1.13. If M < L is a normal pair of linking systems associated to fusion systems € I F
over finite p-groups T < S, then forall P,Q € Ob(M) and allp € Mor (P, Q), there are morphisms
Y € Aut,(T) and 1, € Mor ,((y(P), Q) such that P = P,0¥ |p ,p).
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Proof. Let 3 € Mor (P, Q) be as above, and assume first that P is fully centralized in 7. Then
(1) € Homx(P,Q), and by the Frattini condition on £ < F, there are @« € Autx(T) and ¢ €
Homg(a(P), Q) such that 7() = poa|p ,(py. Choose ¢ € Mor ,,(a(P), Q) and & € Aut,(T) such
that 77 ,,(¢) = ¢ and 7 (&) = a. By axiom (A2) for the linking system L, there is z € Cg(P) such
that goa|p o(py = Podp(2)|p p. (Here, we take restrictions of morphisms in M in the sense of
Proposition 1.8(c).) Set y = @od4(z)~! € Aut,(T), and then ¢ = PV |p y(p)-

If P is not fully centralized in F, then choose P* € P” that is fully centralized, and fix w €
Iso.(P*,P). Then P* < T since T is strongly closed in 7, and so, P* € Ob(M). We just showed
that there are morphisms y,,y, € Aut,(T), ¢; € Mor ,(y,(P*),Q), and ¥, € Mor ,,(y,(P*),P)
such that

lpoa) = znblo}/llP*,yl(P*) and w = Zp20y2|P*’y2(P*).

Also, 9, is an isomorphism since w is an isomorphism. Sety = y;7; 1 € Aut,(T). Then

P = (Pow)ow™ = Pioyl, pr), o%5 " = P10y ) oY [pyp)s

where y1,y ! € Iso (7, (P*), y(P)) by Definition 1.12(b). O

1.4 | Fusion subsystems of p-power index and index prime to p
We recall some more definitions.

Definition 1.14. Let F be a saturated fusion system over a finite p-group S.

(@) Setfoc(F)={g'h|g.h€S, heg"}={g'a(g)| g € P <S, a € Autp(P)} (the focal sub-
group of F).

(b) Sethyp(F) = {g‘loc(g) lgeP<LS, ae OP(AutF(P))} (the hyperfocal subgroup of F).

(c) A saturated fusion subsystem & < F over T < S has p-power index if T > hyp(F), and
Autg(P) = OP(Autp(P)) for all P < T. The smallest normal subsystem of p-power index is
denoted as OP(F).

(d) A saturated fusion subsystem £ < F over T < S has index prime to p if T = S and Autz(P) >
OP/(AutP(P)) for all P < T. The smallest normal subsystem of index prime to p is denoted as
or' (F).

For the existence of the minimal subsystems OP(F) and OP/(F), see, for example,
Theorems 1.7.4 and 1.7.7 in [5].

Lemma 1.15.

(a) If G is a finite group with S € Syl ,(G), then foc(Fs(G)) =S N [G,G] and Hhyp(Fs(G)) =Sn
OP(G).

(b) If F is a saturated fusion system over a finite p-group S, then OP(F) and OP'(F) are fusion
subsystems over hyp(F) and S, respectively, and are both normal in F. Also,

OP(F)=F < hyp(F)=S < foc(F)=S.
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Proof. The first statement in (a) is the focal subgroup theorem (see [20, Theorem 7.3.4]), and the
second is Puig’s hyperfocal subgroup theorem [40, §1.1].

Point (b) is due to Puig, and is also shown in Theorems 1.7.4 and 1.7.7 and Corollary 1.7.5
in [5]. ]

Lemma 1.16. Let F be a saturated fusion system over a finite p-group S, fix Q < S, and let
K < Aut(Q) be a subgroup of p-power order. Assume that Q is fully centralized in F and that
AutIS{(Q) S Sylp(AutI;(Q)). Then Ng(Q) is saturated, and Cr(Q) is normal of p-power index
in NX(Q).

7:'

Proof. By Proposition 1.5.2 and Theorem 1.5.5 in [5], the fusion systems C(Q) and N § (Q) are satu-
rated. So, it suffices to prove the lemma when ¥ = N g (Q); thatis, when Q < F and K > Autr(Q).
Then, Cr(Q) < F by [15, Proposition 8.8].

We claim that

P < S, a € Autx(P) of order prime to p = « extends to a € Aut,(PQ) with alg =1dg. (L1)

Since Q < F, a extends to a € Auty(PQ), and we can arrange that o also has order prime to p.
But 5(|Q € K by assumption, hence has p-power order, and so 5{|Q = Id,.

We next check that C5(Q) > hyp(F). Fix P < S, and a € Autx(P) of order prime to p. By (1.1),
a extends to « € Auty(PQ) such that a|, = Id,. But then [[a, P], Q] < [[a, PQ], Q] = 1 by the 3-
subgroup lemma (see [20, Theorem 2.2.3] or [3, 8.7]) and since [PQ,Q] < Q and [«, Q] = 1. So,
[a, P] < Cs(Q). Since hyp(F) is generated by such subgroups [«, P], this proves that hyp(F) <
Cs(Q).

It remains to show, for all P < C4(Q), that AutCF(Q)(P) contains OP(Aut(P)). But this follows
directly from (1.1), which says that each « € Autr(P) of order prime to p lies in AutCF(Q)(P). Thus,
Cr(Q) has p-power index in F. O

1.5 | Quotient fusion systems

We begin with the basic definition and properties.

Definition 1.17. Let F be a fusion system over a finite p-group S, and assume Q < S is strongly
closed in F. Then F/Q is defined to be the fusion system over S/Q where

Homy ,o(P/Q,R/Q) = {¢/Q | € Homy(P,R)}
for P, R < S containing Q. Here, ¢/Q € Hom(P/Q,R/Q) sends gQ to ¢(¢)Q.

Note that by definition, 7/Q = Nx(Q)/Q. If F = F4(G) for some finite group G with S €
Sylp(G), and H < GissuchthatQ = Hn S, then F/Q = T’SH/H(G/H) (see [15, Theorem 5.20]).

Lemma 1.18. Let F be a saturated fusion system over a finite p-group S, and assume Q 4 S is
strongly closed in F. Then F /Q is saturated. If € < F is a normal fusion subsystem over T < S such
thatT > Q, then £/Q < F/Q.
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Proof. For a proof that 7 /Q is saturated, see [15, Proposition 5.11] or [5, Lemma I1.54]. If € A F
over T > Q, then £/Q is saturated since £ is, T/Q is strongly closed in 7 /Q, and the invariance
and Frattini conditions for normality of £/Q < F/Q follow immediately from those for £ < F
(see [15, Lemma 5.59] for details).

It remains to prove the extension condition for £/Q < F/Q. We must show, for each
pE Autg/Q(T/Q), that ¢ extends to some ¢ € Autr/Q((T/Q)CS/Q(T/Q)) such that
(o, Cs/o(T/Q)] < Z(T/Q). This clearly holds when ¢ € Inn(T/Q) € Syl (Aute ,o(T/Q)), so
it will suffice to prove it when ¢ has order prime to p. Let U < S be such that Q < U and
Cs0(T/Q) = U/Q.

By [4, Theorem 5] or [25, Theorem 1], there is a (unique) saturated fusion subsystem £S < F
over S such that € is normal of p-power index in £S. Since £S is saturated, so is £S/Q. So, by the
extension axiom, ¢ extends to some ¢ € Autgg /0(TU/Q), and upon replacing ¢ by ¢k for some
k, we can arrange that ¢ have order prime to p. Then ¢ = /T for some $ € Aut.4(TU), and we
can again arrange that % have order prime to p.

By definition of the hyperfocal subgroup, [#,TU] < hyp(ES) < T, where the last inclusion
holds since OP(£S) < €. Thus, [¢,TU/Q] < T/Q, and so, [¢,Cs,o(T/Q)] = [p,U/Q] < (T n
U)/Q = Z(T /Q). (We thank the referee for pointing out this short argument.) O

We refer to [5, § 11.5] and [15, § 5.2] for some of the other properties of these quotient systems.
The next lemma involves normal fusion subsystems of index prime to p (see Definition 1.14).

Lemma 1.19. Let F be a saturated fusion system over a finite p-group S, and let Z < Z(F) be a
central subgroup. Then O (F/Z) = OP'(F)/Z.

Proof. Set H={P € F°|P/Z € (F/Z)"}. (Note that for P € F°, P > Z(S) > Z.) For each P €
F¢\ M that is fully normalized in 7, P/Z is fully normalized in ¥ /Z, and hence, Cg,,(P/Z) £
P/Z.Choose x € S\ PsuchthatxZ € Cs,(P/Z), and consider the automorphismc, € Autg(P).
Then c, ¢ Inn(P) since P € F¢, and c, induces the identity on Z and on P/Z. Since {a €
Auty(P) | [a, P] < Z} is a normal p-subgroup of Auty(P) (see [20, Corollary 5.3.3]), this proves
that ¢, € O, (Autz(P)), and hence, that

for each P € ¢\ H, there is P* € P” with Outg(P*) N O,(Outx(P*)) # 1. 1.2)

By [5, Theorem 1.7.7], there is a finite group I' of order prime to p, and a map
0 : Mor((F/Z)*) — T that sends composites to products and inclusions to the identity, and is
such that 8(Aut,,(S/Z)) = T'and 0P (F/Z) = (6-(1)). Let F™ C F be the full subcategory with
object set H, and let @ be the natural map from Mor(F*) to Mor((F/Z)°). Set F, = ((6®)~'(1)):
a fusion subsystem of 7 over S. By [34, Lemma 1.6] and (1.2), F, > OP/(F) and is saturated. Thus,
Or (F)/Z < Fy/Z < OP (F/2).

Conversely, OP/(F)/Z has index prime to p in F/Z since for each P/Z < S/Z, we have
Autyy iz, (P/2) 2 OF'(Auty.,,(P/Z)). So, OF' (F)/Z > OF'(F / Z). O

The following construction is needed when we want to look at the image of £ < 7 in 7/Q but
& does not contain Q.
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Definition 1.20. Let £ < F be a pair of saturated fusion systems over T < S, and let Z < Z(F) be
a central subgroup. Define Z& < F to be the fusion subsystem over ZT where for each P,Q < ZT,

HomZE(Pﬁ Q) = {qD € HOl’Ilp(P, Q) | golPﬂT € HomE(P N T’ Q N T)}

If £ < F, then the above definition is a special case of a construction of Aschbacher [4, Theorem
5]. But the definition and arguments in this very restricted case are much more elementary.

Lemma 1.21. Let £ < F be a pair of saturated fusion systems over finite p-groups T < S. Let Z <
Z(F) be a central subgroup. Then ZE is saturated, and ZE I Fif E I F.

Proof. A subgroup P < ZT is fully normalized or fully centralized in Z€ ifand only if P N T is fully
normalized or fully centralized in £. The saturation axioms for Z€& follow easily from those for &:
note, for example, that Aut,.(P) = Autg(PNT) for P < ZT. So, Z€ is saturated.

If £ < F, then the subgroup ZT is strongly closed in F since for each x = zt (forz € Zand ¢t €
T),each ¢ € Hom((x),S) extends to ¢ € Hom(Z(t),S), and p(x) = zp(t) € ZT. The extension
condition for Z& follows directly from that for £ < 7, and the invariance and Frattini conditions
for Z¢& follow from those conditions applied to £ < F and the definition of a central subgroup.
Thus, ZE 4 F. O

The following lemma will also be useful.

Lemma 1.22. Let F be a saturated fusion system over a finite p-group S, and let £ < F be a normal
fusion subsystem over T < S. Let Q < S be a subgroup strongly closed in F, and assume that

(i) each morphism in F between subgroups of T lies in £ (i.e., € is a full subcategory of F), and
(i) S =OQT.

Then, Q N T is strongly closedin Eand F/Q = £/(QNT).

Proof. Since an intersection of strongly closed subgroups is strongly closed, Q N T is strongly
closed in F and hence in €. N

By (ii), the inclusion of T into S induces an isomorphism a: T/(Q N T) — S/Q. Then
4£/(QNT)) < F/Q as fusion systems over S/Q, and we will show that they are equal.

Assume ¢ € Homz(P, R) for some P,R < S containing Q, and set 1) = @|p,r as a morphism
fromPNTtoRNT.Thenyp € Homg(PNT,RNT)by (i), and Ay /(Q N T)) = ¢/Q as homomor-
phisms from P/Q to R/Q. Thus, ¢/Q € Mor({€/(Q N T))).Since p/Q € Mor(F /Q) was arbitrary,
this proves that 7/Q < (Cr(Q)/Z(Q)). O

2 | AUTOMORPHISM GROUPS AND TAMENESS

The main aim of this section is to introduce the concept of tameness for fusion systems. This was
originally defined in [2] and it is one of the main subjects of this article.



14 | BROTO ET AL.

2.1 | Automorphisms of fusion and linking systems

Before defining tameness, we must define automorphism and outer automorphism groups of
fusion and linking systems.

Definition 2.1. Fix a saturated fusion system F over a finite p-group S. Then,

(a) Aut(F) = {a € Aut(S) | “F = F}: the group of automorphisms of S that send F to itself;

(b) Out(F) = Aut(F)/Autr(S) is the group of outer automorphisms of F; and

(c) for each a € Aut(F), we let ¢, : F — F denote the functor that sends an object P to a(P)
and a morphism ¢ € Homz(P, Q) to apa~! € Hom(a(P), a(Q)).

Now that we have defined automorphisms, we can define characteristic subsystems.

Definition 2.2. Fix a saturated fusion system F over a finite p-group S. A fusion subsystem
& < Fover T 4 S is characteristic if £ is normal in F and ¢, (&) = £ for all « € Aut(F). Likewise,
a subgroup P of S is characteristic in F if P < F and a(P) = P for all « € Aut(F); equivalently, if
Fp(P) is a characteristic subsystem of F.

For example, when F is a saturated fusion system over a finite p-group S, then the subsys-
tems OP(F) and OP/(F) (see Definition 1.14(b,c)) and the subgroups O,(F) and Z(F) are all
characteristic in F.

Lemma 2.3. Let £ < F be a normal pair of fusion systems over finite p-groups T < S. Then
(a) if D & € is characteristic in &€, then D 1 F; and

() 0,() < 0,(F).

Proof. Point (a) is shown in [4, 7.4]. Since Op(é‘ ) is characteristic in &, Op(é‘ ) < F by (a), and so,
Op(é') < Op(F), proving (b). O

The following condition for a subnormal fusion system to be normal is due to Aschbacher.

Lemma 2.4 ([4, 7.4]). Let D < €& < F be saturated fusion systems over finite p-groups U I T < S
such that c,(D) = D for each a € Auty(T). Then D < F.

The following definitions of automorphism groups are taken from [2, Definition 1.13 & Lemma
1.14]. Recall that for each pair of objects P < Q in a linking system (L, 6, ), we write o =
8p,o(1) € Mor, (P, Q), and regard it as the “inclusion” in L of P into Q.

Definition 2.5. Let F be a fusion system over a finite p-group S and let (£, &, ) be an asso-
ciated linking system. For each P in L, we call §p(P) < Aut,(P) the distinguished subgroup of
Aut,(P).

(a) Let Aut(L) be the group of automorphisms of the category £ that send inclusions to inclusions
and distinguished subgroups to distinguished subgroups.
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def
(b) For y € Aut,(S), let ¢, € Aut(£) be the automorphism that sends an object P to c,(P) =
def
7(y)(P), and sends € Mor, (P, Q) t0 ¢, () = ¥lg.c ooV |pc,p) - Set

Out(£) = Aut(L)/{c, |y € Aut.(S)}.

The notation in Definitions 2.1 and 2.5 is slightly different from that used in [2] and [5], as
described in the following table:

Notation used here Aut(F) Out(F) Aut(L) Out(L)

Used in [2, 5] Aut(S, F) out(S, F) Aut{yp(ﬁ) Out,y,(£)

By [2, Lemma 1.14], the above definition of Out(L) is equivalent to Outyy, (L) in [11], and by [11,
Lemma 8.2], both are equivalent to Outyy,(£) in [10]. So, by [10, Theorem 4.5(a)], Out(ﬁg(G)) =
Out(BGg): the group of homotopy classes of self-homotopy equivalences of the space BGg.

The next result shows how an automorphism of a linking system automatically preserves the
structure functors. For use in the next section, we state this for certain full subcategories of a
linking system that need not themselves be linking systems because their objects might not be
closed under overgroups. (Compare with Proposition 6 in [32].)

For a group G, a set H of subgroups of G, and § € Aut(G) that permutes the members of H, let
T(B): T3(G) — T3(G) denote the functor that sends H € H to 3(H), and sends g € T(H,K)

to B(g) € Tg(B(H), B(K)).

Proposition 2.6. Let (L,5, ) be a linking system associated to a fusion system F over a finite p-
group S, let L, C L be a full subcategory such that Ob(L;) 2 F, and let Aut(L) be the group of
automorphisms of the category L, that send inclusions to inclusions and distinguished subgroups
to distinguished subgroups. Fix a € Aut(L,), and let § € Aut(S) be the unique automorphism such
that a(85(g)) = 65(B(g)) for all g € S. Then B € Aut(F), a(P) = B(P) for each P € Ob(L,), and
the following diagram of functors

Tov(z,)(S) L,

r(ﬁ)J la Jw 2.1

s
Tovz,)(S) L i F

commutes.

Proof. Clearly, a(S) = S, and hence, ag sends §4(S) € Sylp(AutE(S)) to itself. Thus, S is well
defined. Since a sends inclusions to inclusions, it commutes with restrictions. So for P,Q €
Ob(L,) and g € T¢(P, Q) (the transporter set), we have

a(Sp g(9)) = Sup).ai)(B(9)) (22)

since a(d5(g)) = 85(B(g)). In particular, the left-hand square in (2.1) commutes.
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When Q = P, (2.2) says that &,py(B(P)) = ap(6p(P)), and ap(6p(P)) = ,py(a(P)) since a
sends distinguished subgroups to distinguished subgroups. So, a(P) = B(P) since §yp) is a
monomorphism (Proposition 1.8(a)).

Fix P,Q € Ob(£) and 3 € Mor,(P,Q), and set ¢ = w(3) € Homp(P, Q). For each g € P,
consider the following three squares:

¥ () ()

P——Q a(P) —— a(Q) a(P) ——— a(Q)

l&;(g) So(p(®) laﬂp)(ﬁ(g» l«sﬁ@(ﬁ@(g») Jsmm(ﬁ(g» Jsaw)(n(a(zp»(ﬁ(g»)
¥ ) ()

P——Q a(P) — a(Q) a(P) — a(Q).

The first and third of these squares commute by axiom (C) in Definition 1.7, and the second com-
mutes since it is the image under « of the first. Since morphisms in £ are epimorphisms and &,
is injective (Proposition 1.8(a,b)), this implies f(¢(g)) = 7(a(®))(B(g)). Thus, 7(a(®))) = BB~ =
cg(7(¥)), proving that the right-hand square in (2.1) commutes.

In particular, since 7 is surjective on morphism sets (axiom (A2) in Definition 1.7), Bpp~! €
Hom(B(P), B(Q)) for each P,Q € Ob(L,) and each ¢ € Hom(P, Q). Since Ob(L,)) includes all
subgroups that are F-centric and F-radical, all morphisms in 7 are composites of restrictions of
morphisms between objects of £, by Theorem 1.4. Hence, BP < F with equality since F is a finite
category, and so, 8 € Aut(F). O

Proposition 2.6 motivates the following definition.
Definition 2.7. Let (£,d, ) be a linking system associated to a fusion system F over a finite
p-group S. Let fi, : Aut(£L) — Aut(F) denote the homomorphism that sends a € Aut(L,)) to
B € Aut(F) such that diagram (2.1) commutes. Let u, : Out(£) — Out(F) be the induced
homomorphisms on the quotient groups.

That i, is a homomorphism follows easily from its definition via diagram (2.1). For y €
Aut,(S), we have i, (c,) = 7(y) € Auty(S) since 7 is a functor, so u, is well defined.

2.2 | Tameness of fusion systems

We next define a homomorphism x; that connects the automorphisms of a group to those of its
linking system. We refer to [2, § 2.2] for more details about x; and the proof that it is well defined.

Definition 2.8. Let G be a finite group and choose S € Syl,(G). Let
kg : Out(G) — Out(L(G))

denote the homomorphism that sends the class of @ € Aut(G) such that a(S) = S to the class of
the automorphism of £¢(G) induced by a.

In these terms, tameness can be defined as follows.
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Definition 2.9. Let F be a saturated fusion system over a finite p-group S. Then

(a) F is tamely realized by a finite group G if ¥ = F.(G) for some S* € Syl,(G) and the
homomorphism x; : Out(G) — Out(LS, (G)) is split surjective; and
(b) F istame if it is tamely realized by some finite group.

2.3 | Centric fusion and linking subsystems

Some of the results in later sections need the hypothesis that a certain fusion or linking subsystem
be centric, which we now define.

Definition 2.10. Let £ 4 F be a normal pair of saturated fusion systems over finite p-groups
T4S.

(a) LetCg(&) denote the unique largest subgroup X < Cg(T') such that Cx(X) > £. Such a largest
subgroup exists by [4, 6.7], or (via a different proof) by [26, Theorem 1(a)].

(b) The subsystem € is centric in F if C4(€) < T; that is, if there is no x € Cy¢(T) \ T such that
Cr(x) = €.

(c) If M & L are linking systems associated to £ g F, set

CAutﬁ(T)(M) = {V € Aut,(T) | ¢ = IdM}’

where c, is a well-defined element of Aut(M) by Definition 1.12(b).
(d) If M 2 L are linking systems associated to € S F, then M is centric in L if Cpy,(r)(M) <
Aut,(T); equivalently, if ¢;, # Id for each 9 € Aut,(T) \ Aut (7).

For pairs of linking systems, this is the definition used in [2] (Definition 1.27). The term “cen-
tric fusion subsystem” was not used in [34], but the condition in Definition 2.10(b) appears in
Proposition 2.1 and Theorem 2.3 of that paper (and the term is used in [35]).

In the next lemma, we look at the relation between normal centric fusion subsystems and
normal centric linking subsystems.

Lemma 2.11. Let £ < F be a normal pair of saturated fusion systems over finite p-groups T < S
with associated linking systems M < L, and set

Cs(M) = {x €S|cs,ry =Tdy } < 5.

Then,

(@) Caut,(ry (M) = 81(Cs(M)) and Z(E)Z(F) < Cs(M) < Cs(€);

(b) M is centricin L if and only if C¢(M) < T, and this holds if £ is centric in F; and

(c) the conjugation action of Aut,(T) on Cg(M) = 51(Cg(M)) < Aut,(T) induces an action of the
quotient group L/ M = Aut,(T)/Aut,(T) on Cs(M), and CCS(M)([l/M) = Z(F).

Proof. Throughout the proof, “axiom (-)” always refers to one of the axioms in the definition of a
linking system (Definition 1.7).
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‘We first claim that
Vx €S, Or(x) € Aut(T) < x€eT. (2.3)

The implication “<=" is clear. To see the converse, fix x € S such that §;(x) € Aut,,(T). Then
¢, € Autg(T), and ¢, € Inn(T) € Sylp(Autg(T)) since it has p-power order. Thus, thereist € T
such that xt™1 € Cy(T), 7 (xt™1) = 6;(x)5,(t)~! € Aut,((T), and so, xt~! € Z(T) by axiom (A2)
applied to M and since &7 is injective (Proposition 1.8(a)). Hence, x € T.

‘We next claim that

Cs(E)NT = Z(&). (2.4)

The inclusion Z(£) < Cy(€) N T is immediate from the definitions. If x € C¢(€) N T < Z(T), then
since £ < Cr(x), each ¢ € Hom((x), S) extends to a morphism in F that sends x to itself, and
hence, ¢(x) = x. Thus, x¢ = {x}, so x € Z(&) by [5, Lemma 1.4.2], finishing the proof of (2.4).

(a) FixaeC AutL(T)(M). By axiom (C) for the linking system £, for all g € T, ad;(g)a! =
Sr(m(a)(g)), so 8p(g) = dr(m(a)(g)) since c, = 1d,,, and g = m(a)(g) since Jp is injective
(see Proposition 1.8(a)). So, 7(a) = Idy, and a = §;(x) for some x € Cy4(T) by axiom (A2).
Then x € Cg(M) by definition, and thus, C AutE(T)(M) = 87 (Cg(M)).

If xeZ(&)=Cg(E)NT, then for each P,Q <T and 3 € Mor ,,(P,Q), m(xp) extends
to some ¢ € Homg(P(x),Q(x)), and ¢ = 7() for some P € Mor ,,(P(x),Q(x)). Set ¢’ =
zﬁlp,Q € Mor (P, Q). Then 9'6p(x) = §o(x)yp" since $6P<x>(x) = 6Q<x>(x)$ by axiom (C).
Also, n(¥") = w(¥), so if P is fully centralized in &, then ¢’ = 9Sp(y) for some y € Cr(P).
Then [x, y] = 1 since x € Z(T), 50 ¢5,()(6p(¥)) = 6p(y), and thus, ¢5_(,)(¥) = 9. This holds
for all ) € Mor(M) whose domain is fully centralized, and hence for all morphisms in M.
So, x € Cp(M) £ Cg(M).

Thus, Z(€) < Cg(M). By a similar argument but working in £ and F instead of M and €&,
we also have Z(F) < C4(L) € C4(M), and so Z(E)Z(F) < Cg(M).

It remains to show that Cg(M) < C4(E). Fix x € Cg(M); we must show that £ < Cr(x).
Fix P,Q < T and ¢ € Hom,(P,Q), and choose ¥ € Mor,,(P,Q) such that () = ¢. Set
P = P(x)and Q = Q(x). Then )p(x) = §,(x)y since ¢s_ () = 1d (, and PSp(g) = §o((9))p
for all ¢ € P by axiom (C) applied to M. So, for each g € P, there is h € Q such that
¥dp(g) = 8o(h)yp in Mor (P, Q), and by Proposition 1.8(d), 3 extends to a unique morphism
Y e Morﬁ(ls, Q).Setp =7(¥h) € Homp(la, Q). By axiom (C) again (but applied to £), we have
1,b513(x) =6 é(gB(x))lp, and after restriction to P and Q this gives ¢dp(x) = 5Q(q5(x))gb. Hence,
So(@(X)) = 8o(x), 50 8o(p(x)) = 8,(x) since P is an epimorphism in the categorical sense
(see Proposition 1.8(b)), and ¢(x) = x by the injectivity of 8o- Thus, each morphism in &£
extends to a morphism in F that sends x to itself, and hence, Cr(x) > £ and x € C4(&).

(b) By (a) and Definition 2.10(c), M is centric in £ if and only if §7(Cs(M)) < Aut,,(T), and this
holds exactly when Cg(M) < T by (2.3). Since Cg(M) < Cg(€) by (a), thisis the case whenever
& is centricin F.

(c) By (a), 67(C5(M)) is the kernel of the homomorphism from Aut,(T) to Aut(M) induced
by conjugation. So, §;(Cg(M)) < Aut,(T), and Aut.(T) acts by conjugation on Cq(M) =
O7(Cg(M)). Since this subgroup centralizes M by definition, Aut,,(T) acts trivially, and
hence, the action of Aut,(T) factors through an action of the quotient group £/ M.
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By Definitions 1.3(g) and 2.10(a), Z(F) = C4(F). So, by (a) applied when M = L,

Caut,(5)(£) = 85(Z(F)). (25)

Thus, for each x € Z(F), §4(x) acts trivially on £ and hence d;(x) acts trivially on Aut,(T). So,
Z(F) < Cey( wmy(Aut,(T)) = Cey( m)(£/M), and it remains to prove the opposite inclusion.

Fix x € C4(M) such that §(x) € Z(Aut,(T)). In particular, 5;(x) € Z(8;(S)), so x € Z(S) by
the injectivity of 6 (Proposition 1.8(a)), and c5T(x)(P) = *P = Pforeach P € Ob(L). We must show
that 5;(x) acts trivially on £. Fix P,Q < S and ¢ € Mor,.(P,Q),andset P, =PNT,Q, =QnNT,
and ¥, = P|p o (see Proposition 1.8(c)). By the Frattini condition on a normal linking subsystem
(Lemma 1.13), 3, is the composite of the restriction of a morphism y € Aut,.(T) followed by some
X € Mor(M). Since §1(x) commutes with y by assumption and commutes with y by (a) (Z(F) <
Cg(M)), we have

@8p(X)lp,.0, = WoOp,(X) = 8o, (X)Py = (6(X)P)Ip,,0,-

Then $5p(x) = §,(x)y by the uniqueness of extensions in a linking system (Proposition 1.8(d)),
and hence ¢5, () () = .

Thus, c;(y) is the identity on all objects and morphisms in L. So, x € Z(F) by (2.5) and the
injectivity of 85 (Proposition 1.8(a)). O

The following consequence of Lemma 2.11 will be needed in Section 4.

Lemma 2.12. Let H 9 G be finite groups, choose S € Syl,,(G), and set T = SN H. Set F = F4(G)
and & = Fr(H) < F. If Ker(xy ) has order prime to p, then Z(F) < Z(E)Cy(H).

Proof. Set Gy, = SH and F, = F4(Gy), andset H ={P < S|PNT € &%}. ForeachP € H,Cy(P N
H)=Z({PNH)x0y,(Cy(PNH)) since PNH € &°, so Cy(P) = (Z(P)N H) X 0, (Cy(P)), and
this has p-power index in Cs, (P). Thus, OP (CGO (P)) has order prime to p, so P is F,,-quasi-centric
by [5, Lemma I11.4.6(¢)].

Thus, H C F(. Set £, = L}/(Gy) (see [5, p. 146]), and M = L(H). Then M < L, is a normal
pair of linking systems associated to £ < F,, so by Lemma 2.11(a),

Z(Fy) < Cs(M) = {x € S| 5,y = 1 (2.6)

Fix x € Z(F) < Z(F,). By (2.6), [c, ] € Ker(xy), and so c, € Inn(H) since Ker(x;;) has order
prime to p. Thus, ¢, is conjugation by some element y € Cy(T) = Z(T) X O,/ (Cy(T)), and since
¢, has p-power order, we can assume y € Z(T). Then ¢, induces the identity on M since ¢, does
by (2.6), so y € Z(€) by the exact sequence in [2, Lemma 1.14(a)]. Also, y~!x € C4(H), and so
x € Z(E)Cs(H). O

3 | PRODUCTS OF FUSION AND LINKING SYSTEMS

In this section, we first define centric linking systems associated to products of two or more fusion
systems (Lemma 3.5). This is followed by a description of the group of automorphisms of such a
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product linking systems that leave the factors invariant up to permutation, as well as conditions
on the fusion systems that guarantee that these are the only automorphisms of the linking system
(Proposition 3.7(a,b)). As a consequence, we show that a product of tame fusion systems that
satisfy these same conditions is always tame (Proposition 3.7(c)).

Recall that if 7, and 7, are fusion systems over finite p-groups S; and S,, then F; X F, is
the fusion system over S; X S, generated by all morphisms ¢; X ¢, € Hom(P; X P,,Q; X Q,) for
¢; € Homy, (P;,Q;) (i = 1,2). See [5, Definition 1.6.5] for more details. When 7, and F, are both
saturated, then so is 7, X F, [5, Theorem 1.6.6].

The following notation and hypotheses will be used throughout the section.

Hypothesis 3.1. Let 7y, ..., F; be saturated fusion systems over finite p-groups S, ..., S, (some
k>2),andsetS =S, X - xS and F = F; X --- X F.. For each i, let pr; : S — S, be the projec-
tion. For each P < S, we write P; = pr;(P) (for 1 <i < k) and P= P, X --- X P, < S. Thus, P>p
for each P.

We first check which subgroups are centric in a product of fusion systems.

Lemma 3.2. Assume Hypothesis 3.1. Then a subgroup P < S is F-centric if and only if P; is F-centric
foralliand Z(P;) X - X Z(P},) < P.

Proof. For each P < S, we have Cq(P) = Csl(Pl) X - X Csk(Pk) = CS(P). Hence,

* Pisfully centralized in 7 if and only if P; is fully centralized in F; for each i, and
* C4(P) < Pifand onlyif Cs, (P;) < P; foreachiand Z(P) < P.

The result now follows since P is F-centric if and only if P is fully centralized in 7 and Cs(P) <

P. O

Note also that under Hypothesis 3.1, if P < S is F-centric and F-radical, then P = P= Py XX
Py (see, e.g., [2, Lemma 3.1]). But that will not be needed here.

The following easy consequence of the Krull-Remak-Schmidt theorem will be needed. Recall
that a group is indecomposable if it is not the direct product of two of its proper subgroups.

Proposition 3.3. Assume G4, ..., G, are finite, indecomposable groups, and set G = G; X - X G.
Then, the following hold for each o € Aut(G).

(a) Thereis o € %y such that a(G;Z(G)) = G,(;)Z(G) foreach 1 < i < k.
() If (1Z2(G),1G/[G,G]l) = 1, then there is & € Iy such that a(G;) = G,;) for each i.

Proof. An automorphism 8 € Aut(G) is normal if § commutes with all inner automorphisms of
G; equivalently, if [ 3, G] < Z(G). For such 3, one can define a homomorphism 6 : G — Z(G) by
setting 8(¢g) = B(¢g)g™!, and § factors through G/[G, G]. In particular, if (|Z(G)|, |G/[G,G]|) = 1,
then the only normal automorphism of G is the identity.

By the Krull-Remak-Schmidt theorem in the form stated in [42, Theorem 2.4.8] (and applied
with Q =1 or Q = Inn(G)), any two direct product decompositions of G with indecomposable
factors have the same number of factors, and there is always a normal automorphism of G that
sends one to the other up to a permutation of the factors . Points (a) and (b) follow immediately
from this, applied to the decompositions of G as the product of the G; and of the a(G;). O
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One immediate consequence of Proposition 3.3 is the following description of Out(G) when G
is a product of simple groups.

Proposition 3.4. AssumeG = G; X - X G, where Gy, ..., Gy, are finite indecomposable groups and
(12(G)1,1G/[G,G]l) = 1. Let T be the group of all y € X such that G, ;) = G; for each i. Then there
is an isomorphism

O 1 (Aut(G,) X - X Aut(Gy)) X T ——— Aut(G)

with the property that ®5(B,...,8;) = By X -+ X B, for each k-tuple of automorphisms (3; €
Aut(G;). Also, & sends H;‘zl Inn(G;) isomorphically to Inn(G), and hence induces an isomorphism

O 1 (Out(G,) X -+ X Out(Gy)) X T ——— Out(G).

To define @ more precisely, fix isomorphisms 1;; : G; — G; for each 1 < i < j < k such that
G; = G, chosen so that 4;, = Aj,A;; whenever G; = G; = G, and set 1;; = ll._jl. Also, set 4;; = Idg,
foreach i. Then ®; can be chosen so that for each y € T,

D915 G1) = (/1;/*1(1),1 (9y*1(1)), s Ay—l(k),k(gy—l(k))) .

Proof. Without loss of generality, we can assume that G; = G; and 4;; = Id, for each i, j such
that G; = G;. Thus, @5(¥)(g1, ---» i) = (gy-1(1)s - » §y-1(k)) for each y € T. Then @y is clearly an

injective homomorphism, and it factors through a homomorphism &;G as above since Inn(G) =
@G(Hle Inn(G;)). Each automorphism of G permutes the factors by Proposition 3.3(b), and
hence, @ is surjective. O

In the next proposition, we describe one way to construct linking systems associated to products
of fusion systems.

Proposition 3.5. Assume Hypothesis 3.1. Foreach 1 < i < k, let L; be a centric linking system asso-

ciated to F;, with structure functors §; and m;. Let L be the category whose objects are the F-centric
subgroups of S, and where for each P,Q € Ob(L),

k
Mor(P,Q) = {(®1,....9x) € EMorﬁi(Pi!Qi) | (71 (@1), s T (PI)(P) < Q.

Define
é T
Tonc)(S) L F
by setting, for all P,Q € F¢ = Ob(L),
SP,Q(!J) = ((51)p1,Q1(91)a ’(ak)Pk’Qk(gk)) all g = (g5, -, gk) € Ts(P, Q)

p (@) = (71(@1) .. T (@))) allg = (1, > #r) € Mor(P, Q).
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Then the following hold.

(a) The functors § and  make L into a centric linking system associated to F.
(b) Let L1 X --- X L, be the product of the categories L;. Define £, : L4 X -+ X L, —> L by setting

E,(Py,....,P ) =Py X+ X Py and Ep (@1, s Pk) = (@1, e » Pi)-

Then & is an isomorphism of categories from L X --- X L to the full subcategory L C £ whose
objects are those P € F¢ such that P = P; equivalently, the products Py X X Py for P; € F{.
Also, the following square commutes:

Tove,)(S1) X == X Tope,)(Sk) — Tow)(S)

~

51><--~><6kl Jd
13

LoX XLy c

where 1) is the natural isomorphism that sends (P, ..., P;) to Hi.‘zl P;.

(c) Letp;: L£L; —> L be the functor that sends P; € Ob(L;) to its product with the S; for j # i, and
sends ¢; € Mor(L;) to its product with Ide for j # i. Then p; is injective on objects and on mor-
phism sets. If « € Aut(L) is such that ag(55(S;)) = 5(S;) for each i, then a(p;(L;)) = p;(L;) for
each i.

Proof. By Lemma 3.2, for each P € Ob(L) = F¥¢, pr;(P) is F;-centric for each i. So, the definitions
of Mor (P, Q) and § make sense.

(a) Axiom (Al) is clear. Fix P,Q € Ob(L£) and set P; = pr;(P) and Q; = pr;(Q); then Cy(P) =
Z(P) = Z(P;) X -+ X Z(Py,). So, by axiom (A2) for the £;, for ¢, ¢’ € Mor,(P,Q), n(p) = 7(¢p")
ifand onlyif ¢’ = podp(z) for some z € Z(P). Foreach P,Q € Ob(L),each ¢ € Homy(P, Q)is
the restriction of some morphism H;‘:l @; € Homr(?, 0) (see [5, Theorem 1.6.6]), and hence,
the surjectivity of 7 on morphism sets follows from that of the 7;. The rest of (A2) (the effect
of ¢ and 7 on objects) is clear. Likewise, axioms (B) and (C) for £ follow immediately from the
corresponding axioms for the £;. Thus, L is a centric linking system with structure functors
d and 7.

(b) Both statements (£, is an isomorphism of categories and the diagram commutes) are imme-
diate from the definitions and since P; X --- X P, is F-centric if P; is F;-centric for each i
(Lemma 3.2).

(c) Let @ € Aut(L) be such that a(84(S;)) = d5(S;) < Aut,(S) for each i. We must show that
a(pi(£;)) = p;(L;) for each i. Fix some i, let S; < S be the product of the S; for j # i, and
identify S; x S; with S. Thus, p;(P;) = P; X S; and p;(;) = (¢; X 1d; ) for P; € Ob(£;) and
@; € Mor(L;). l

<
<

Set 8 = i () € Aut(F) (see Definition 2.7). By Proposition 2.6, a(P) = S(P) for P € Ob(L),
and moa = cgor as functors from L to 7. By assumption, S(S;) = S; and §(S;) = S;. So, for each
P; € Ob(L;), we have a(p;(P;)) = B(P; X 5‘1-) = Pl.* X éi for some Pl.* < S;. Thus, a permutes the
objects in p;(L;).
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Now fix a morphism ¢; € Mor (P;, Q;). Since woa = cgom, we have
m(a(pi(®y)) = cp(m(ep; X Idgl_)) = cg(m(g;) X Idgl_) = n(y) X Idgl_ = 7(p;(¥))

for some ¥ € Mor(L;). So, by axiom (A2) in Definition 1.7, a(p;(¢;)) = p;(¥)é(z, z’) for some
z € Z(P;) and z’ € Z(S;). Since z’ has p-power order, this shows that z’ =1 and a(p;(¢;)) €
Mor(p;(L;)) if ¢; is an automorphism of order prime to p. Also,

“(Pi(55i(gi))) = a(d5(g;)) = 65(B(g;)) € Mor(p;(L,))

for all g € S; since S(g;) € B(S;) = S,;.

By [2, Theorem 1.12], each morphism in £; is a composite of restrictions of elements of
AutEi(P) for fully normalized subgroups P € F". Also, when P is fully normalized, §,(Ng(P)) €
Sylp(AutCi (P)) (see [5, Proposition III.4.2(c)]), and so, Autp, (P) is generated by 6p(Ng(P)) and
elements of order prime to P. Thus, each morphism in £; is a composite of restrictions of
automorphisms of order prime to p and elements of §;(S;), and so, a(p;(L;)) = p;(L;). O

Asone example, if G, ..., G are finite groups, S; € Syl ,(G;), and L; = L (G;), then it is an easy
exercise to show that the linking system £ defined in Proposition 3.5 is the centric linking system
of Gy X -+ X Gy.

The subcategory L C C defined in Proposition 3.5(b) is not a linking system, since Ob(L) is not
closed under overgroups. However,

Ob(£) = {P =P, X XP,|P,<S;, PEF}

does include all subgroups of S that are F-centric and F-radical: this is shown in [2, Lemma
3.1] when k = 2 and follows in the general case by iteration. So, Proposition 2.6 applies to the
automorphism group

Aut(L) = {oc € Aut(£)|a(p 5(1)) = Se(p),s(1); a(8p(P)) = Sy py(a(P))VP € Ob(ﬁ)} .
By analogy with finite groups, a saturated fusion system is indecomposable if it is not the direct

product of two proper fusion subsystems.

Lemma 3.6. Assume Hypothesis3.1. Let L1, ..., L be centric linking systems associated to Fy, ..., Fy,
respectively, and let L be the centric linking system associated to F defined as in Proposition 3.5. Let
L CLbe the full subcategory with objects the subgroups Py X -+~ X P < S for P; € F{ = Ob(L;), and

let&, : Hle L, =7 < L be as in Proposition 3.5(b). Then

(a) &, induces a homomorphism
ce t Aut(L,) X - X Aut(L;) —— Aut(L),

which sends (ay, ..., ) to Ep(ay X - X q)é

(b) each @ € Aut(L) has a unique extension E (@) to an automorphism of L, in this way defining
an injective homomorphism E : Aut(£) — Aut(L); and

(c) if Z(F;) = 1 and F; is indecomposable for each i, then E ; is an isomorphism.
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Proof.

(a) This formula clearly defines a homomorphism to the group Autcat(ﬂ of all automorphisms
of £ as a category. That &,(ay X -+ X ock)é'zl (for a; € Aut(L,;)) sends inclusions in L to
inclusions and sends distinguished subgroups to distinguished subgroups follows from the
commutativity of the square in Proposition 3.5(b).

(b) We will show that each @ € Aut(Zi\) extends to some o € Aut(L). By the definition in Propo-
sition 3.5, each morphism in L is a restriction of a morphism in If, and hence, there is
at most one such extension. So, upon setting E,(2) = a, we get a well-defined injective
homomorphism from Aut(E) to Aut(L).

Fix & € Aut(£), and let B = (@) € Aut(F) be the automorphism of Proposition 2.6 and
Definition 2.7. Thus, wo@ = cgom, and a(P)=pP)forall P e Ob(L). In terms of £ and L,
the definition of morphisms in Proposition 3.5 takes the form

Mor,(P,Q) = {¢ € Mor;(P,Q) | 7()(P) < Q} (3.1)

for all P, Q € Ob(L), where P and Q are as in Hypothesis 3.1. Also, S(P) = ﬂl?) foreach P €
Ob(L), since P and B(P) are the unique minimal objects of L containing P and S(P), and since
B permutes the objects of L and of £. (We are not assuming here that 8 permutes the factors
Sl.)

For all P,Q € Ob(£) and ) € Mor,(P,Q) C Morf(ﬁ, 0), we have

7@W)(BP)) = ca(m(PN(BP)) = Bm(P)(P)) < B(Q) :

the first equality since wo@ = cgorr and the inequality since 7()(P) < Q by (3.1). So, a(y) €
Mor . (B(P), B(Q)) by (3.1) again. We can thus define a € Aut(L) extending & by setting a(P) =
B(P) for all P, and letting ap  be the restriction of af,,@ for P,Q € Ob(L).

(c) Now assume that Z(F;) = 1 and F; is indecomposable for each i. By [37, Corollary 5.3], F has
a unique factorization as a product of indecomposable fusion systems.

Fixa € Aut(£), and set § = fi.(a) € Aut(F) (Definition 2.7). By the uniqueness of the fac-
torization, there is y € ¥, such that cﬁ(Fi) = Fy(i) for each 1 < i < k. In particular, B(S;) =
Sy for each i. So, for each object P = P; X - X P, in C, B(P) = Hle B(P;) is also an object
in £. Hence, a(£) = L and a = E(a|p). Since a € Aut(L£) was arbitrary, E is onto. O

We are now ready to prove our main results concerning the automorphism group of a product
of linking systems.

Proposition 3.7. Assume Hypothesis 3.1. Let L; be a centric linking system associated to F; for each
1 < i <k, and let L be the centric linking system associated to F defined as in Proposition 3.5. Set

I'= {0 €% |F, = F foreach1<i<k}.

(a) There is an injective homomorphism

@, 1 (Aut(L)) X - X Aut(Ly)) X T —— Aut(L)
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with the property that for each (ay,...,q;) € Hﬁ‘zl Aut(L;), (Py,...,Pp) € Hle Ob(L;), and
(@1 Pp) € Hle Mor(£L;), we have

(DE(Oll,...,O(k)<P1 X oo XPk) = Oll(Pl) X e X Olk(Pk) (3 2)
O (11 rn ) (1 20) = (@1 0) |

for a; € Aut(L;). Furthermore,

CIDL;(H;‘:l Aut(L))) = Aut’(£) o {a € Aut(L) | as(85(S) = 65(S;) foreach 1 <i < k}.

(b) If Z(F) = 1, and F; is indecomposable for each i, then ®, is an isomorphism, and induces an
isomorphism

O, 1 (Out(£;)x - x Out(£,)) X T —— Out(L).

(c) Assume that Z(F) = 1, and that F; is indecomposable and tame for each i. Then F is tame. If
Gy, ..., Gy are finite groups such that O, (G;) = 1 and F; is tamely realized by G, for each i, and
such that F; = F implies G; = G, then F is tamely realized by the product G, X -+- X Gy.

Proof. Let L C C be the full subcategory defined in Proposition 3.5(b). Thus, Ob(E) is the set of
all P € Ob(L) = F¢ such that P = P.

Without loss of generality, for each pair of indices i, j such that 7; = F;, we can assume that
F;i=FjandS; = S;. Then, £; = L by Theorem 1.9, and so, we can also assume that £; = ;.

(a) Define @, to be the composite

C E
©p : (AUt(L)) X - X Aut(£;)) X T —— Aut(£) —— Aut(£),

where E is the homomorphism of Lemma 3.6(b), where the restriction of f:\g to Hle Aut(L;)
is the homomorphism c; of Lemma 3.6(a), and where

CEPPrs s P1) = (@y11)s 005 Py-1(k)) (3.3)

fory € I'and ¢; € Mor(L;). Then (3.2) holds by the definition of c;. One easily checks using
(3.2) and (3.3) that @ is an injective homomorphism.
It remains to check that @, (Hi'{:l Aut([li)) = Aut’(£): the subgroup of those a € Aut(L)
such that ag(84(S;)) = 84(S;) for each i. The inclusion of the first group in Aut’(£) is clear.
By Proposition 3.5(c), there are embeddings of categories p; : £; — L sending P; < S; to its
product with the S; for all j # i, and a(p;(L;)) = p;(L;) for each a € Aut’(L). We can thus
define W, ;: Aut’(£) — Aut(£;) by sending « to p;ap;. Set ¥9 = (¥ ;,..., ¥, ); then
@, oW, is the inclusion of Aut’(£) into Aut(£), and so, Aut’(£) < Im(®).
(b) Fixa € Aut(L), and set 8 = i (@) € Aut(F) (see Definition 2.7). By [2, Proposition 3.6] and
since Z(F) = 1 and the F; are indecomposable, ¢z permutes the factors F;.
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Let y € I be such that cz(F;) = F,(;) for each i, and hence also B(S;) = S,; and
as(85(S;)) = 85(S,;))- In particular, y € T. Then ®,(y)~'oa € Aut’(£), and since Aut’(L) <
Im(®,) by (a), this shows that Aut(£) < Im(®,) and hence that @, is onto.

Since Aut,(S) = AutCI(Sl) X oee xAutEk(Sk), @, induces an isomorphism of quotient
groups

O, 1 (Out(£;)x - x Out(£y)) X T ——— Out(L).

(c) Assume now that Z(F) = 1, and that F; is indecomposable and tame for each i. Let G, ..., Gy
be such that O0,/(G;) =1 and F; is tamely realized by G; for each i, and such that 7; = F
implies G; = G;. For each i, Z(G;) is a p-group and hence Z(G;) < Z(¥;) = 1 by Lemma 1.6(b).
Without loss of generality, we can assume that G; = G; whenever G; = G; and also (by the
uniqueness of linking systems again) that 7; = 5 (G;) and £; = £gi(Gi) for each i. Note that
each G; is indecomposable: since O ,(G;) = 1, a nontrivial factorization of G; would induce a
nontrivial factorization of 7.

Set x; = xg, 1 Out(G;) — Out(L;) for short. Fix splittings s; : Out(L;) — Out(G)) for all i,
chosen so that s; = 5; if G; = G;.
Consider the following diagram:

(Out(L£) X -+ x Out(Ly)) X T L out(L)

l(s1 ..... S )X Idp N
@,
1d (Out(G,) x -+ X Out(Gy)) X T ——— Out(G)
J(Kl ..... % )XIdp G
@

(Out(L£) X ++- X Out(Ly)) X T ———— Out(L)

L
~

where EJG is the isomorphism of Proposition 3.4 (as defined when taking 4;; = Idg, foreachi < j
such thatG; = G j), where s is defined to make the top square commute, and where the commuta-
tivity of the bottom square is immediate from the definitions. Thus, x;o0s = Idg (), SO % is split
surjective, and F is tamely realized by G. O

4 | COMPONENTS OF GROUPS AND OF FUSION SYSTEMS

In this section, we set up some tools that will be used later when proving inductively that all
realizable fusion systems are tame. The starting point for the inductive procedure is Theorem 4.5,
which summarizes the main results in [38]. Note that if F is a saturated fusion system such that
OP'(F) is simple, then for each finite group G with O,/(G) = 1 that realizes F, OP'(G) is simple
(so G is almost simple), and OP/(G) realizes F if F is simple.

Let Comp(G) denote the set of components of a finite group G; that is, the set of subnormal
subgroups of G that are quasi-simple. (Recall that a subgroup H of G is subnormal, denoted as
H <<« G, if there is a sequence H = Hy < H; < --- < H; = G with each subgroup normal in the
following one, and H is quasi-simple if H is perfect and H/Z(H) is simple.) The components
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of G commute with each other pairwise (see [3, § 31] or [5, Lemma A.12]). In particular, when

04(G) =1 for all primes g, they are all simple groups, and the subgroup E(G) « (Comp(G)) is
their direct product.

Similarly, the components of a saturated fusion system F over a finite p-group S are its subnor-
mal fusion subsystems C << F that are quasi-simple (i.e., OP(C) = C and C/Z(C) is simple). The
set of components of 7 will be denoted as Comp(F).

By analogy with the case for groups, a central product of fusion systems &, ..., & is a fusion
system £ = (& X -+ X &)/ Z, for some central subgroup Z < H;;l Z(&;) that intersects trivially
with each factor Z(&;). More precisely, if F is a fusion system over S and &, ..., £, < F are fusion
subsystems over T, ..., T} < S, then the subsystems commute in F if the T; commute pairwise,
and for each k-tuple of morphisms (¢, ..., ¢;), where ¢; € Homg, (P;, Q;), there is a morphism

® € Hom(P; - Py, Q; -+~ Qp) that extends each of the ¢;. Note, in particular, that
&, & commute = & < Cx(T ) for each i # j.

In this situation, the (internal) central product of the &; is the fusion subsystem

& & = (p € Homp (P - P, Q-+ Q) | P;,Q; < T},

¢lp, € Homg (P;,Q)V1<i<k)<F

over T; --- T} < S. See Definition 2.4 and Lemma 2.8 in [37] for some more details, and see [26,
Proposition 3.3] for a slightly different approach to defining central products of fusion subsystems.

By [4, 9.8-9.9], the components of a saturated fusion system F commute, and also commute
with O,(F). So, by analogy with finite groups, when F is a saturated fusion system over a finite
p-group and Comp(F) = {Cy, ..., C}, one defines

E(F)=Cy G and F*(F) = E(F)OP(F)

(central products). In particular, F*(F) is the generalized Fitting subsystem of F.
Note that when O p(F) = 1, the components of F are all simple, and F*(F) = E(F)is their direct
product.

Lemma 4.1. Let F be a saturated fusion system over a finite p-group S. Then

(a) E(F)is characteristicin F;
(b) F*(F) is characteristic and centric in F; and
(c) if ¢ S Fand C € Comp(F) \ Comp(€), then F contains a central product of C and E.

Proof. These are all shown in Chapter 9 of [4]: point (a) in 9.8.1 and 9.8.2, point (b) in 9.9 and 9.11,
and (c) in 9.13. More precisely, F*(F) is centric in F since Ci(F*(F)) = Z(F*(F)) by [4,9.11]. [

Lemma 4.2. Let £ < F be a normal pair of saturated fusion systems over finite p-groups. Then

(a) Comp(&) is equal to the set of all C € Comp(F) such that C £ &;
(b) if € is centric in F or has p-power index in F, then Comp(€) = Comp(F); and
(o) if OP(F) = 1 and Comp(€) = Comp(F), then & is centric in F.
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Proof.

(a,b) Inallcases, each fusion subsystem subnormal in £ is subnormal in 7, and hence Comp(€) C
Comp(F).If C € Comp(F) \ Comp(E), then by Lemma 4.1(c), F contains a central product
of C and &, and, in particular, C £ €. This proves (a), and also shows that £ is not centric in
F in this case, proving the first part of (b). If £ has p-power index in F, then F cannot be a
central product of £ with a quasi-simple system, so Comp(&) = Comp(F) also in this case.

(c) If OP(F) =1 and Comp(&) = Comp(F), then € > E(F) = F*(F) is the generalized Fitting
subsystem of F. Since F*(F) is centric in ¥ by Lemma 4.1(b), so is . O

In the proof of the next lemma, we need to work with the centralizer fusion subsystem Cr(&)
of a normal fusion subsystem & < F over T < S. This was defined by Henke [26] to be the unique
fusion subsystem over Cy(€) of p-power index in C(T). (There is such a subsystem by [5, Theo-
rem 1.7.4] and since C4(€) = foc(Cr(T)) by [26, Proposition 1].) By [26, Proposition 6.3], it is equal
to the subsystem Cr(&) defined by Aschbacher in [4, Chapter 6].

Lemma 4.3. Let F be a saturated fusion system over a finite p-group S. Set Comp(F) = {Cy, ..., C.}
where C; is a fusion subsystem over U; foreach 1 < i < k. Let Z < Z(F) be a central subgroup. Then
Comp(F/Z) ={ZC,/Z,...,ZC, ] Z}.

Proof. Set Compy(F/Z) ={ZC,/Z,...,ZC,/Z} for short. For each i, ZC;/Z << F/Z by Lem-
mas 1.21 and 1.18 and since C; I F. Also, ZC;/Z = C;/(ZnU;) by Lemma 1.22 and hence is
quasi-simple. Thus, ZC;/Z € Comp(F /Z) for each i, and Comp(F /Z) 2 Comp(F /Z).

It remains to prove the opposite inclusion. Set £ = E(F): the central product of the C;. It
is a saturated fusion system over U = U --- Uy, and is normal in 7 by Lemma 4.1(a). Set
K ={a € Autp(ZU) | [a,U] < Z}: a p-group of automorphisms by [20, Corollary 5.3.3]. Each
X HomCF/Z(ZU/Z)(P/Z, Q/Z)(for Z < P,Q < N§(ZU)) extends to g € Homy,,(PU/Z,QU/Z)
such that ¢|;;,, = Id, and this, in turn, lifts to 3 € Homy(PU,QU) with ¢|; € K. Thus,
NX(zU)/Z = Cy,,(2U/2).

Recall that K is a p-group. Hence, by Lemma 1.16, the centralizer C-(ZU) is normal of p-power
index in N g(Z U). Also, Cx(€) has p-power index in Cr(U) = Cr(ZU) by Henke’s definition in
[26], and so, we have inclusions

Cr(€)/Z < Cr(ZU)/Z < NJ(ZU)/Z = Cr,(ZU ] Z),

each of p-power index in the next. Each component of 7 /Z not in Comp,(F/Z) commutes with
the ZC;/Z, hence is contained in Cy,,(ZU /Z), hence is contained in Cr(£)/Z by Lemma 4.2(b),
and hence lies in Comp(Cx(€)/Z) by Lemma 4.2(a) and since Cr(£)/Z < F/Z by Lemma 1.18.
By [4, 9.12.3] and since € = E(F), the centralizer subsystem Cr(&) is constrained. Hence,
Cr(&)/Z is also constrained by [27, Lemma 2.10], so Comp(Cr(€)/Z) = @, finishing the proof
that Comp(F /Z) = Comp,(F /Z). O

In the next lemma, we use the following notation to describe certain automorphism groups.
For a fixed prime p and integers k | m | (p — 1) and n,# > 1, let G(m, k,n) < GL,(Z/p") be the

subgroup

G(m, k,n) = {diag(u,, ..., u,) € GL,(Z/p") | u =1Vi, (uy - u,)"* = 1} - Perm(n),
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where Perm(n) ~ X, is the group of all permutation matrices. Thus, G(m,1,n) = C,, Z,, the
group of all monomial matrices whose nonzero entries are mth roots of unity in Z/p’, and
G(m, k,n) has index k in G(m, 1, n).

The following is a version of [38, Lemma 4.7] that has been reformulated so as to not depend
on the classification of finite simple groups.

Lemma 4.4. Let F be a saturated fusion system over a finite p-group S, for some prime p > 5, and
assume A < S is abelian and F-centric. Assume also, for some £ > 1, x > p,and2 <m | (p — 1),
that A is homocyclic of rank x and exponent p’, and that with respect to some basis {a;, ..., a, } for
A as a Z/p’-module, Auty(A) contains G(m, m, x) with index prime to p, and

Autr(A)NG(m,1,x) = G(m,r,x) < GLK(Z/p’/ﬂ) forsome2 <r | m.
Then either A 4 F, or OF' (F)is simple and F is not realized by any known finite almost simple group.

Proof. Since Auty(A) contains G(m, m, x) with index prime to p, some subgroup conjugate to
Autg(A) is contained in G(1,1,x) = £,, and hence, Autg(A) permutes some basis of Q,;(A). Also,
G(m, m, x) acts faithfully on Q,(A), as does each subgroup of Autr(A) of order prime to p (see
[20, Theorem 5.2.4]). So, by the assumptions on Auty(A),

Autr(A) acts faithfully on Q,(A), Autg(A) permutes

) 4.1
a basis of Q,(A), and C4(Q,(A)) = A.

We next claim that
Q,(A) is the only elementary abelian subgroup of S of rank «. 4.2)

This is well known, but the proof is simple enough that we give it here. Set V' = Q,(A) for short,
let W < S be another elementary abelian subgroup, and set W= Auty,(V)and r = rk(ﬁ/). Then
r = k(W /Cy,(V)) where Cy, (V) = WNA =W NV by (4.1). Let B be a basis for V permuted by
I;/, and assume that W acts on Bwith s orbits (including fixed orbits) of lengths p™, ..., p"s. Then
p'= |IX/| < p™ .- p"s, and hence m; + --- + m > r. So,

N N

k(W) =r+ k(W N V) <r +rk(Cy (W) =r +5< Y (m; +1) < Y p™ =rk(V),

i=1 i=1

proving (4.2). In particular, Q,(A) and A = C5(Q,(A)) are weakly closed in F.

Set Gy(m,m,x) = OP' (G(m, m, x)) = (C,)*"! X A,: the unique subgroup of index 2 in
G(m, m,x). There are exactly x one-dimensional subspaces of Q,(A) invariant under the action
of 0,/(Go(m, m,x)) = (C,)*7 1, and they are permuted transitively by the alternating group A, .
Hence,

Q,(A) is a simple F [Gy(m, m, x)]-module. (4.3)

Set Fy = Op/(F). Set T = Autz(A) and T, = AutPO(A). Thus, Ty > Gy(m,m,x) since T >
G(m, m,x).
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Step 1: Assume that 7, is not simple, and let £ < F, be a proper nontrivial normal subsystem
over 1 # T < S. Then T is strongly closed in 7, so T N A is normalized by the action of I'; on A,
and TN A = Q;(A) for some 1 < k < ¢ since Q,(A) is simple by (4.3). Also, T/Q; (A) is normal
in S/Q(A),soifk < Z and T > Q;(A), then T/Q,(A) N Z(S/Q;(A)) # 1. Since Z(S/Q;(A)) <
A/Q, (A), thisimplies that T N A > Q; (A), contradicting the choice of k. Thus, either T = Q; (A)
forsomel <k <Z,orT > A.

IfT = O, (A) for some k < #, then since T is abelian and strongly closed, T = Q; (4) < F by [5,
Corollary I.4.7(a)]. Hence, for each a € A and each x € a”', there is ¢ € Hom(Q,(A){a), S) such
that p(a) = x and p(Q;(A)) = Q;(A). Then x € C4(Q,(A)) = A by (4.1), so A is strongly closed
in this case, and A < F by [5, Corollary 1.4.7(a)] again.

Thus, if 7, is not simple and A 4 F, then there is a proper normal subsystem £ 4 FyoverT I S
such that T > A. Set A = Aut.(A) < T'y. Then A > Aut;(A) # 1since T > A, so p | |A]. Since I
contains Gy(m, m, x) with index prime to p, we have

AN Gy(m,m,x) < Gy(m, m,x) = (C,,)" "t XA,

where ¥ > p > 5 and p | |A N Gy(m, m, x)|. Since A, and hence G,(m, m, x) have no proper nor-
mal subgroups of order a multiple of p, it follows that A > Gy(m, m, %), and hence that A has
index prime to p in Aut;(A). But then Aut;(A) = Autg(A), so T = S since A is F-centric, and £
has index prime to p in F,, and F by [2, Lemma 1.26]. Thus, £ = F, = or'(F), contradicting our
assumption that £ is proper.

Step 2: It remains to show, when A # F, that F is not realized by any known finite almost simple
group. Assume otherwise: assume F = F¢(G) where G is almost simple, and set G, = 0P (G).
Since OF (F) is simple, G, is a known simple group.

We claim that this is impossible. Note that A is a radical p-subgroup of G,, since
Op(AutGO (A)=1landpt ICq, (A)/A] (i.e., A is Fy-centric). Although we do not know Autg, (A)
precisely, we know that it is contained in Auty(A) and contains Gy(m, m,x) = (C,,)*"! X A,.

Since p > 5and rk,(G,) > p, G, cannot be a sporadic group by [22, Table 5.6.1].

By [1, § 2], for each abelian radical p-subgroup B < Z,, Auty (B) is a product of wreath products
of the form GL.(p) ¢ Z, forc > 1and x > 1. Thus, Aut, (B) can have index2in C,_, 2 Z, for some
x, but not index larger than 2. So, G, cannot be an alternating group.

If Gy € Rie(p), then N (A) is a parabolic subgroup by the Borel-Tits theorem [22, Corollary
3.1.5] and since A is centric and radical. So, in the notation of [22, § 2.6], A = U; and Ng, (A4) =
P; (up to conjugacy) for some set J of primitive roots for G,,. Hence, by [22, Theorem 2.6.5(f,g)],
Op/(NGO(A) JA) = or' (L) is a central product of groups in Lte(p), contradicting the assumption
that OP' (Aut;(A)) 2 Gy(m, m, x).

Now assume that G, € Rie(q,) for some prime g, # p. By [21, 10-2] (and since p > 5), S €
Syl,(G) contains a unique elementary abelian p-subgroup of maximal rank, and by (4.2), it
must be equal to Q;(A). Hence, Aut;(A) must be as in one of the entries in Table 4.2 or 4.3
in [38].

* IfG,isaclassical group and hence Auty(A) = G(, 7, x) for m = por2uand 7 < 2 (see the next-
to-last column in [38, Table 4.2] and recall that G(, 1,x) = Cz 1 Z,.), then the identifications
Autp(A) = G(m, 7, x) and Autz(A) > G(m,r, x) are based on the same decompositions of A as a
direct sum of cyclic subgroups, and hence, we have m | i and r < 2, contradicting our original
assumption.
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* If G, is an exceptional group, then by [38, Table 4.3], either x = rk(A) < p, or p = 3, or (in case
(b)) m*~1 . k! does not divide |Aut,(A)| for any m > 2, and hence, Aut;(A) cannot contain any
such G(m, r,x). O

As noted at the beginning of the section, if F is a realizable fusion system such that OF'(F)is
simple, then F is realized by a finite almost simple group, and by a simple group if ' is simple. We
now consider the converse, by determining which fusion systems of known finite simple groups
are simple or almost simple.

Theorem 4.5. Fix a prime p and a known finite quasi-simple group L such that Z(L) is a p-group
andp | |L|. FixT € Sylp(L), andset £ = Fr(L)and C = OP/(S). Then T > Z(L), and either

(a) T < &€ and hence C is not quasi-simple; or

(b) p =3andL = G,(q) for some q = +1 (mod 9), in which case |0;(E)| =3,Z(E) =1L, andC < €
is quasi-simple and is realized by SL§ (q); or

(©) p > 5, Lisone of the simple classical groups PSLy(q), PSp,,(q), 25,11(q), or P.Q;—'Mz(q) where
n > 2andq % 0,+1 (mod p), in which case C is simple and is not realized by any known finite
simple group; or

(d) C is quasi-simple, Z(C) = Z(L), and C is realized by a known finite quasi-simple group with
center Z(C).

In cases (b), (c), and (d), there is a normal fusion subsystem C* < &€ over T containing C that is
realized by a known finite quasi-simple group, and is such that for each saturated fusion system &'
over T such that OP' (&) = C, €' is realized by a known finite quasi-simple group only if it contains
C*. Thus, C* = C in cases (b) and (d), while C* > C in case (¢).

Proof. In all cases, T # 1 since p | |L| by assumption, and T > Z(L) since otherwise p } |L/Z(L)|
while p | |Z(L)|, contradicting the assumption that L is perfect.

When L is simple, this is essentially [38, Theorem 4.8], but restated to make its proof inde-
pendent of the classification of finite simple groups. The only difference between the proof of this
version and that of Theorem 4.8 in [38] is that we replace [38, Lemma 4.7] by the above Lemma 4.4.
Note in case (a) that C = F(T) is not quasi-simple since OP(C) = 1, and in case (d) that C is sim-
ple and is realized by a known finite simple group (thus with center Z(L) = L(C) = 1). In case (b),
Z(&) = 1since Aut; (T) acts nontrivially on O5(€) = O5(Fp(L)) = Cs.

Now assume that Z(L) # 1. Then Z(L) < T since Z(L) is a p-group by assumption, and
Fr /Z(L)(L /Z(L)) = E/Z(L). Also, L/Z(L) is not isomorphic to G,(q) for any prime power q and
is not one of the groups in case (c) (see [21, 6-1], or Theorem 6.1.4 and Table 6.1.2 in [22], for
the description of Schur multipliers of groups of Lie type in cross characteristic). So, either
T/Z(L) < E/Z(L) (case (a)), in which case T < &; or else Op/(é'/Z(L)) = C/Z(L) is simple and
is realized by a known simple group (case (d)).

If C/Z(L) is realized by a known simple group H, then C is realized by a central extension H of
Z(L) by H. This follows from the proof of [9, Corollary 6.14] (the statement itself only says that C is
realizable). We have foc(C/Z(L)) = T/Z(L) since H is simple, and hence T = Z(L)joc(C). Also,

T = foc(€) = foc(C)[Aut(T), T] = foe(C),

where the first equality holds since £ = F(L) where L is perfect, the second holds since £ is gener-
ated by C = OP'(£) and Aut +(T) by the Frattini condition for OF' (&) < & (see [5, Theorem 1.7.7]),
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and the last equality holds since T = Z(L)joc(C) where Aut.(T) acts trivially on Z(L) and sends
foc(C) toitself. Thus, C and H are quasi-simple by the focal subgroup theorems (Lemma 1.15(a,b)),
and H is a known quasi-simple group. So, the last statement in the theorem holds in this case with
c*=C. 1

The following terminology will be useful when stating many of the results throughout the rest
of the paper.

Definition 4.6. Let G be a finite group. We say that

(a) Gis p'-reduced if 0,(G) = 1; and
(b) Gisa F€-group if all of its components are known quasi-simple groups.

Most of our statements from now on about groups will be formulated in terms of “finite p’-
reduced # €-groups,” a restriction that allows us to avoid assuming the classification of finite
simple groups in our proofs. Note that when working with the p-local structure of a finite group
G, there is not much point in assuming that all components of G are known without also assuming
that 0,,(G) = 1.

Lemma 4.7. Let G be a finite p’-reduced F €-group. Then for U € Syl,(F*(G)), the centralizer
C;(U) is p-solvable.

Proof. Let Ly, ...,L; be the components of G, and fix T; € Syl,,(L;). Set L =L; - L and T =
T, Ty, andsetQ = OP(G). Then F*(G) = QL and QT € Sylp(QL), so we can assume U = QT.

Conjugation by each element of G permutes the subgroups L;. Since O,,(G) = 1, and since the
Schur multiplier of a group of order prime to p has order prime to p, we have T; > Z(L;) for each
i. So, each element of C;(U) normalizes each of the L;.

Consider the homomorphism y : C;(U) — Out(L) that sends g € C;(U) to the class of ¢ | ..
We just showed that Im(y) < Hle Out(L;), when identified with a subgroup of Out(L) in the
obvious way. Moreover, Out(L;) < Out(L;/Z(L;)) is solvable for each i by the Schreier conjecture
and since L; /Z(L;) is a known simple group (see [22, Theorem 7.1.1]), so Im(y) is also solvable.

If g € Ker(y), then c |, =cpl, for some heL, so gh™' € Cs(L). Then gh™' € C5(QL)
since h € L < C;(Q), and h € C;(T) since g and gh~! both commute with T. Thus, Ker(y) <
Cc(QL)C.(T) (and the opposite inclusion is obvious). Also, C;(QL) < G since QL < G, and so
Cs(QL) < Ker(y). By [3, 31.13] or [5, Theorem A.13(c)], C;(QL) < QL, and hence, C;(QL) =
Z(QL) = Z(Q): an abelian p-group. Also, C;(T)/Z(T) has order prime to p since T € Sylp(L). So
Ker(y), and hence C;(U), are p-solvable. O

The following notation will be used in several of the results in the rest of the section.

Notation 4.8. Let G be a finite p’-reduced # &-group, fix S € Sylp(G), and set F = Fg(G). Set
Comp(G) ={L,, ..., L;}; thus, each L; is a known quasi-simple group. For each 1 < i < k, set

Ti =9 ﬂLi’ 8i = FT,-(LL') < 7:‘, and Ci = OP,(El-)-

Assume that the L; were ordered so that for some 0 < m < k, C; is quasi-simple if and only ifi < m.



REALIZABILITY AND TAMENESS OF FUSION SYSTEMS | 33

Proposition 4.9. Let G be a finite p’-reduced # €-group, and assume Notation 4.8. Then
Comp(F) = {Cy,...,Cpi}  and  O,(F) 2 0,(G)Tyy -+ T

Proof. SetL =Ly - L andT =T, -+ T).. Foreach 1 < i < k, we have T; € Syl ,(L;) since L; 4 L <
G, and also

C; = OF (Fp (L) 2 Fp (L) A Fp(L) S F5(G) = F

the first normality relation by [5, Theorem 1.7.7] and the other two by [5, Proposition 1.6.2] and
since L; I L < G. Thus, C; S F for each i. If i < m, then C; is quasi-simple and hence is a com-
ponent of 7. If i > m + 1, then T; < &; by Theorem 4.5, and hence T; < O,(Fr(L)) < O,(F) by
Lemma 2.3(b).

Set Q = O,(G) for short. Thus, QT ;1 -+ T, < Op(F), and T --- T, is the Sylow of the central
product C; -+ C,,,.

Assume D < F is another component. By [4, 9.8-9.9], the components of F commute with
each other and with OP(F). Hence, D < Cr(QT), where C(QT) is the fusion system of C;(QT)
by Lemma 1.6. (Note that QT is fully centralized in F since it is normal in S.)

By Lemma 4.7, the centralizer C;(QT) is p-solvable. Hence, Cr(QT) = FCS(QT)(CG(QT ))is solv-
able in the sense of [5, Definition I1.12.1], and its saturated fusion subsystems are all solvable by
[5, Lemma I1.12.8]. So, D is solvable, and hence is constrained by [5, Lemma I1.12.5(b)] (see also
[5, Definition 1.4.8]), which is impossible since D was assumed to be quasi-simple. We conclude
that Cy, ..., C,, are the only components of F. O

In the next section, we will be working mostly with fusion systems that are (tamely) realized
by finite p’-reduced % €-groups. It will be important to know that in such situations, the fusion
system and the group always have the same center. The following technical lemma is needed to
prove that.

Lemma 4.10. Fix an odd prime p. Let G be a central product of known p’-reduced quasi-simple
groups, choose S € Sylp(G), andset F = Fy(G). Then Z(F) = Z(G), and Ker(x;) (see Definition 2.8)
has order prime to p.

Proof. Assume that the lemma holds for G/Z(G). Then Z(F /Z(G)) = Z(G/Z(G)) = 1,50 Z(F) £
Z(G), while the opposite inclusion holds since G is p’-reduced. Also, Ker(x;) has order prime to
p by [2, Lemma 2.17].

It thus suffices to prove the lemma when G is a product of known simple groups.

D t |Ker(x;)|: We first claim that if G is a finite group such that Z(G) = 1,and U € Syl p(Aut(G))
and S = U NnInn(G) € Sylp(Inn(G)), then

Cy(S)<S = ptKer(xp)l. (4.4)

To simplify notation, we identify G with Inn(G) (recall Z(G) = 1), and thus, identify S with a Sylow
p-subgroup of G. Assume (4.4) does not hold: thus, C;(S) < S and p | [Ker(x;)|. Let a € Aut(G)
be such that [«] has order p in Out(G) and x;([a]) = 1. Since Aut(G) = Inn(G)N p,()(S) by the
Frattini argument, we can assume that a(S) = S without changing the class [«]. Then x;([a]) = 1
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TABLE 1 Pairs (G, p) where G is simple, S € Syl ,(G) is nonabelian, and § < F(G)

. ¢ s N(8)/8
p PSU,(q) (g = p¥) itk Conianns
3 2G,(q) (q = 34) gt 2

3 G,(q) (q = +2,+4(mod 9)) 3142 s,

3 J, 3L+2 c,

3 I3 order 3° Cy

) MeL 572 C, X Cq
: Hs 51” order 16
. cox 5. 4s,

’ €os Si“ order 48
! L 11 5% 28,

implies, in particular, that a|g € Aut;(S), and thus, a|g = ¢, |g for some x € N;(S). So, upon
replacing a by c;loc, we can assume that « centralizes S, and upon replacing a by a* for some
appropriate k, we can also arrange that a have p-power order in Aut(G). Also, @ € N )(S) and
U € Syl,(N auy(6)(S)) imply that S8 ~1 e Cy(S) \ Sforsome B € Nyy(6)(S). This contradicts our
original assumption, and finishes the proof of (4.4).

By [23, Theorem B], C;;(S) < S whenever G is a known simple group. The corresponding rela-
tion for products of known simple groups then follows from the description in Proposition 3.4 of
the automorphism group of a product. So, p t |Ker(x;)| for all such G by (4.4).

Z(F)=Z(G):If S 4 F, then by Theorem 4.5, either G is as in case (b) and Z(F) = Z(G) = 1; or
it is as in case (c) or (d) and Z(OP/(F)) =Z(G) = 1. Since Z(F) < Z(OP/(F)) for every saturated
fusion system over a finite p-group, this proves that Z(F) = Z(G) = 1.

Now assume that S < F; that is, that G is p-Goldschmidt in the terminology of Aschbacher.
Then, Z(F) = Cy5)(Ng(S)/S), and we must show this s trivial in all cases (recall that G is simple).
If S is abelian, then since Aut;(S) = N;(S)/S has order prime to p, we have S = Cq(Aut;(S)) X
[Aut;(S), S] (see [20, Theorem 5.2.3]), where the second factor is the focal subgroup foe(F). Also,
foc(F) = S since G is simple, and thus, Z(F) = Cs(Auts(S)) = 1.

If S & F and S is nonabelian, then by [4, Theorem 15.6], (G, p) is one of pairs listed in Table 1.

In all cases, C4(Ng(S)) < [S, S] by an argument similar to that used when S is abelian. If G =
PSU,(q) or 2G,(q), then the explicit description of S and N;(S)/S in [28, 11.10.12(b)] or [29, §X1.3],
respectively, shows that Cq(Aut;(S)) = 1. When p = 3and G = G,(q) for ¢ = +2, +4 (mod 9), the
action of the Weyl group W = D, on Z(S) = C, is nontrivial. In all other cases where S = pfz,
the generators of Z(S) are conjugate (by [21, §5] or [22, Tables 5.3]), and so, N(S)/S acts nontrivially
on Z(S) =[S, S].

This leaves the case G = J; and p = 3. By [30, Lemma 5.4] (where S is denoted as W),
Z(S) = E,, and there is a subgroup W < N(S) such that Z(S) < W = E,; and S < N;(W). Also,
Ng(W)/S = Cg; and all elements in Z(S)* and all those in W\ Z(S) are conjugate in Ng(W).
Thus, W > [S, S], and C¢(N;(S)) = 1 in this case. O

By [19, Theorem 5.1] and Glauberman’s Z*-theorem, Lemma 4.10 also holds when p = 2. More
generally, in the same theorem, Glauberman and Lynd showed that for each prime p for which
the Z*-theorem holds for all almost simple groups, one also has that Ker(x;) has order prime to
p for all simple groups.
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We are now ready to prove the Z*-theorem at odd primes for all finite p’-reduced ¥ €-groups.

Proposition 4.11. Fix a prime p, let G be a p’-reduced K €-group, and choose S € Syl,(G). Then
Z(F5(G)) = Z(G).

Proof. When p = 2, this is just Glauberman’s Z*-theorem [17, Corollary 1], and holds for all finite
2'-reduced groups. So, it remains to prove the proposition when p is odd.

Set H = E(G): the central product of the components of G. Set T =SNH, and set F =
Fs(G) and & = Fr(H). By Lemma 4.10, Ker(x;;) has order prime to p and Z(€) = Z(H). Also,
C(0,(G)H) = Z(0,(G)H) = Z(0,(G)) (see [3, 31.13]), s0 O,,(G) < C(H) is a centric subgroup.
In particular, Z(C(H)) < Z(0,(G)).

Assume x € Z(F).By Lemma2.12, therearey € Cq(H)and z € Z(€) = Z(H) such thatx = yz.
If g € C;(H) is such that 9 € Cs(H), then 9% = (%)z € S, so % = x since x € Z(F) and hence
9y = y. Thus,

y € Z(Ce(H)) < Z(0,(G)),

and since z € Z(H) < Z(OP(G)), we have x € Z(OP(G)). Since x € Z(F), it must be invariant
under the action of Auty(Z (OP(G))), and so, x € CZ(OP(G))(G) =Z(G).
This proves that Z(F) < Z(G), and the opposite inclusion holds since G is p’-reduced. O

A very similar proof of the Z*-theorem at odd primes was given by Guralnick and Robinson
[24, Theorem 4.1]. If we give our own proof here, it is mostly to make our assumptions completely
clear: we assume only that all components of G are known quasi-simple groups. Other proofs of
the Z*-theorem, where the analogous assumptions are less restrictive or less clear, are given in
[44, Theorem 1] and in [22, Remark 7.8.3].

The next proposition is somewhat more technical.

Proposition 4.12. Let G be a finite p’-reduced # €-group, assume Notation 4.8, and set
L=L L, T=T,~T,, &E=FL), and C=0F(&).

Then C < € are the central products of the subsystems C; 1 &; for1 <i < m.

(a) Thereis a unique minimal normal fusion subsystem C* < F among those subsystems containing
C = E(F) that are realized by finite p’-reduced F € -groups, and C* itself is realized by a central
product of known finite quasi-simple groups. More precisely, C* = C7 --- C;, , where for each 1 <
i<m, Cl.* < & is a fusion system over T; such that OP,(CL.*) =C;, and Cl.* is the fusion system of
a known finite quasi-simple group.

(b) We have C = OP'(C*) and Aut(C*) = Aut(C), and C and C* are both characteristic in F.

Proof. Letg: L; X -+ X L,, — G be the homomorphism induced by the inclusions L; < G, and
let

o~

PrE X XE, = FTIX~~~><TW,(L1 Xoeee XLm) - FS(G) =F
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be the induced functor between the fusion systems. Then Im(®) = &, --- €,,, the central prod-
uct of the &, and is equal to 7 ..p (L; -+ Ly,). Set Z = Ker(p) < [TZ, Z(L). Then &, --- &, =
(IT, €)/Z, and hence,

or' (& - &,) =0V <ﬁ el.) /Z = ( 1 op’(ei)> /Z = 0P (&) 0P (€,) :
i=1 =1

1

the first isomorphism by Lemma 1.19 and the second by [2, Proposition 3.4]. Since these are finite
categories and OP'(S1 &) < OP’(Sl) OP’(Sm), the two are equal.

(a) Foreach 1<ig<m, let Ci* < &; be the minimal realizable fusion subsystem containing C;
of Theorem 4.5. More precisely, C;" is realized by a known finite quasi-simple group, and
each saturated fusion subsystem of &; that is realized by a known finite quasi-simple group
and contains C; also contains C;". Since C;" < &; for each i and the & commute, the C;
also commute.

Set C* = C; -+ C; < F, the central product of these subsystems. Thus, C < C* < € where
all three fusion systems are over T =T, ---T,,,, and where C = E(F) < F, and £ < F since
L L, <G.

It remains to show that each normal fusion subsystem of F containing C and realized by
a finite p’-reduced & €-group also contains C*. Assume that H is such a group. In partic-
ular, thereis R € Sylp(H) suchthat T < R<Sand C < Fr(H) I F.LetHy,...,H, << H be
the components of H (by assumption, known quasi-simple groups), and set R; = R N H;. By
Proposition 4.9, the components of Fr(H) are those subsystems OP/(FRl_ (H))for1gig?
that are quasi-simple. Each component of Fr(H) is subnormal in 7 and hence a component
of F (recall Fr(H) & F), and each component of F is contained in and hence a component
of Fr(H) by assumption. Thus, m < ¢, and we can assume that the indices are chosen so that
T; = R; and OP,(FTi(Hi)) = C, foreachi < m.

For each i, Fr, (H;)and C l are both realizable fusion systems over T; where OP’(FTI_ (Hy)) =
OP’(CI.*) = C;, and so Fp (H;) > C; by Theorem 4.5 (the last statement) and the minimality
assumption. So, Fr(H) contains C*, and thus, C* is minimal among normal subsystems of 7
containing C and realized by finite p’-reduced # €-groups.

(b) Since C<C*< € and C = OP/(S), we also have C = OP/(C*). It remains to prove that
Aut(C*) = Aut(C), and that C and C* are characteristic in F.

Assume that the central factors C; are ordered so that for some £ < m, we have C; < C[" if
andonlyifl <i<#.Foreachl <i<?¢,L,;fallsunder case (c) in Theorem 4.5, so C; is simple,
and Z(C) = 1. So, ifwe set Ty = Ty -+ T}, and Cy = Cy4 -+ Cpy, the central products of the
remaining factors, we get direct product decompositions

T=Tyx--xT,, C=CyX - XCp and C*=Cy X XC;.

Since C = OF'(C*), we have Aut(C*) < Aut(C), and it remains to prove the opposite inclu-
sion. Fix a € Aut(C) < Aut(T). Then, a(T,) = T and °C, = C,, and a permutes the factors T;
and C; for 1 < i < 7. Thus, there is o € Z, such that “Cl.* 2%, = Cg(l-) foreach 1 <i < ?. For
each i, C and C;“(i) were chosen to be the unique smallest saturated fusion systems over T}
and T,;) containing C; and Cy;), respectively, that are realized by known finite quasi-simple

groups. Since “C" is also realized by a known quasi-simple group, we have °C" = C;(l_). Upon
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taking the direct product of these systems, it now follows that “C* = C*. Hence, a € Aut(C*),
finishing the proof that Aut(C) = Aut(C*).

Now, C = E(F) since Comp(F) = {C;, ..., C,,,} by Proposition 4.9, and hence, C is charac-
teristic in 7 by Lemma 4.1(a). The Frattini condition for C* < F holds since it holds for
C < F, and the extension condition holds since it holds for £ < F. Foreach ¢ € Aut(F),al; €
Aut(C) = Aut(C*) since C is characteristic in 7, and hence %C* = C*. Thus, the invariance
condition holds (so C* < F), and C* is characteristic in F. O

We need to understand the role played by the components of G and of 74(G) when determining
automorphisms of the linking system £{(G) and tameness. The next proposition is a first step
toward that.

Proposition 4.13. Let G be a finite p’-reduced F €-group, and assume Notation 4.8. Assume also
that 0,(G) =1 = O,(F). Thus, for each 1 < i <k, L; is a known simple group and C; is a simple
fusion system. Set

L=L X XL, 4G and T=T,X-xXT=SnL€Syl,(L);

andalso & = Fr(L)and C = o”’ &).

(a) There is a unique minimal normal fusion subsystem C* < &€ containing C that is realized by a
product of known finite simple groups. Also, C* = C{ X --- X C,, where for each 1 < i < k, the
subsystem C; is realized by a known finite simple group and C; < C; < &;.

(b) The fusion subsystems C* and C are both centric and characteristic in F.

Proof.

(a) This is the special case of Proposition 4.12 when O p(G) =1=0 p(F).
(b) The subsystems C and C* are characteristic in F by Proposition 4.12.
Since OP(F) =1= OP(G), each of the subsystems C; is simple, and hence, Comp(F) =
{Cy, ..., C;} by Proposition 4.9. So, F*(F) = E(F) = C, and C is centric in F by Lemma 4.1(b).
So, C* > C is also centric in F. O

We finish the section with two more specialized results. The first shows that in a saturated
fusion system F where E(F) is “almost realizable” in the sense that there is a minimal realizable
fusion subsystem C* < F with OP'(C*) = E(F), the subsystem C* is always contained and normal
in C(0,(F)).

Lemma 4.14. Let F be a saturated fusion system over a finite p-group S. Let C,, ..., C,, be its com-
ponents, where each C; I F is a fusion system over T; I S. SetT =T, -+ T,, and C =C; --- C,,,.
Set Q = O,(F).

Assume, foreach i =1, ..., m, that Ci* < F is a saturated fusion subsystem over T; containing C;
such that C; = OP,(Cl.*), such that C is realized by a known finite quasi-simple group, and such that
C;' = C; foreach i such that C; is realized by a known finite quasi-simple group. Assume also that the
subsystems C;", s C:,‘1 commute in F, and that their central product C* = C;“ C:;l is normal in F.

Then, C* is contained in Cr(Q), and is normal in Cr(Q) and in N;fm(Q)(Q).
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Proof. Assume that the indices are chosen so that for some 0 < ¢ <m, C; = C;foreach1 <i <7
and C > C; for each # + 1 <i < m. For each 1 <i < m, let L; be a known finite quasi-simple
group with T; € Syl,(L;) such that C;" = Fr,(L;) (there is such a group by assumption). By Theo-
rem 4.5 applied to L;, we are in case (d) of the theorem whenever i < # and in case (c) whenever
i > ¢ + 1. (Case (b) cannot occur since we assume C; = OP/(Cl.*) = C whenever C; is realizable by
a known finite quasi-simple group.) In particular, the C; and L; are all simple for # + 1 < i < m by
Theorem 4.5(c).
Set

Cr=C - Cr=Cf e C;, Cy=CpyyCp, and Cj;= c;ﬂ C;;,

andalsoT; =T, - T,and Ty =T, --- T,,. Since C; is simple for i > £ + 1, we have

Z(Cp) =1, C=Cx(, C*=C x(

II° al’ld T = TI X TII'

By [4, 9.9] or [14, Theorem 7.10(e)], we have C < C(Q). By the Frattini condition for C < C*,
the fusion system C* is generated by C and automorphisms o € Aut..(T) of order prime to p that
are the identity on T;. By the extension condition for C* < F, each such « extends to an element
a € Autr(TCy(T)) such that [a, C4(T)] < Z(T), and since Q < F, this implies that [a,Q] < Q N
Z(T) = Z(C) < T;. Upon replacing a by a* for some appropriate k, we can arrange that a have
order prime to p. Then

Q = Co(@)a Q1 < Co(@T; < Cor(@)

(see [20, Theorem 5.3.5] for the first equality), and so &lQ = Id,. Thus, a is a morphism in Cx(Q),
finishing the proof that C* < Cr(Q).

It remains to prove that C* is normal in C»(Q) and in N;fl 2(Q(Q). The Frattini condition
holds since it holds for C < Cr(Q) and C < N;fm(Q)(Q), and the invariance condition holds for
both inclusions because it holds for C* < 7. We just showed that C* is generated by morphisms
in C and morphisms a € Aut..(T) that extend to & € Autz(TCg(T)) such that a|, = Id, and
[a, Cs(T)] < Z(T), and hence, the extension condition holds for both inclusions since C <4 Cr(Q)
and € S NI"™Q(Q). O

In the following proposition, we show that each saturated fusion system F has a maximal
characteristic subsystem that normalizes all components of F.

Proposition 4.15. Let F be a saturated fusion system over a finite group S. Let Cy, ..., C;, be the
components of F, where C; is a fusion system over U;. Assume, foreach 1 < i < k, that Z(C;) = 1 (i.e.,
that C; is simple). Set
k
U=U x-xUg<S, N=[)_ NsUp,
H={P<N|PNU; #1foreachl <i<k}, and

N = (p € Homy(P,Q)|P,Q e H, p(PNU) <QNU, foreach1 <i < k)N.
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Here, (—), denotes the fusion system over N generated by the morphisms between the brackets. Thus,
E(F)isthedirect product of the C;, and is a fusion subsystem over U by Lemma 4.1(a). Then the fusion
subsystem N is saturated and characteristicin F, E(F) < N, and C; < N foreach1 <i < k.

Proof. By Lemma 4.1(a) and since Z(C;) = 1 for each i, E(F) is the direct product of the C; and is
characteristic in 7. In particular, E(F) < F, and U is strongly closed in F.
Set

A={6 €Ly |3a € Autp(U) such that a(U;) = Ug(;) V1 < i < kb
We first claim that

for each P € H and each ¢ € Hom(P, S), there is § € A such that

(4.5)
p(PNU;) < Ugyy forall 1 <i<k.
It suffices to prove this when P < U (hence ¢(P) < U). Since E(F) < F by Lemma 4.1(a), the
Frattini condition implies that ¢ = ag’ for some a € Aut,(U) and some ¢’ € Homgz)(P, U).
Since a permutes the components of 7, there is § € A such that a(U;) = Uy;, for each i. Since ¢’
is in E(F), we have (P N U;) < a(U;) = Uy, foreach 1 < i < k.
We next claim that

for each § € A, there is « € Auty(N) such that a(U;) = Uy(; for each 1 < i < k. (4.6)

To see this, fix § € A, and choose 8 € Auty(U) such that S(U;) = Us;, for each 1 < i < k. Since
Autg(U) € Sylp(AutF(U)) and Aut,(U) < Autx(U), we have that Auty(U) and FAuty(U) are
both Sylow p-subgroups of Aut ,+(U). So, thereisy € Aut,+(U) such that y3 normalizes Auty (U),
and hence, by the extension axiom extends to a € Autz(N). By construction, a(U;) = Us; for
eachl <i<k.

Fix a € Autz(N), and let § € Z; be such that a(U;) = Us; for all 1 < i < k. For each P,Q €
H and ¢ € Hom +(P,Q), (P N U;) < QN U; for each 1 < i < k, and hence apa~(a(P) N U,;) <
a(Q) N U; for each 1 < i < k. Thus, % € Mor(N'). So, a normalizes the subsystem N, and we
have shown

for all @ € Autp(N), “N = N. 4.7

We show in Step 1 that N is saturated, in Step 2 that N is characteristic, and in Step 3 that
E(F)SNand G, d N forl1<i<k.

Step 1: For each 1 < i < k, since U; < N, we have Z(N) N U; # 1. So, for each P € N, we have
PNnU; > Z(N)nU,; # 1foreach 1 <i < k, and hence, P € H. Thus, N° C H.

By definition, N is H-generated. So, by [5, Theorem 1.3.10], to prove that N is saturated, it
suffices to prove that it is H-saturated; that is, that each P € H is N -conjugate to a subgroup that
is fully automized and receptive in N (see [5, Definition 1.3.9]).

If P € H is receptive in F and ¢ € Iso,+(Q, P) for some Q < N, then ¢ extends to some ¢ €
HomF(N;', S), and gB(Ngf NU,) < U, for each 1 < i < k by (4.5). Hence, ¢ restricts to an element

of Hom (N, ;‘/ ,N). Thus, P is receptive in N.
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Assume P € H is fully automized in F. By (4.5), each 8 € Autr(P) permutes the subgroups
PNU,forl<i<k,while 8 € Aut, (P) if and only if it sends each P N U; to itself. So, Aut \(P)
is normal in Autr(P). Also, Auty(P) = Autg(P) N Aut (P): if c, € Aut(P) for x € Ng(P), then
PnU;)<U;foreachl <i < kandhencex € N.So, Auty(P) € Sylp(Aut ' (P))since Autg(P) €
Syl p (Aut(P)), and we conclude that P is fully automized in V.

Now fix P € H, and let y € Homy(P,N) be such that y(P) is fully normalized in F. Then
x(P) € H, and we just showed that y(P) is fully automized and receptive in V. By (4.5) and (4.6),
there is @ € Autz(N) such that ay € Hom (P, N). Since *N' = N by (4.7), the subgroup c y(P)
is also fully automized and receptive in N, and is N -conjugate to P. Since P € H was arbitrary,
this proves that A is H-saturated, and finishes the proof that it is saturated.

Step 2: We first check that N is strongly closed in F. Set

K ={a € Autp(U) |a(U;) = U;, all1 £ i < k} < Autp(U).

Thus, N = Ng(U). Let x,y € S be such that x € N and y € x”'; we claim that y € N.

Let P,Q < S and ¢ € Homz(P,Q) be such that x € P,y € Q, and ¢(x) = y. Then p(P N U) <
Q N U since U is strongly closed in F as noted above, and so, ¢ induces a homomorphism ¢ from
PU/U=P/(PNU)to QU/U = Q/(Q nU). By a theorem of Puig (see [15, Theorem 5.14]), ¢ €
Homy /U(PU/ U,QU/U). In other words, there is p € Hom(PU, QU) such that for each g € P,
¥(9) € p(9U.

Now, ¢yxy = (Ply)ex@ly) ™! where |, € Auty(U). Also, ¢, € K since x € N = N§(U), and
K is normal in Autz(U) since each a € Aut;(U) permutes the U;. So, ¢y, € K, and hence,
P(x) € N. Hence, y € p(x)U C N, finishing the proof that N is strongly closed.

Ifx € C4(N) < C4(U), then *U; = U, foreach 1 < i < k (hence foreach 1 <i < k), and so, x €
N. Thus, C4(N) < N, so the extension condition holds for V' < F.

By (4.5) and (4.6), for each P, Q < N and ¢ € Homy(P, Q), thereis § € A such that (P N U;) <
QN U foralll <i<k,anda € Autz(N)such that a(U;) = Uy foreach1 <i < k.So,a™'p €
Hom (P, a1(Q)), and the Frattini condition for normality holds. The invariance condition holds
by (4.7), and thus, N' < F.

For each 8 € Aut(F), § permutes the components of 7, and hence permutes the subgroups
U; and the members of the set H. So, c;(N) = N by the above definition of N, and N is
characteristic in F.

Step 3: By [4,9.8.3] and since N' < F, we have E(F) = E(N') < M. Foreach 1 < i < k, we have
C; A E(F) by [4,9.8.2], and ¢, (C;) = C; for each a € Aut,(U) by definition of V. So, C; < N by
Lemma 2.4. |

By construction, N is the largest saturated subsystem of F that contains each of the C; for
1 < i € k as a normal subsystem.

5 | TAMENESS OF REALIZABLE FUSION SYSTEMS

We are now ready to show that realizable fusion systems are tame, assuming the classification of
finite simple groups. This has already been shown in earlier papers for fusion systems of known
simple groups (see Proposition 5.2). When F is the fusion system of an arbitrary finite p’-reduced
K €-group G, we will show that it is tame via a series of reductions based on an examination of
the components of G.
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‘We first restrict attention to tameness of fusion systems of finite simple groups. This was shown
in most cases in earlier papers, and will be summarized below, but there were two cases whose
proofs assumed earlier results that were in error.

Lemma5.1. Let (G, p) be one of the pairs (He, 3) or (Co,, 5), choose S € Sylp(G), andset F = Fs(G)
and L = L(G). Then Out(L) = 1, and so F is tamely realized by G.

Proof. Since p is odd, Out(F) = Out(£) in both cases. The simplest proof of this is given in [31,
Theorem C] (and the sporadic groups are handled in Proposition 4.4 of that paper). A more general
result is shown in [33, Theorem C] and [18, Theorem 1.1].

When G = He and p = 3, the argument in [36, p. 139] claimed (wrongly) that F is simple, but
did not actually use this. Since S is extraspecial of order 27 and exponent 3 and Out;(S) = Dg, we
have

Dg = Outg(S) < Aut(F)/Inn(S) < Noy(s)(Outs(S)) = SDyg.

Elements in N (s (Auts(S)) \ Auts(S) exchange subgroups of S of order 9 with nonisomorphic
automizers, and hence do not normalize 7. So Aut(F) = Aut;(S), and Out(F) = 1.

When G = Co; and p = 5, the proof that Out(F) = 1 in [36, p. 138] used the incorrect claim
that 7 has a normal subsystem of index 2. So, we replace that argument with the following one.
By [16, Theorem 5.1] and the correction in [43, p. 145], S contains a unique elementary abelian
subgroup Q of order 5° and index 5, and N;(Q)/Q = Aut;(Q) = C, X Zs. Set H = N;(Q). By [36,
Lemma 1.2(b)] and since C(Q) = Q, we have |Out(F)| < |Out(H)|. By [39, Lemma 1.2], there is
an exact sequence

0— H'(H/Q;Q) — Out(H) —— Noug)(Out;(Q))/Outy(Q),

and by [7, p. 110], there is a five-term exact sequence for the homology of H/Q as an extension of
C, by Z; that begins with

0— H'(Z5;H(C4; Q) —— H'(H/Q; Q) —— H (Z5; H'(C4; Q).

Since H(C4; Q) = H(C,;Q) = 0(C, actson Q = C5 X C5 X C5 via multiplication by scalars), this
proves that H'(H/Q; Q) = 0. Also,

Nout@)(Outy(Q))/Outy(Q) = Ny, (5(C4 X Z5)/(Cy X Zs)

is trivial since GL;(5) = C, X PSL;(5) and GO5(5) = X5 is a maximal subgroup of PSL,(5) (see,
e.g., [22, Theorem 6.5.3]). So, Out(F) = Out(H) = 1. O

We now summarize what we need to know here about tameness of fusion systems of finite
simple groups.

Proposition 5.2. Fix a known simple group G, choose S € Syl ,(G), and assume that S 4 F4(G).
Then, F4(G) is tamely realized by some known simple group G*.
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Proof. SetF = F¢(G)and L = E;(G) for short. Note that G is nonabelian since S & Fq(G).

Assume first that G = A,, for some n > 5. By [2, Proposition 4.8],if p=2andn > 8 orif p is
odd and p? < n =0,1 (mod p), then x is an isomorphism. If p is odd and p? < n = k (mod p)
where 2 < k < p — 1, then F is still tamely realized by A,: Out(£) = 1 since F is isomorphic to
the fusion system of £, and also thatof 2,_,. If p = 2 and n = 6,7, then F is tamely realized by
Ag = PSLy(9) (and x4 is an isomorphism). In all other cases, S is abelian and hence S < F.

If G is of Lie type in defining characteristic p, orif p = 2and G = %,(2)’, then by [12, Theorems
A and D], x; is an isomorphism except when p = 2 and G = SL;(2). In this exceptional case, F is
tamely realized by A, again.

If G is of Lie type in defining characteristic g, for some prime g, # p, then by [12, Theorem B],
F is tamely realized by some other simple group G* of Lie type. See also Tables 0.1- 0.3 in [12]
for a list of which groups of Lie type do tamely realize their fusion system, and when they do not,
which other groups they can be replaced by.

If G is a sporadic simple group (and S ¢ F), then by [36, Theorem A] and Lemma 5.1, x; is an
isomorphism except when (G, p) is one of the pairs (M;;,2) or (He, 3). If (G, p) = (He, 3), then
by the same theorem, |Out(G)| = 2 and Out(£) = 1, so F is still tamely realized by G. If (G, p) =
(My1,2), then F is the unique simple fusion system over SD,4, and is tamely realized by G* =
PSU4(5) (and x;- is an isomorphism) by [2, Proposition 4.4]. O

The statements in the next proposition are very similar to results proven in [2], but except for
part (a) are not stated there explicitly. Their proof consists mostly of repeating those arguments.
Since many of the results referred to in [2, §2] require considering linking systems that are not
centric, they depend in a crucial way on [2, Lemma 1.17], which states that Out(L,) = Out(L)
whenever £, < £ are linking systems associated to the same fusion system 7 and Ob(L)) C Ob(L)
are both Aut(F)-invariant.

Proposition 5.3. Let F be a saturated fusion system over a finite p-group S.

(@) If F/Z(F) is tamely realized by the finite p’-reduced # €-group G, then F is tamely realized by
a finite p’-reduced # €-group G such that G/Z(G) = G.

(b) Assume F, S F is a characteristic subsystem over S, < S, with the property that 7" C F°. If
F, is tamely realized by a finite p’-reduced # €-group G, then F is tamely realized by a finite
p’-reduced F €-group G such that G, 4 G.

(c) If Fy & F is a characteristic subsystem of index prime to p, and F, is tamely realized by a finite
p'-reduced H €-group G, then F is tamely realized by a finite p’-reduced # €-group G such
that G, 4 G.

(d) If Fy S F is a characteristic subsystem of p-power index, F, is tamely realized by a finite p’'-
reduced K €-group G,, and Z(F) = 1, then F is tamely realized by a finite p’-reduced H € -
group G such that G, < G.

Proof.

(a) Assume that F/Z(F) is tamely realized by a finite p’-reduced & €-group G. Then Z(é) =
Z(F /Z(F)) by Proposition 4.11. So, by [2, Proposition 2.18], F is tamely realized by a finite
p’-reduced group G such that G/Z(G) = G. For each component C of G, the subgroup
CZ(G)/Z(G) = C/(Z(C) n Z(G)) is a component of G, and so, G isalso a F €-group.
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(b)

©
(d)

Assume F, 4 F is characteristic over S, 9 S with 7" C 7°. Let H,, be the set of all P € F*
such that P < S;;, and let H be the setof all P < Ssuch that PN S, € H,,. ForeachP € H,Pn
Sy € F€ by assumption, and hence, P € F¢. Thus, H C F¢, and Fé’ C H, since Fg’ C F°. So,
by [2, Lemma 1.30] and the existence of a centric linking system associated to F (Theorem 1.9),
there is a normal pair of linking systems £, < £ associated to 7, < F with object sets H, and
H. Furthermore,

CAuta(SO)(ﬁo) = 550(Cs(£0)) < 5SO(C5(P0)) < 550(Cs(so)) < 550(50) < AUtco(So) :

the equality and first inequality by Lemma 2.11(a), the third inequality since S, € F§" C F¢,
and the other two by definition. So, L, is centric in L.

Assume that 7, is tamely realized by a finite p’-reduced # €-group G, with S, € Syl p (Gy)-
By Proposition 4.11, we have Z(G,) = Z(F,). Then, L = E;O(GO) (the full subcategory of
Ego (Gy) with objects the set H,)) by the uniqueness of linking systems. By definition, the sets
of objects H, and H are invariant under the actions of Aut(F,)) and Aut(F), respectively. Also,
L, is Aut(L)-invariant, since F,, is characteristic in 7, and £, = 7~ (F,) by [2, Lemma 1.30]
(where 7 : L —> F is the structure functor for £). All hypotheses in [2, Proposition 2.16]
are thus satisfied, and so, F is tamely realized by some finite group G such that G, < G and
G/Gy = Aut,(Sy)/Aut, (Sp).

By the Frattini argument, G = Gy,Ng(S,), and hence,

N(S0)/Ng, (So) = G/Gy = Aut,(Sp)/Aut (Sp).

Since Aut,(S,) = N;(Sy)/OP(C;(Sy)) and similarly for £, this proves that OP(C;(Sy)) =
OP(CGO(SO)). Also,

Cg,(So) = Z(Sp) X OP(C (o)) and  Cg(Sy) = Z(Sp) X OP(C(Sy))

the last equality since S, € 75" € F¢. So Cp(S) = Cg,(Sy) < Gy In particular, since
[0,/(G),Gy] < 0,/(Gy) =1, this implies that 0,/(G) < C;(Sp) < Gy. S0 0,/(G) < 0,4(Gy) =
1, and hence G is p’-reduced.

If C is a component of G, then since G, < G, either C is a component of G, or [C,G,] = 1
(see [3, 31.4] or [5, Lemma A.12]). Since C;(G,) < C;(Sy) < Gy, and since all components of
G contained in G, are subnormal in G, and hence in Comp(G)), this shows that Comp(G) C
Comp(G), and hence, that G is also a % &-group.

By [5, Lemma 1.7.6(a)], we have Fj = F¢. (See also Definition 1.14(c).) Hence, (c) is a special
case of (b).

Assume that ;) has p-power index in 7 and Z(F) = 1. By [9, Proposition 3.8(b)], a subgroup
P < S, is F-quasi-centric if and only if it is F,-quasi-centric. Let H be the set of all P < S such
that P N S, is F-quasi-centric. Then H C 74 since overgroups of quasi-centric subgroups are
quasi-centric, and H 2 F'¢ by [2, Lemma 1.20(d)]. By Theorem 1.9, there is a unique linking
system L associated to 7 with Ob(£) = H, and by [9, Theorem 4.4], there is a unique linking
system L, < L associated to 7, with Ob(L,,) = (F,)?. Then L, < L: the condition on objects
(Definition 1.12(a)) holds by construction, and the invariance condition (1.12(b)) holds by the
uniqueness of L.
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By Lemma 2.11(c), there is an action of £L/L, on Cs(L,) such that CCs(T’o)(E /L) = Z(F),
where Z(F) = 1 by assumption. Also, £/L, = Aut;(Sy)/Aut, (Sy) is a p-group since ¥ has
p-power indexin F,so Cs(L,) = 1. Hence, Z(F,) = 1and CAutE(SO)(EO) = 1byLemma2.11(a),
and, in particular, L, is centric in L.

If in addition, 7, is characteristic in F, then each a € Aut(£) induces an element § =
be(a) € Aut(F) (Definition 2.7), and cg(F,) = F,, by assumption. Hence, a(L,) = L, by
Proposition 2.6 and the uniqueness of the linking systems in [9, Theorem 4.4]. Also, by
construction, Ob(L,)) and Ob(L) are invariant under the actions of Aut(F,) and Aut(F).

Assume that F,, is tamely realized by a finite p’-reduced # €-group G,. By Proposition 4.11,
we have Z(G,) = Z(F,). By Theorem 1.9 (the uniqueness of centric linking systems), £ =
Ego (Gy). The hypotheses of [2, Proposition 2.16] thus hold, and so, 7 is tamely realized by some
group G such that G, < G and G/G, = Aut;(S,)/Aut, (Sy). In particular, G/G, is a p-group,
so all components of G are in Gy, and Comp(G) = Comp(G,). Also, Op/(G) =0 p/(GO) =1,
and so, G is a p’-reduced # €-group. O

We are now ready to prove our main theorem. As explained in the introduction, Theorem 5.4,
as well as Theorems 5.5 and 5.6, have been formulated so that their proofs are independent of the
classification of finite simple groups.

Recall that by Lemma 4.2(b,c), the condition Comp(€) = Comp(F) in the statement of Theo-
rem 5.4 is satisfied whenever £ is centric in 7, and these two conditions are, in fact, equivalent if
O,(F) =1

Theorem 5.4. Let £ I F be a normal pair of fusion systems over T < S such that Comp(€) =
Comp(F). Assume that € is realized by a finite p’-reduced group all of whose components are known
quasi-simple groups. Then F is tamely realized by a finite p’-reduced group all of whose components
are known quasi-simple groups.

Proof. Let & be the set of all triples (F, £, H) such that

» & 4 F are saturated fusion systems over finite p-groups T < S such that Comp(€) = Comp(F);
* Hisa p/-reduced # €-group such that T € Syl p(H )and & = F;(H); and
* F is not tamely realized by any finite p’-reduced % €-group.

Assume that the theorem does not hold; that is, that & # @. Let (F,&,H) € & be such that
(IMor(€)|, |Mor(F)|) € N? is the smallest possible under the lexicographic ordering. In other
words, there are no triples (F*, £*, H*) in § where [Mor(£*)| < [Mor(€)|; and among those where
[Mor(£*)| = |Mor(&)|, there are none where |Mor(F*)| < |Mor(F)|.

We show in Step 1 that O,(F) = 1, and that H can be chosen to be a product of known finite
simple groups. We then show in Step 2 that the components of F are all normal in 7, and reduce
this to a contradiction in Step 3.

Step 1: Let L,, ..., L; be the components of H, and set U; = T N L; € Syl (L). Set D; = Fy; (L;)
and C; = OP'(D,) for each i. Assume that the L; are ordered so that for some m, C; is quasi-simple
if and only if i < m. We are thus in the situation of Proposition 4.9, with H, T, U;, and D; in the
roles of G, S, T;, and &;. So, Comp(F) = Comp(€) = {C,, ..., C,,,} by that proposition.

Set U =U, ---U,, and & = Fy (L, - L,;) < €. By Proposition 4.12(a), there is a unique min-
imal subsystem C* < &, over U containing OP/(E'O) that is realized by a p’-reduced # €-group,
and C* is realized by a central product H,, of known finite p’-reduced quasi-simple groups. By
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Proposition 4.12(b), C* is characteristic in £ and hence normal in 7. Hence, (F,C*,H;) € &, so
& = C* by the minimality of |[Mor(£)|, and we can take H = H,,. In particular, m = k,and H isa
central product of known finite p’-reduced quasi-simple groups.

Set Q = 0,(F), and set S, = N;HH(Q)(Q) =QC4(Q) and F, = NSH(Q)(Q). Thus, 7, is a fusion
subsystem over S,,. Since Q" = {Q}, the subgroup Q is fully Inn(Q)-normalized in 7, and hence,
F, is saturated (see Definition I.5.1 and Theorem 1.5.5 in [5]). Also, F, is weakly normal in F by
[2, Proposition 1.25(c)], and is normal since C4(S,) < S, (the extension condition holds). For each
a € Aut(F), a(Q) = Q, so ¢, (F,) = F,, and hence, F, is characteristic in 7.

If P e Fy’, then P > Q since Q 9 F (see [5, Proposition 1.4.5(a=b)]). So, for each P* € PF,
P* > Q, and C4(P*) £ C54(Q) £ Sy. Thus, Cg(P*) = CSO(P*) < P* since P* € Pg, so P € F¢. Thus,
Fgr C Fe.

By Proposition 5.3(b) and since F is not tamely realized by any p’-reduced # %-group, the
subsystem F, is not tamely realized by any p’-reduced % €-group. Also, & N;fl n(Q)(Q) =F, by
Lemma 4.14 (with &€ in the role of C*). Thus, (F,, £, H) € &, and by the minimality assumption,
we have F = F. So Aut(Q) = Inn(Q).

Let 1 =Z,(Q) < Z;(Q) £ Z,(Q) £ -- £ Q be the upper central series of Q = Op(F). Thus,
for each i, Z;,1(Q)/Z;(Q) = Z(Q/Z,(Q)) = Z(F /Z;(Q)) since Autr(Q) = Inn(Q). By Proposi-
tion 5.3(a), if ¥/Z;,1(Q) is tamely realized by a finite p’-reduced # €-group G,,,, then F/Z;(Q)
is tamely realized by a finite p’-reduced # €-group G;. Since F is not tamely realized by any
p’-reduced F €-group by assumption, we conclude that 7/Q is not tamely realized by any
p’-reduced # €-group either.

For each P,R < C4(Q) and each ¢ € Homy(P,R), the morphism ¢ extends to some ¢ €
Homz(PQ,RQ) since Q 2 F, and ¢|, = ¢ |, for some g € Q since Aut;(Q) = Inn(Q). Hence,
c;lfﬂ p = @ since ¢ |¢ (o) = Id. Thus, each morphism in 7 between subgroups of Cg(Q) lies in
Cr(Q),and so, F/Q = Cr(Q)/Z(Q) by Lemma 1.22, applied with Cr(Q) in the role of £.

Set Z = Z(Q). We have now shown that C(Q)/Z is not realized by any p’-reduced # €-group.
Also, £ 4 C£(Q) by Lemma 4.14 (applied with £ in the role of C*), so Z€ < Cr(Q) by Lemma 1.21,
and Z&€/Z 4 C(Q)/Z by Lemma 1.18. By Lemma 1.22, ZE/Z =~ £/(Z N T), where £/(ZNT) is
realized by H/(Z N T) (see [15, Theorem 5.20]). So, Z€/Z is realized by a p’-reduced # €-group
Hy~H/(ZNT).Also,

Comp(Z€/Z2)=1{zC,/Z,...,ZC\ /Z} = Comp(Cr(Q)/Z)

by Lemma 4.3.So (Cr(Q)/Z,ZE/Z,H,)) € &, and by the minimality assumption on (F, &, H), we
have &€ 2 Z&/Z and F = Cr(Q)/Z(Q), and thus, Op(F) =Q=1.
To summarize, we have reduced to the case where (F, £, H) € § satisfies:

OP(F) = Op(é') =1,& =Fr(H)where H =L, X --- X L;, and each L;
is a known finite simple group. Also, Comp(F) = Comp(E) = {Cy, ..., C} 5.1
where T = U, X -+ X Uy, U; € Syl (Ly), and C; = OF' (Fy, (L,)).

Step 2: Let ' < F be the characteristic subsystem constructed in Proposition 4.15: a subsystem
over N = ﬂle N(U;) normal in F and containing each component C; as a normal subsystem. In
particular, for each « € Aut\(T), a(U;) = U; forall 1 <i < k.

For each P € N¢and each Q € P¥,Q € N¢since N < F,and so Q > Z(N). Foreach 1 <i <
k, we have U; 4 N by definition of N, and hence Q N U; # 1. Each x € C¢(Q) centralizes each
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Q N U, and hence normalizes each subgroup U, (recall that each element of S permutes the U;). So,
Cs(Q) = Cy(Q) £ Q,and P € F¢. Thus, N¢ C F¢. By Proposition 5.3(b) and since F is not tamely
realized by a p’-reduced # €-group, N is not tamely realized by a p’-reduced # €-group either.

Now, £ is weakly normal in N by [15, Proposition 8.17] and since £ < F and N < F. By the
definition of A" in Proposition 4.15, if T < P < N, and a € Auty(P) is such that a|; € Aut - (T),
then a € Aut ,-(P). So, the extension condition for & < N follows from that for £ < F, and hence,
EQN.

Thus, (N, &,H) € &,and F = N by the minimality assumption. In other words, (F, £,H) € &
satisfies:

(51) holds,and C; < F foreach 1 < i < k. (5.2)

Step 3: Set C = E(F) = C; X -+ X C;.. By Proposition 4.13 (applied with H and £ in the roles
of G and ), there is a unique minimal normal fusion subsystem C* = C} X --- X C < € con-
taining C that is realized by a product of known finite simple groups. Furthermore (by the same
proposition), C = OP,(C *), C* is centric and characteristic in £, and for each i,

* Ci < Ci* < FUi(Li)’
. ¢;=0P(C),and
* (' = Fy,(H]) where H is a known finite simple group.

Then, C* A Fr(H) =& < F, and so, C* < F by Lemma 2.4 and since C* is characteristic in
E. Set H* =H;‘ X oo XHZ, so that C* = Fr(H*). Thus, (F,C*,H*) € &, and & = C* by the
minimality assumption.

Let Aut’(C*) < Aut(C*) be the subgroup of all automorphisms that send each U; to itself. Then
Aut,(T) < Aut’(C*) by (5.2) and since C* < F. Each factor C; isafull subcategory of C* (contains
all morphisms in C* between subgroups of U;), and hence each a € Aut’(C*) sends each C' to
itself. So,

k
Autz(T)/Aute.(T) < Aut’(C*)/Aute.(T) = [ ] out(c)).
i=1

By assumption, each C;" is realized by a known finite simple group, and hence is tamely real-
ized by a known finite simple group by Proposition 5.2. Since Out(K) is solvable for each known
finite simple group K (see [22, Theorem 7.1.1(a)]), the groups Out(C;") are also solvable. So,
Autp(T)/Aut.«(T) is solvable.

The hypotheses of [35, Theorem 5(b)] thus hold for the pair C* < F. By that theorem, there is
a sequence C* = F, d F; & --- & F,, = F of saturated fusion subsystems, for some m > 0, such
that

(i) foreach0 < j < m, F; is normal of p-power index or index prime to pin ¥, and C* 4 F; &
F; and

(ii) foreach1l < j<mandeacha € Aut(Fj) with ¢, (C*) = C*, we have ca(Fj/) =Fy forall 0
Jj <.

Recall that Comp(F) = {C;,...,C}. Foreach0 < j <m —1, Comp(Fj) C Comp(F) since F; <

< F, and the opposite inclusion holds since C; < C I C* & Fj for each i. Hence, C is character-

istic in ;. For each a € Aut(F)), alr € Aut(C) since C is characteristic, and Aut(C) = Aut(C*)
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by Proposition 4.12(a). So, ¢,(C*) = C*, and hence co(Fyp) =Fy forall 0 < j' < j by condition
(ii) above.

In particular, this shows that Fjis characteristic in Fin for each j. Also, Z (Fj) <0 p(Fj) =1
for each j by Lemma 2.3(b) and since O p(F) =1and 7; 94 F. So, by Proposition 5.3(c,d), and
since F; has index prime to p or p-power index in ¥, and Z(F;) = 1, if F; is tamely realized by
a finite p’-reduced # €-group G - then F; ., is tamely realized by a finite p’-reduced # €-group
Gjy > G

Foreach1 <i <k, C; is tamely realized by some known finite simple group by Proposition 5.2,
and so, C* = F, is tamely realized by a product of known finite simple groups by Proposition 3.7(c).
Hence, F; is tamely realized by a p’-reduced # €-group for each 1 < i < m. This contradicts our
assumption on ¥ = F,,, and we conclude that § = @. O

Note that Theorem A is just Theorem 5.4 without mentioning tameness.
‘We now list some special cases of Theorem 5.4.

Theorem 5.5. Let F be a saturated fusion system over a finite p-group S. If all components of F are
realized by known finite quasi-simple groups, then F is tamely realized by a finite p’-reduced group
all of whose components are known quasi-simple groups.

Proof. This is the special case of Theorem 5.4 where £ is the generalized Fitting subsystem of F.
Note that £ is realizable since it is the central product of its components (which are realizable by
assumption) and a p-group. O

Our third theorem is the special case of Theorem 5.4 where £ = F.

Theorem 5.6. Let p be a prime, and let F be a fusion system over a finite p-group that is realized by
a finite p’-reduced group all of whose components are known quasi-simple groups. Then F is tamely
realized by a finite p’-reduced group all of whose components are known quasi-simple groups.
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