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Chevalley p-local finite groups
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We describe the spaces of homotopy fixed points of unstable Adams operations
acting on p—compact groups and also of unstable Adams operations twisted with a
finite order automorphism of the p—compact group. We obtain new exotic p—local
finite groups.

55R35, 55P15, 55P10; 55R40, 20D20

1 Introduction

The main purpose of this paper is the description of the structure of the spaces of
homotopy fixed points of unstable Adams operations 7 acting on p—compact groups
and also of unstable Adams operations twisted by automorphisms of p—compact groups

T,

In the classical case, for a prime number p, a prime power ¢, prime to p, a compact
connected Lie group G, and a finite order automorphism 7 of G, Friedlander showed
that there is a homotopy pullback diagram

f

A A
B"G(q)) BG)
i |a

A (1,797) A A

BG) BG) x BG),

where "G(q) is the twisted Chevalley group over I, of type G, A is the diagonal map,
and 97 an unstable Adams operation of exponent g [33, 34]. Here and throughout,
p—completion is understood in the sense of Bousfield—Kan [11].

The concept of a p—compact group was introduced by Dwyer and Wilkerson in [26] as
a p-local homotopy theoretic analogue of a compact Lie group. A p—compact group
is a triple (X, BX, e), where H*(X;F,) is finite, BX is a pointed p—complete space,
and e : X — (BX is a homotopy equivalence. We will usually refer to a p—compact
group simply as X. BX is then understood as its classifying space, a concrete loop
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space structure imposed in the underlying space X. If G is a compact connected Lie
group, then the p—completion of its classifying space BG;\ is a p—compact group. A
p—compact group that cannot be obtained in this way is called exotic. We postpone till
Section 2 a more detailed description of the theory of p—compact groups.

Unstable Adams operations ¢, for any p—adic unit ¢, can be defined for any connected
p—compact group X (see Section 2). Following the above pattern, if 7¢? a twisted
Adams operation, then the space B "X(q) is defined by the homotopy pullback square

B7X(q) BX D

f
g |2
1,799

BX —— = BX X BX.

Thus if X is obtained as the p—completion of a compact Lie group G, and 7 is a
finite order automorphism of G, B7X(gq) is homotopy equivalent to the p—completed
classifying space of the twisted Chevalley group "G(q).

The concept of p—local finite group has been recently introduced in [14] as algebraic
objects that are modeled on the p—local structure of finite groups and as such they
have classifying spaces which are p—complete spaces. In turn, the classifying space
of a p—local finite group determines its algebraic structure. Every finite group G
determines a p—local finite group at a prime p with classifying space BGI/,\. Like in
the case of p—compact groups, p—local finite groups that do not arise in this way for
any finite group G are called exotic. We refer to Section 3 for the precise definition
and main properties of p—local finite groups. Our main result shows that B7X(g) is the
classifying space of a p—local finite group. We will also determine the cases in which
they are exotic p—local finite groups.

Theorem A Let p be an odd prime. If X is a I-connected p—compact group, q is a
prime power, prime to p, and 7 is an automorphism of X of finite order prime to p,
then the space of homotopy fixed points of BX by the action of T, denoted B"X(q),
is the classifying space of a p—local finite group.

By analogy with the classical case, we will call the p—local finite group X(g) ("X(q))
with classifying space BX(q) (B"X(q)) obtained in Theorem A a (twisted) Chevalley
p—local finite group of type X .

Our arguments concentrate on the exotic p—compact groups at odd primes, and break
into two separate steps. One deals with actions of finite groups of order not divisible
by p on p—compact groups and the results obtained have an independent interest. The
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Chevalley p—local finite groups 1003

other step deals with the action of unstable Adams operations ¢ where ¢ = 1 mod p
and it is the one leading to the new exotic examples of p—local finite groups.

Group actions will be understood in the weak sense of proxy actions; that is, we will
say that an action of a group G on a space M is a fibration M = M), ™ BG [26]. The
total space M), is referred to as the homotopy quotient space. The space of homotopy
fixed points is the space

M"S = {BG 5 My | pros = idpg}

of sections. Two actions will be considered equivalent if they are defined by fibre
homotopy equivalent fibrations. If M is a G-space in the usual sense then Mg
is the Borel construction and M"C is homeomorphic to the space Mapg(EG, M) of
equivariant maps where EG is a contractible free G—space. When we specialize to
p—compact groups X, an outer action of G is a homomorphism p: G — Out(X),
where Out(X) is the group of outer automorphisms of the p—compact group X, in other
words, unpointed homotopy classes of self-equivalences of BX. By obstruction theory,
it turns out that if G has finite order prime to p, then an outer action on a connected
p—compact group X determines a unique action, up to equivalence, and the space of
homotopy fixed points is again a connected p—compact group.

The space BX(gq) defined by pullback square (1) can also be viewed as a homotopy
fixed point space BX"{™¥") for the action of the infinite cyclic group generated by
71 € Out(X). More details are given in Section 6.

Theorem B Let X be a connected p—compact group. If G is a finite group of order
prime to p and p: G — Out(X) an outer action, then
(1) p lifts to a unique action of G on X, up to equivalence.

(2) X"Y is a connected p—compact group with H*(BX"%; Q,) = SIQH*(BX; Q,)c],
the symmetric algebra generated on the coinvariants QH*(BX; Q)¢ .

(3) (Harper splitting) X"¢ — X is a p—compact group monomorphism, there is a
homotopy equivalence
X ~ X"0 x x/x"°
and X /X"C is an H—space.

(4) Assume that p is odd. If H*(BX;F,) is a polynomial ring, then H*(BX"S, F,)
is also a polynomial ring.

Here and throughout, H*(—; Q,) stands for H*(—; Z,) ® Q, and QH*(BX; Q) denotes
the module of the indecomposables in H*(BX;Q),).
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Some interesting cases to which Theorem B applies are F4 at the prime 3 and Eg at the
prime 5, where the p—compact groups X», respectively, Xs; split off (see Section 2
for notation). In the first case, Friedlander’s exceptional isogeny ¢ of F4 at the prime
3 gives rise to an automorphism of order 2 and the homotopy fixed point p-compact
group F4"¢>
2 Dickson algebra H*(BXj2;F3) =2 Fs[x12,x16] (subscripts of cohomology classes
indicate degrees) over IF3. This case was already considered in our previous work [16].
In the second case, a cyclic group of order 4 generated by the unstable Adams operation
Y, i = \/—1, acts on Eg. The homotopy fixed point p—compact group Elgc“ is the
p—compact group X3; corresponding to the reflection group number 31 on the Clark—
Ewing list, and its mod 5 cohomology ring is H*(BX31;Fs) = Fs[x16, X24, X40, X48]
(see A.12).

It turns out that X, and X3; are the two exotic p—compact groups originally con-
structed by Zabrodsky [71], and later included in the Aguadé family [1]. Zabrodsky
used the actions of these same automorphisms, ¢ and 7', on the homotopy groups of
BF4 and BEjg, respectively, and realized the invariant subgroups as homotopy groups
of new spaces, BX|, and BXj3;.

is the p—compact group X, = DI, whose cohomology realizes the rank

The corresponding splittings are Fy ~ DI, x F4/DI, at the prime 3, first discovered
by Harper [37], and Eg ~ X3; X Eg /X3 at the prime 5, that was obtained by Wilkerson
[68]. Other examples appear in 5.4.

Our second step deals with the action of unstable Adams operations ¢ of exponent
g = 1 mod p, g # 1, on connected p—compact groups X. These automorphism have
infinite order and the effect now is opposite in some sense to the case of finite groups
of order prime to p. The spaces of homotopy fixed points BX(q) have the same p-rank
as the original p—compact groups X, but the maximal tori 7" ~ ((S 1)”)9 are cut down
to finite maximal tori 7} = (Z/ A vp(1 — @), keeping the same Weyl group
(see 7.5,7.6).

We restrict our calculations in this part to p—compact groups for which the mod p
cohomology ring H*(BX;[F,) is a polynomial ring. For simplicity, we will refer to
them as polynomial p—compact groups. At odd primes, these include all irreducible
exotic examples and will therefore suffice to our purposes.

Theorem C Let g be a p—adic unit such that ¢ = 1 modp, g # 1. If X is an
irreducible 1-connected polynomial p—compact group, then BX(q) is the classitying
space of a p—local finite group.

The proofis based on the classification theorem for p—compact groups at odd primes [7],
see Section 2. The irreducible polynomial p—compact groups are
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(1) BSU (n)[/)\ (family 1 in the Clark—Ewing list),
(2) the generalized Grassmannians (family 2a in the Clark—Ewing list),

(3) the Clark-Ewing p—compact groups (p—compact groups with Weyl group of
order prime to p), and

(4) the Aguadé family X;,, Xp9, X371, X34 atprimes p = 3, 5, 5, and 7, respectively,
and of rank p — 1. (The subscripts indicate the number of the Weyl group in the
Clark—Ewing list.)

Theorem C is proved by considering separately these four cases in 11.1, 11.4, 9.8, and
10.3, respectively.

In cases (1) and (3) we always obtain that BX(g) is the p—completed classifying space
of a finite group. The other two families contain the new exotic examples of p—local
finite groups.

A complete description of the structure of the p-local finite groups Xi(g), i =
12,29,31,34, is obtained in Section 10. Fix ¢ = 1 mod p and let »3(1 + 2*'*+1) =
v3(1 — q). For Xj2(q), p = 3, we obtain that BXj2(q) ~ B(F4(2*"1))} (Exam-
ple 10.7). For X31(g), p = 5, it turns out that if vs(1 4 2*"*2) = vs5(1 — ¢), then
BX31(q) ~ BE8(22’"+1)§\ (Example 10.8). In particular, we can obtain the p—compact
groups X, and X3 as telescopes of a sequence of p—completed classifying spaces of
finite groups (see 10.9):

BX; ~ hocolim B(*F4(2*"))} ,
m
BX3; ~ hocolim BEg(2>")% .
m
The cases BX79(q) and BX34(g) at primes 5 and 7, respectively, are classifying spaces
of exotic p—local finite groups (Example 10.6).

Family 2a in the Clark—Ewing list consists of the reflection groups G(m, r,n) with
rlm|(p — 1) generated in GL(n,Z,) by the permutation matrices together with the
diagonal matrices diag(a;,ay,...,a,) with ¢/ = 1 and (aja; .. .an)’"/’ =1. We
denote X(m, r,n) the p—compact group of rank n with Weyl group G(m,r,n). We
also prove that BX(m, r, n)(q) is the classifying space of an exotic p—local finite group
provided n > p and r > 2 (Proposition 11.5).

Theorem D For ¢ = 1 mod p, g # 1, the following are classifying spaces of exotic
p—local finite groups:

e BXjy9(q) and BX34(q) at primes p = 5 and p = 7, respectively, and
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e BX(m,r,n)(g) forn>p andr > 2.

Our next theorem provides the necessary arguments in order to deduce the general case
of Theorem A from the two steps.

Theorem E Let p be an odd prime and X a 1-connected p—compact group, T an
automorphism of X of order prime to p, and ¢ an unstable Adams operation of
exponent a p—adic unit.

(1) Ifg=1modp, g # 1, then B'X(q) ~ BX"7)(g).

(2) If 4 is another p—adic unit such that g and ¢’ have the same multiplicative order
mod p and such that v,(1 — ¢") = v,(1 — ¢'"), where r is the order of q and ¢'
mod p, then BX(q) ~ BX(q').

Since we can decompose a p—adic unit ¢ as ¢ = (go where ¢ is a (p — 1)st root of
unity and go = 1 mod p, part (1) of the above theorem will reduce the question of
computing BX(g) to the case where ¢ = 1 mod p which turns out to be easier to handle
in abstract calculations and concrete examples. The second part of the theorem tells
us that BX(g) does only depend on the order r of ¢ mod p and the p—adic valuation
vp(1 —g"), so we can change the exact value of g at our convenience if we keep those
parameters fixed.

Part (2) of Theorem E also explains the often observed fact that finite Chevalley groups

G(g) and G(q') have same cohomology ring or identical p—local structure when ¢ and
/ : : ro— I r __ /T

q are prime powers, with ¢" = ¢ = 1 mod p and v,(1 — ¢") = v,(1 — ¢""), for some

r, 1 <r <p—1. We plan to investigate this phenomenon closer in a future paper.

Proof of Theorem A Consider B7X(g) as the homotopy fixed point space BX*{7¥*)
for the action on BX of the group generated by 79.

If we write ¢ = (qo, where ( is a (p — 1)th root of unity and g9 = 1 mod p, qo # 1,
so that 79 = 71S1)%, then we have

BX(q) = BX"™") ~ BXMTV%) (g9,
according to Theorem E.

XM7%) is a 1—connected p—compact group by Theorem B, hence it splits as a product
of irreducible 1-connected p—compact groups [27, 57]

BX"TY) ~ BX| x .- x BX,
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and then, also, BXh<W<>(qo) ~ BXi(qo) X - -- X BXs(qp). It remains to show that each
BXi(qo) is the classifying space of a p—local finite group.

If X; is polynomial, Theorem C applies and BX;(qo) is the classifying space of a p—local
finite group.

If X; is the p—completion of a compact Lie group G, then we can find a prime number g,
with ¢, = go = 1 mod p and v,(1 — go) = v,(1 — g;), and then BX;(qo) ~ BX;(q)
by Theorem E (cf. Remark 6.6), and this last is the p—completed classifying space of
a finite Chevalley group of type G, by the classical result of Friedlander [34].

By the classification theorem of p—compact groups at odd primes [7] (see Section 2),
every irreducible, simply-connected p—compact group is either polynomial or the p—
completion of a compact Lie group, hence the proof is complete. a

Many authors have been interested in the cohomology rings of finite Chevalley groups
at primes different from the defining characteristic. Quillen [61, Theorem 4], shows
that for an odd prime p and a prime power g prime to p, if m is the order of ¢ mod p
and ¢ = v,(1 — ¢™), then

H*(BGL(n7Q)9Fp) = P[Xl, .. ,X[%]] ® E[y17 o 7y[)”;]]
where deg(x;) = 2mi and deg(y;) = 2mi — 1.

Fiedorowicz and Priddy, [30, 31] computed the cohomology rings of Chevalley groups
of classical type. Kleinerman [39] has computed the cohomology of Chevalley groups
of exceptional Lie type at large primes. M. Mimura, M. Tezuka, and S. Tsukuda [44]
have recently approached the cohomology rings of finite Chevalley groups at torsion
primes, by newly constructing a spectral sequence of Eilenberg—Moore type.

The result that we include here is essentially due to L. Smith, at least part (1) already
appears in [64]. We include it here for the convenience of the reader, as it is an
important step in our arguments.

Theorem F Let X be a polynomial p—compact group with
H*(BX;F,) = Plx1, ..., x,]
and g a p—adic unit with ¢ = 1 mod p, g # 1. Then:

(1) H*(BX(q);F,) = Plx1,...,x,] ® E[y1,...,yn] with higher Bockstein relations
By i) = xi, i = vp,(1 — ¢%), 2d; = degx;, 2d; — 1 = degy;, and

(2) the inclusion of the maximal finite torus i: BT} — BX(q), { = v,(1 — ¢q),
induces a monomorphism i* : H*(BX(q);F,) — H*(BT};F,)"*.
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The inclusion i*: H*(BX(q);F,) — H*(BT}; F,,)WX is an isomorphism in many cases.
This is checked by direct calculation of the relevant invariant rings. In cases in which
X is a Clark—Ewing p—compact group or a generalized Grassmannian, i* is an isomor-
phism (see Section 9). It is also an isomorphism in the case of the Aguadé p—compact
groups X;(¢), i = 29,31, 34, however, i* is not an epimorphism in case of Xj2(g), for
which we obtain H*(BX12(q); F3) & P[x12, x16]®E[y11, y15], while H*(BT?; F3)"xi2 =
P[x12,x16] ® E[y10, Y11, Y151/ (V11315 — X16Y10, Y1011, Y10y15) (see Example 9.7).

We have restricted our calculations at odd primes, although some of the results are also
valid at the prime two. The classification of 2—compact groups [54, 8] implies that
the Dwyer—Wilkerson 2—compact group DIy is the only irreducible exotic 2—compact
group. The Chevalley 2—local finite groups of type DI4, named BSol(g), for odd prime
powers ¢, have been first considered by Benson [9] and then by Levi and Oliver [40]
who proved that they are classifying spaces of 2—local finite groups and their 2—local
structure is in fact a system of fusion relations studied by Solomon [65] and defined
over the Sylow 2—subgroup of Spin(7, q).

The paper is organized as follows. In Sections 2 and 3 we review the definitions
and main results from the theory of p—compact groups and p-local finite groups. In
Section 4 we further develop some aspects of the theory of p—local finite groups con-
cerning the homotopy characterization of classifying spaces of p—local finite groups.
The main results in Sections 10 and 11 stating that BX(g) is the classifying space of a
p-local finite group if X is a p—compact group in the Aguadé family or a generalized
Grassmannian are based in this homotopy characterization of classifying spaces.

Section 5 deals with what we have called first step. There is a discussion of different
ways in which we can understand an action of a group on a p—compact group and it
contains the proof of Theorem B. This Theorem states that a homotopy fixed point
space X"C is again a p—compact group if X was a connected p—compact group and G
is a finite group of order prime to p. Identifying X"¢ with a p—compact group in the
classification list requires a close look to the restriction of the action to the maximal
torus normalizer. This will be considered in Appendix A. In particular, Corollary A.6
contains a criterion for the recognition of the homotopy fixed point p—compact group by
action of unstable Adams operations of finite order. This is applied to many examples
through the Clark—Ewing list at the end of this appendix, A.7 through A.12.

Section 6 is devoted to the proof of Theorem E. It reduces the analysis of the structure
of a general homotopy fixed point space B 7X(q) to first analyzing a homotopy fixed
point p—compact group and then a homotopy fixed point space by the action of an
unstable Adams operation Y7 of exponent ¢’ = 1 mod p. This allows us to complete
the argument for the proof of Theorem A from steps one and two.
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The second step starts in Sections 7, 8, and 9, where we analyze the general subgroup
structure of spaces BX(q), where ¢ = 1 mod p, g # 1, and their cohomological
properties. Theorem F is proved in Section 8. Some technical results concerning
the Bousfield—Kan spectral sequence for the cohomology of a homotopy colimit are
postponed to Appendix B.

Finally, sections 10 and 11, are devoted to the more specific properties of the p—compact
groups in the Aguadé family and the generalized Grassmannians, respectively. With
them, we complete the proof of theorems C and D.

Acknowledgments. We would like to thank Bob Oliver and Ran Levi for many
helpful discussions. We are particularly indebted with them for the discussions during
our stay at the Max-Plank Institute in Bonn in the spring of 2001, about the material
presented in Section 4. We are also grateful to Bob Oliver for bringing to our attention
that the 3-local structure of DI, could be related to that of the twisted Chevalley
groups of type Fj4, after our previous work on DI, [16]. This was one of our original
motivations for the project that led to the present article. The numerous suggestions of
the referee significantly improved the presentation of this paper, and we are thankful
for his or her thorough read of the manuscript.

We would also like to thank the Departments of Mathematics of the Kgbenhavns
Universitet and of the Universitat Autdonoma de Barcelona, the Centre de Recerca
Matematica in Barcelona, and the Max-Planck Institut in Bonn for their hospitality in
helping the two authors get together at various stages of the project, and to the European
Modern Homotopy Theory Network for helping to finance several of these visits.

Acknowledgments of financial support. C. Broto is partially supported by FEDER/
MEC grant MTM2004-06686. Both authors have been partially supported by the EU
grant nr. HPRN-CT-1999-00119.

2 p—compact groups

A p—compact group is a triple (X, BX, e) where X is a space, BX is a p—complete con-
nected pointed space, H*(X;[F,) is finite, and e: X — 2BX is a homotopy equivalence
from X to the space 2BX of based loops in BX.

Throughout the paper, and when no confusion is possible, we will simply denote a
p—compact group (X,BX,e) as X. We shall say that X is connected if my(X) is a

Algebraic & Geometric Topology XX (20XX)



1010 Carles Broto and Jesper M. Mgller

point and simply connected if also m(X) is trivial. These spaces were introduced by
Dwyer and Wilkerson in 1994 as p—local homotopy theoretic versions of compact Lie
groups [26]. We present here a short summary of the theory of p—compact groups and
refer to the surveys [48, 58, 23] for more information. Examples of p—compact groups
include all simply connected p—complete spaces with polynomial FF,—cohomology,
and the p—completed classifying spaces of all compact Lie groups G such that 7m(G)
is a finite p—group. The p—compact group obtained in this way from a torus is called
a p—compact torus. Thus a p—compact torus BT of rank 7 is simply a K(Z,,2)" and
we have that Hy(BT;Zp) = Z, is a finitely generated free Z,-module. A maximal
torus of a p—compact group BX is a pointed map BT — BX, satisfying an injectivity
and a maximality condition, of a p—compact torus into BX. The Weyl group W of
the maximal torus BT — BX, which we may assume is a fibration, is the monoid of
fibre homotopy classes BT — BT over BX. It turns out that all elements of W are
invertible so that W is actually a group. Equivalently, the Weyl group is the group of
components of the Weyl space which is the associative topological monoid of self-maps
of BT over BX. The Borel construction, BN, for the action of the Weyl space on BT
is called the normalizer of the maximal torus. The monomorphism BT — BX extends
to a monomorphism BN — BX [26, 9.2,9.8].

Theorem 2.1 (Existence of maximal tori [26, 9.7]) Any p—compact group X admits
a maximal torus BTx — BX and a Weyl group Wx. When X is connected, the Weyl
group Wx acts faithfully on the finitely generated free Z,—module Lx = Hy(BTx; Z,),
the pair (Wx, Lx) is a Z,—reflection group, and

H*(BX;Z,) © Q — (H*(BTx: Z,) ® Q)"

is an isomorphism.

This theorem introduces a relationship between p—compact groups and Z,—reflection
groups as defined below.

An automorphism of a finitely generated free Z,—module is a reflection if it acts as
the identity on a hyperplane. A Z,-reflection group is a pair (W,L) where L is a
finitely generated free Z,-module and W a subgroup of Autz,(L) = GL(L) that is
generated by the reflections that it contains. A morphism between two Z,-reflection
groups, (W1, L1) and (W, Ly), is a pair («, f) consisting of a group homomorphism
a: Wi — W, and an alinear Z,—module homomorphism 6: L; — L, [53, 4.1]. The
Zy—reflection group (W, L) is irreducible if L ®z, Q) is an irreducible Q, W-module.
Using the Shephard-Todd classification of irreducible complex reflection groups [63],
Clark and Ewing [19] produced the list of all finite irreducible Z,-reflection groups
[53, 11.18]. At odd primes the list is as follows:
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e Family 1. (2,41, S(ZZH)) where the symmetric group X,4; permutes the n 4 1
factors of Z2t! and S(Z2HY) = {(x1, ..., x041) € Z0T | Yo x; = 0}

e Family 2a. Let » > 1 and m > 2 natural numbers such that r | m | p — 1. The
cyclic group C,, of order m is contained in the group of units ZPX for Z,.
The Z,-reflection group (G(m, r,n),Z,), n > 2, is the group generated by the
subgroup X, of all permutations of the n coordinates and the subgroup

A(m,r,n) = {diag(01,...,0,) € C% | (01 ---0,)"" =1}
consisting of diagonal matrices.
e Family 2b. (Dzm,Zf,), m > 2, when m = X1lmodp orm =3,6if p =3 is
. . 0 -1
the dihedral group of order 2m, generated by matrices (1 9461 ) and ((1) (1)),
where 0 is a primitive mth root of unity. It is also usual to call them G(m, m,2),
following the notation of Shephard-Todd [63].

e Family 3. (Cyu,Zp,) when m | p — 1 and C,, is the order m cyclic subgroup of Zy .
e Sporadic groups. 34 sporadic Z,-reflection groups G;, 4 < i < 37.

See [6] for a more detailed description of this list of all irreducible Z,-reflection
groups.

The automorphism group of the Z,—reflection group (W, L) is isomorphic to NG, (W).
There is an obvious homomorphism from this group to the group of trace preserving
automorphisms of W. The kernel is the group Autz,w(L) of automorphisms of the
Z,W-module L. Using this we get an exact sequence of groups [53, 3.14-16]

1 — Autz,w(L)/Z(W) — Nerwy(W)/W — Outy(W) 2)
where the group to the right is the group
Outy (W) = {a € Out(W) | Vw € W: tr(a(w)) = tr(w)}

of trace preserving outer automorphisms of W < GL(L). Observe that there is a group
homomorphism
V: Z, — Noray(W)/W

that takes the p—adic unit u € Z, to scalar multiplication, ¢": L — L, by u on L.
The kernel of ¢ is the finite subgroup Z; NZW) of W < GL(L).

If (W,L) is irreducible, Autz,w(L) = ZPX consists only of the scalar matrices "
according to Schur’s lemma so that (2) takes the form

1= 25 JZ(W) L Neray(W)/W — Oute(W). 3)
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Moreover, an explicit case-by-case computation shows that the group Outy(W) is
trivial for all irreducible Z,—reflection groups except for a few of the dihedral groups
G(m,m,2) and for the sporadic Z,-reflection groups Gs, G7, and Gog = W(F3), and
in these cases it consists of elements that lift to finite order elements 7 in Ngr)(W)/W.
We conclude that if (W, L) is irreducible then Ngr ) (W)/W consists only of elements
of the form 7" where 7 has finite order.

Theorem 2.2 (Classification of p—compact groups at odd primes [53,7]) Let p be an
odd prime. The assignment X ~» (Wx, Lx) gives a bijective correspondence between
isomorphism classes of connected p—compact groups X and isomorphism classes of
Zp,—reflection groups (W, L). We have

Out(X) = NGL(L)(W)/W

where (W, L) is the Z,-reflection group assigned to the connected p—compact group
X.

The irreducible p—compact groups, which are the p—compact groups corresponding to
the irreducible Z,-reflection groups of the Clark—-Ewing classification table [19] (see
also [24, 1.5]) are

e Family 1. BSU(n + 1)9 (the special unitary groups)
e Family 2a. BX(m,r,n), (m,r,n) # (m,m,2), (the generalized Grassmannians)
e Family 2b. BX(m,m,2), m > 3
e Family 3. BS’;’"_I (the Sullivan spheres)
e Sporadic groups. 34 sporadic p—compact groups BX;, 4 < i < 37.
Among the generalized Grassmannians we find
BX(2,1,n) = BSO(2n + 1)1/,\, BX(2,2,n) = BSO(2n)£,

in family 2b
BX(3,3,2) = BPU(3)I/,\, BX(6,6,2) = (BGZ)IQ ,

and among the sporadic cases we find
BXys = (BFy),, BXass = (BEg),, BXss = (BE7),, BXs7 = (BEy), .

Any simply connected p—compact group splits as a product of irreducible p—compact
groups [27, 57], and, in general, any connected p—compact group is locally isomorphic
to the product of finitely many irreducible simply connected p—compact groups and a
p—compact torus [49, 2.8].
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If H*(BX;F,) is a polynomial IF,,—algebra, we say that BX is a polynomial p—compact
group. Observe that all the irreducible p—compact groups are either polynomial or of
the form BGQ where G is an irreducible compact connected Lie group [53, 7.4].

The polynomial irreducible p—compact groups, which include all irreducible p—
compact groups that are exotic, can be constructed as homotopy colimits of diagrams
whose nodes are the p—subgroups of the Weyl group [53, 7.8]. We mention these
special cases for later reference:

e Clark-Ewing p—compact groups. The p—compact groups corresponding to the Z,,—
reflection groups (W, L) where the order of W is prime to p [19]. They have
the form

BX = (B(T x W)))

where T x W is the semi-direct product for the action of the Weyl group on the
discrete maximal torus 7 = (L ®z, Qp)/L = (Z/p>)" where r is the rank. The
Sullivan spheres (family 3)

<L2m—1 — (o) A
B3Y"~! = B(Z/p™ x Cu))

where m|(p — 1), are special cases of this construction. Also family 2b for p > 3

is included here.

¢ Aguadé p—compact groups. The four p—compact groups, X2 at p = 3, Xyg at
p=15,X31 at p =5, and X34 at p = 7 constructed by Aguadé [1] in a uniform
way as homotopy colimits of diagrams

o \wer

zwye (. BSU(r+1) BT [ )wr

with two nodes where r = 2,4, 4, 6, respectively, is the rank and Z(W), cyclic
of order 2, 4,4, 6, respectively, is the center of the Weyl group W. In all four
cases p divides the order of the Weyl group exactly once. The two cases X3,
X3; had been constructed by Zabrodsky using different methods [71].

¢ Generalized Grassmannians. The p—compact groups X(m, r,n) corresponding to
the Z,-reflection groups G(m, r,n) where r|m|(p — 1). The cases r = 1 where
constructed by Quillen as p—completed classifying spaces of general linear
groups over suitable infinite fields for characteristic prime to p. The cases with
r > 1 where later obtained by Oliver, see Notbohm [59]. See also [53, 7.10].

Theorem 2.2 describes Out(X), the group of invertible elements of the monoid [BX, BX]
of unpointed homotopy classes of self-maps of BX, in purely algebraic terms as the
‘Weyl group of the Weyl group’, Ngry(W)/W. In particular, we may regard the
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automorphism " of (W, L) as the homotopy class of a self-homotopy equivalence
of BX. The map 9": BX — BX is called an unstable Adams operation of exponent
u€zy.

Classically, unstable Adams operations were first defined by Sullivan [67] on BU(n),
for g € Z, (p,q) = 1, g > n, as restrictions of Adams operations defined on BU.
Then extended by Wilkerson to all compact Lie groups [68]. In [38] it is shown that p—
completed classifying spaces of compact connected Lie groups admit unstable Adams
operations 97 of exponent a p-adic unit ¢ € Z,. This is extended to p—compact
groups for odd primes p in [53].

3 p-local finite groups

The concept of p—local finite group has been introduced in [14] (see also [15]). A
p—local finite group is a triple (S, F, L) where S is a finite p—group, F a saturated
fusion system over S, and £ a centric linking system associated to 7. We will state
here again all necessary definitions for the convenience of the reader.

A fusion system over a finite group S consists of a set Hom (P, Q) of monomorphisms
for every pair of subgroups P, Q of S, such that it contains at least those monomor-
phisms induced by conjugation by elements of S and all together form a category where
every morphism factors as an isomorphism followed by an inclusion. A fusion system
is saturated if it satisfies certain additional axioms formulated by L. Puig (see [14, § 1]
or the original source [60]). Two subgroups P, P’ of S are called F—conjugate if there
is an isomorphism between them in F.

Definition 3.1 Let F be a fusion system over a p—group S.
(1) A subgroup P < S is fully centralized in F if |Cs(P)| > |Cs(P")| forall P’ < S
which is F—conjugate to P.
(2) A subgroup P < S is fully normalized in F if |Ns(P)| > |Ns(P")| forall P’ < S
which is F—conjugate to P.

(3) F is a saturated fusion system if the following two conditions hold:

(i) For each P < § which is fully normalized in F, P is fully centralized in
F and Autg(P) is a Sylow p—subgroup of Autz(P).

(i) If P < S and ¢ € Homz(P, S) are such that P is fully centralized, and
if we set

Ny, = {g € Ns(P) | pcep™" € Auts(¢P)},
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then there is » € Homz(N,, S) such that ¢|p = ¢.

A subgroup P of S is F—centric if Cs(P") < P’ for every subgroup P’ < S which is
JF-conjugate to P. F° denotes the full subcategory whose objects are the F—centric
subgroups of S.

A subgroup P < S is F-radical if Outz(P) = Autz(P)/ Inn(P) is p—reduced, namely,
it does not contain non-trivial normal p—subgroups.

Definition 3.2 Let F be a fusion system over the p—group S. A centric linking
system associated to F is a category £ whose objects are the F—centric subgroups of
S, together with a functor

m L — F°,

and distinguished monomorphisms ép: P — Aut,(P) for each F —centric subgroup
P < S, which satisfy the following conditions.

(A) m is the identity on objects and surjective on morphisms. More precisely, for
each pair of objects P, Q € L, Z(P) acts freely on Mor,(P, Q) by composition
(upon identifying Z(P) with dp(Z(P)) < Aut,(P)), and 7 induces a bijection

Mor(P, Q)/Z(P) — Homz(P, Q).
(B) For each F—centric subgroup P < S and each g € P, w sends dp(g) € Aut,(P)
to ¢g € Autg(P).
(C) For each f € Morg(P, Q) and each g € P, the following square commutes in

L:
P
6p(g)l
P

The classifying space of the p-local finite group (S, F,L) is defined as the p—
completion |£|1/,\ of the nerve of the category £. The classifying space determines
the p—local finite group in the sense that two p—local finite groups are isomorphic
if and only if they have homotopy equivalent classifying spaces. Actually, the com-
plete structure of a p—local finite group can be recovered from its classifying space by
homotopy theoretic methods.

f
—_—

Q

So(m(F)(©)

-

A

©Q

Finite groups are the main source of examples and motivation for p—local finite group
theory.
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Example 3.3 (The p-local finite group (S, Fs(G), LS(G)) of a finite group G) If
G is a finite group and S a Sylow p-subgroup, the monomorphisms from P < §
to QO < S induced by conjugation in G, Homg(P, Q) = Ng(P,Q)/Cs(P), where
Ng(P,Q) = {x € G|xPx~! < Q}, form a saturated fusion system over S, Fg(G).
The Fs(G)—centric subgroups of § are the subgroups P < § which are p—centric in
G. A p—subgroup P < G is p—centric if its center, Z(P), is the Sylow p—subgroup of
Cg(P), or, equivalently, if the centralizer splits as the product of the center of P and a
group Cg;(P) of order prime to p, C(P) = Z(P) x Cy(P).

Now, we define L£(G) as the category with objects all subgroups of S which are
p—centric in G, and morphisms Morz(P, Q) = Ng(P, Q)/C(P), where C(P) is the
p'—complement in C(P) of the center of P, which is well defined because P is p—
centric. £(G) is a centric linking system associated to Fs(G), and (S, Fs(G), L(G))
is a p—local finite group with classifying space |L5(G) ]9 ~ BGIG (see [13, 14]).

A p-subgroup P of G is called p—radical if it is the maximal normal p—subgroup of
Ng(P), P = O,(Ng(P)), or, equivalently, if Ng(P)/P is p—reduced [35], whereas being
Fs(G)—radical means that Outzy)(P) = Ng(P)/PCg(P) = Outg(P) is p—reduced.
However, if P < S is Fg(G)—centric and Fs(G)-radical, then it is p—centric and p—
radical in G: Assume that P is not p—radical in G, then there is another p—subgroup QO
with P<Q <Ng(P) and Q # P. Since P is p—centric, Cg(P) = Z(P) X C’G(P), where
Cy(P) is a p’—group, hence also C;(P) N Q = 1, so, therefore P < Q < Ng(P)/Ci;(P)
and Q/P < Ng(P)/PCy(P) = Ng(P)/PCg(P), hence Outg(P) is not p-reduced. The
converse it is not always true.

Alperin’s fusion theorem for saturated fusion systems [14, A.10] establishes that mor-
phisms in a saturated fusion system JF are composites of automorphisms of fully
normalized, F—centric, and F—radical subgroups of the system, or restrictions of
those. Hence in order to describe a saturated fusion system J over a finite p—group S
it is enough to describe Autxz(Q;) for a set Qy, ..., Q, of fully normalized represen-
tatives of F—conjugacy classes of F—centric, F—radical subgroups of S in F. This
motivates the next construction.

If Fy is a fusion system over S, and Qy, ..., Q, are subgroups of S, and A; a group
of automorphisms such that Inn(Q;) < A; < Aut(Q;), for each i, then we denote by
Fo:(A)) the fusion system over Q; whose morphisms are restrictions of elements of
A;, and define

F = (Fo; Fo, (A1), - .., Fo,(A)))

the fusion system over S whose morphisms are composites of morphisms belonging to
any of the generating fusion systems (cf. [14, §9]).
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Thus, in particular, if F is a saturated fusion system over a finite p—group S and
QO1,...,0, is a set of fully normalized representatives of F—conjugacy classes of
F—centric, F—radical subgroups of S in F, then

F = (Fs(Autz(8)); Fo, (Aute(Q1)), - - ., Fo,(Autr(Qy))) -

We now describe the fusion systems of GL,(g) and SL,(g) over the respective Sylow
p—subgroups, where p is a prime number and ¢ is a prime power ¢ = 1 mod p. This
will be useful in later sections.

Example 3.4 (The fusion system of GL,(q)) We will describe the fusion system
of GL,(g) over a Sylow p—subgroup, for p a prime and g a prime power such that
g = 1 mod p. We can use the Alperin—Fong description of p-radical subgroups of
general linear groups [4]. The elements

0o o0 ... 1
1 0 0
B =diag(1,¢,¢%,...,¢77h, =01 0
OO0 ...10

where ¢ be a primitive pth root of unity in [, generate an extraspecial subgroup
I'y = (B, C) < GLy(q) of order p® and exponent p.

The p-primary part of the multiplicative group of units Fy is isomorphic to 7/ p*
where £ = v,(1 — q). Let Tf ~(z/ pz)” , the maximal finite torus, be the group of
diagonal matrices of p—power order. Then S = T} x (C) = Z/p* 1 Z/p is a Sylow
p—subgroup of GL,(q).

Define the subgroup I'y = Z, o I'y < GL,(g) to be the central product over the center
of T'y of the center Z, = Z/p® of GL,(q) and I'y.

There is an standard inclusion Fy, C GL,(q), obtained by letting Fy, act on Fg by
multiplication and considering F» as IF,—vector space. We define Uy as the image
in GL,(q) of the cyclic group Z/ Pt <F o of all roots of unity of p—power order in
Fe.

With this notation and according to [4], if R is a p—radical subgroup of GL,(g) then R
is conjugate to one of the subgroups displayed in Table 1.

It is now easy to extract from Table 1 the F—centric, F-radical subgroups of S in
the fusion system F = Fg(GL,(q)) of GL,(g) over S. Notice that Z, is clearly not
F —centric and Uy clearly not F—radical. This leads to Table 2.
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R NG, g)(R) Outgr,g)(R)

Z GL,(q) 1

T? (F2p x5, o

S EyPx@ZpxZp-1) Z/p—1

Iy (Fy) - T'e - SLa(p) SLy(p)
Ut Fo» X Z/p Z/p

Table 1: p-radical subgroups of GL,(q) for g = 1 mod p

R Outgy, »(q) (R)

Ty Zp
N Z/p—1
Iy SLy(p)

Table 2: F —centric, F-radical subgroups in the fusion system of GL,(q)

Example 3.5 (The fusion system of SL,(q)) We proceed now by describing the
fusion system of SL,(q) over a Sylow p—subgroup, for p a prime and g a prime power
such that ¢ = 1 mod p. Let £ = v,(1 — ¢) as in the previous example.

We first show that every p-radical subgroup of SL,(g) is the intersection QN SL,(q) of
a p-radical subgroup Q of GL,(gq) with SL,(g). For a given p—radical p—subgroup P
of SL,(q) define QO = Oy(NgL,(P)). QN SLy(q) is a normal subgroup of Nz, ;) (P)
and since P is the maximal normal p—subgroup of Nyz,,;)(P), we have ONSL,(q) < P.
Same argument with Ngr,,;)(P) shows that P < Q and therefore Q N SL,(q) < P.

Every element ¢ € GL,(q) normalizes SL,(g), so if g normalizes Q it also normalizes
QN SLy(q) < P, s0 NiL,)(Q) < NgL,(P). But, by definition of Q, this is normal
in Ngr,g(P), hence we actually have Ngp,)(Q) = Ngi,q(P). So, therefore, O =
Op(NGL,(g)(Q))is p—radical.

Fix the Sylow p—subgroup § = § N SLy(g) of SL,(q), and let F = Fs(SL,(q)) be the
fusion system of SL,(g) over S. Assume that P < § is F—centric and F-radical.
Then P is p—centric and p-radical in SL,(q). In particular P = Q N SL,(q) where Q
is p-radical in GL,(q), hence conjugate by an element g € GL,(q) to a p—subgroup
in the Table 1. Among those intersections, only S = S N SL,(q), Tépfl) =85N Tf ,
and I'y = SN T are also p—centric. Hence, the complete list of conjugacy classes
of p—centric and p-radical subgroups of SL,(q), is obtained by conjugating these
three subgroups by elements ¢ € GL,(q): where I'|({"), r = 0,1,...,(p — 1) are
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P Outsy,((P) Conditions
=1

Tép ) > p>3
S Z/p—1

T SLp)  r=0ifl=1,p=3;
r=0,1,...,p—1if¢ > lorp > 3,

Table 3: F—centric F—radical subgroups in the fusion system of SL,(g)

subgroups of SL,(q), defined as the conjugates of I'; in GL,(q), I'1(§{") = xDx !,
where x, = diag(¢',1,...,1) € GL,(gq), £ a (g — 1)st root of unity. Notice that
for g € GLy(q), gSg~! lies in S if and only if it is exactly S and the same happens
with Té”*l). In the case of I'; we just need to check which of the subgroups I'1(£")
are conjugate in SL,(g). In fact, Alperin’s fusion theorem [14, A.10], together with
the list of p—radical p—centric subgroups that we have obtained so far, tells us that if
two subgroups I'1(£") and I'1(§*) are conjugate in SL,(g) they are already conjugate
in Nsz,)(S), hence we obtain the Table 3 by direct calculation as a list of p—centric
and p-radical subgroups but, by inspection, this coincides with the list of F—centric
JF —radical subgroups.

An p-local finite group that is not of the form (S, Fs(G), L5(G)) for any finite group
G is called exotic. Examples of exotic p—local finite groups are already shown in
[14]. Recently, Levi and Oliver have obtained a family of exotic 2—local finite groups,
B Sol(g) [40], based on fusion systems originally described by Solomon [65].

Definition 3.6 (a) For any saturated fusion system F over a p—group S, and any
P < S, fully centralized in F, the centralizer fusion system Cx(P) over Cs(P) is
defined by setting

Homc,r)(Q, Q) = {(¢lo) | ¢ € Homz(PQ, PQ), p(Q) < ', ¢lp = Idp}

for all 0, Q' < Cs(P).

(b) For a p—local finite group (S, F, £) and P < § fully centralized in F, we define the
category C,(P) whose objects are Cx(P)—centric subgroups Q < Cs(P) and where

Morc,p)(Q, Q") = { ¢ € Hom(PQ,PQ') | m(p)|p = Idp, T(p)(Q) < Q' }.

It is proved in [14, §2] that if (S, F, £) is a p—local finite group and P < § is fully
centralized in F, then (Cs(P), C£(P), C,(P)) is a p—local finite group.
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In [40] Levi and Oliver have obtained necessary and sufficient conditions for a fusion
system to be saturated. We reproduce here their result for the convenience of the reader.
We will write Cx(x) = Cx((x)) for x € S.

Proposition 3.7 [40] Let F be any fusion system over a p—group S. Then F is
saturated if and only if there is a set X of elements of order p in S such that the
following conditions hold:

(a) Each x € S of order p is JF —conjugate to some element of X.

(b) If x and y are F—conjugate and y € X, then there is some homomorphism
1 € Homz(Cs(x), Cs(y)) such that y(x) = y.

(¢) Foreach x € X, Cr(x) is a saturated fusion system over Cs(x).

4 Recognition of classifying spaces of p—local finite groups

In [14] it is shown that a p—local finite group can be completely recovered from its
classifying space by homotopy theoretic methods. Also, a recognition principle for
classifying spaces of p—local finite groups is provided in [14, Thm. 7.5]. We will
briefly describe these methods and derive an inductive method that will be useful in
our situation.

We will first recall how a fusion system Fs ) (X) and a linking system L s (X) are
attached to a space X equipped with a map f: BS — X, where S is a finite p—group.

If (S,f) is a p—subgroup of a space X we can define a fusion system over S, Fs ) (X),
by declaring

Homf(sxf)(x)(Pa 0) = {SO € Hom(P, Q) |f’BP §f|BQ o BSO}

for all P,Q < S, where f|gp denotes the composition BP Bir, BS L X. Next, we

define the category Ls ) (X) that has objects the subgroups of S and
Morg ) (P, Q) = { (¢, [H]) | ¢ € Hom(P, Q) and
[H] is the homotopy class of a homotopy from f|gp to f|gg o By },

and the full subcategory L{g (X) whose objects are Fs,s)(X)—centric subgroups P <
S.

The important question and the aim of the rest of this section is to find sufficient
conditions on a space X and a p—subgroup (S, f) under which

(S, Fs,n ), Lisf(X))
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is a p—local finite group and X is its classifying space |£2’S f)(X)| If ~X.

One first important case is that of X = |£|1/,\, the classifying space itself of a given
p-local finite group (S, F, L£). The distinguished homomorphism ds: § — Aut,(S)
provides a functor BS — L, where BS denotes the category that has one object and
its group of automorphisms is S. In turn, this functor induces a map between the
respective nerves |BS| — |L£|. Finally, composing with the p—completion of |L| we
obtain a canonical map for (S, F, £):

GS: ‘BS| - |‘C|[/)\a

where we can identify |BS| ~ BS. It turns out that (S, ]-'(S,gs)(|£|;\), L BS)(\ELQ\)) is
isomorphic to the original (S, F, £) [14, 7.3]. This is how a p—local finite group is
completely recovered from its classifying space.

The basic tool in order to show that these systems define a p—local finite group with
classifying space X is [14, Thm. 7.5]. In order to apply this theorem in our situation
we face two main difficulties, namely, to show that the p—completed nerve of Ls s (X)
is homotopy equivalent to X and to show that Fs ) (X) is a saturated fusion system.
In order to overcome these difficulties, we develop in this section an inductive method
mainly based on the centralizer decomposition of p—local finite groups.

Definition 4.1 Given spaces X and Y, we say that a map a: X — Y is a homotopy
monomorphism at p if the homotopy fibre of «, F', over any connected component of
Y, is p—quasi-finite; that is, the inclusion F — Map(BZ/p, F) as constant maps is a
weak homotopy equivalence.

Giventwomaps f: X — Y and g: ¥ — Z, where g is a homotopy monomorphism at
p, it is not hard to prove f is also a homotopy monomorphism at p if and only if the
composition g o f is so.

Definition 4.2 Let X be a space. A finite p—subgroup of X is a pair (P, f), where P is
a finite p—group and f: BP — X is a homotopy monomorphism at p. A p—subgroup
(S,f) of X is called a Sylow p—subgroup of X if for any other p—subgroup (Q, g) of
X, g: BO — X factors through f: BS — X, up to homotopy. If (P,f) is a p—subgroup
of X, then we denote BCx(P, ) = Map(BP, X);.

Our basic example comes from p—local finite groups. If (S, F, L) is a p—local finite
group, then (S, fs) is a Sylow p—subgroup of [£|}. The map s: [BS| — |L[ satisfies
the required conditions by [14, Thm. 4.4].

We will need later the next technical lemma.
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Lemma 4.3 Assume that X and Y are spaces for which Map(BZ/p,X).; ~ X and
Map(BZ/p,Y)es ~ Y. Let f: X — Y be a homotopy monomorphism at p and
w: BP — X a finite p—subgroup of X, then each map in the diagram

BCx(P, ) —2—~ X “4)
ful lf
BCY(P7fo,U’)T>Y

is a homotopy monomorphism at p.

Proof Let F be the homotopy fibre of the evaluation map
BCx(P, p1) = Map(BP,X),, — X .
There is an induced fibration
Map(BZ/p, F) — Map(BZ/p, Map(BP, X))z — Map(BZ/p, X).

where ¢t stands for all components mapping down to the component of the constant
map in Map(BZ/p, X). Since Map(BZ/p,X) ~ X, also

Map(BZ/p,Map(BP, X),,)& ~ Map(BP,Map(BZ/p, X) )5 =~ Map(BP,X),, ,

and therefore Map(BZ/p, F) ~ F; that is, F is p—quasi-finite and ev: Cx(P, u) — X
is a homotopy monomorphism at p. Similarly, ev: BCy(P,f o u) — Y is a homotopy
monomorphism at p. Finally, since all other maps in diagram (4) are homotopy
monomorphisms at p, then, also f; is a homotopy monomorphism at p. O

The next is a useful result that provides conditions on the space X and a Sylow p—
subgroup (S, ) under which the fusion system F s r)(X) is saturated. Anelement x € §
of order p determines ahomomorphism i,: Z/p — S anthenamap foBi,: BZ/p — X.
We write BCx(x) = Map(BZ/p,X),, the connected component that contains the map
f o Bi,, and f;: BCs(x) — BCx(x) the map induced by f.

Proposition 4.4 Let X be a space, (S,f) a Sylow p—subgroup of X, and X a set of
elements of order p in S. Assume that:
(1) Map(BZ/p, X)er ~ X.

(2) For all x € X, the natural map f,: BCs(x) — BCx(x) is a Sylow p—subgroup
for BCx(x).

(3) Forall x € X, Fcsw) f,)(BCx(x)) is a saturated fusion system over Cg(x).

Algebraic & Geometric Topology XX (20XX)



Chevalley p—local finite groups 1023

(4) Forall x € S of order p, there is p € Homg , x)({x), S) such that p(x) € X.

Then F(sz)(X) is a saturated fusion system over S and C Fs J)(X)(x) coincides with
Fcst) ) (BCx(x)) as fusion systems over Cs(x), for all x € X.

Proof Write 7 = F(s ) (X) for short. Clearly, F is a fusion system over S. Condition
(a) of Proposition 3.7 holds by (4); and it remains to show that conditions (b) and (c)
of 3.7 hold.

Condition (b) of 3.7: Fix x,y € § of order p such that y € X, and such that there
is 19 € Homg({x), (y)) with ¢p(x) = y. We must show that vy extends to some
¢ € Homz(Cs(x), Cs(y)).

Since x and y are F—conjugate,

[f o Bix] = [f o Biy] € [BZ/p, X],
so Map(BZ/p,X). = Map(BZ/p,X)y. Since Cs(y) is a Sylow p—subgroup of
Map(BZ/p, X), by (2), the natural map BCs(x) — Map(BZ/p, X), factors through
BCs(y). In other words, there is some ¥ € Hom(Cs(x), Cs(y)) such that the following
square commutes up to homotopy
foB(inclXiy)

BCs(x) x BZ/p &)

By xldl
BCs(y) x BZ/p

Thus ¢ € Homz(Cs(x), Cs(y)). If p, p' € Hom(Cs(x) X Z/p, S) denote the homomor-
phisms p(g,7) = gx' and p'(g,1) = 1(g)y’, then f o Bp ~ f o Bp’ by (5), and hence
Ker(p) = Ker(p') by [14, Proposition 5.4(d)] (and point (1)). And this implies that
Px) =y.

Condition (c¢) of 3.7: Fix some x € X; we must show that C(x) is a saturated fusion

foB(inclxiy)
X

system. By (3), the fusion system F’ def Fcst) £ (BCx(x)) is saturated, so it suffices
to show that these two fusion systems over Cg(x) are equal.

To see this, fix P,Q < Cs(x), and let ¢ € Hom(P, Q) be any monomorphism. Set
P=P-(x)and Q = Q- (x). Let p € Hom(P x Z/p, S) and p' € Hom(Q x Z/p, S) be
defined by p(g,t) = gx' and p'(g,t) = gx'. Then ¢ € Homg (P, Q) if and only if the
following square commutes up to homotopy

foBp

BP x BZ/p (6)

By del
foBp'

BO x BZ/p — = -~ x.
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By (1) and [14, Proposition 5.4(d)], this holds if and only if K &ef Ker(p) = Ker(p' o
(¢ x Id)) and the induced maps from B((P x Z/p)/K) to X are homotoPic. The kernels
are equal if and only if ¢ extends to a monomorphism ¢ from P to Q which sends x
to itself. And in this case, the induced maps on B((P x Z/p)/K) are homotopic if and
only if f1 :f|BQ o By, if and only if ¢ € Homc (v (P, Q).

Now, Proposition 3.7 implies that Fs ) (X) is a saturated fusion system over S and
the argument for condition (c) already contains the proof that Cx(x) coincides with
F' = Fcs f£)(BCx(x)) as fusion systems over Cg(x). O

We derive now another characterization that will be useful in the specific cases in which
we are interested or more generally in cases in which there is a good knowledge of
elementary abelian p—subgroups of X and of their centralizers.

Theorem 4.5 Let X be a p—complete space and (S, f) a p—subgroup of X. Assume
that

(1) Map(BZ/p,X)¢ ~ X, and
(2) for each non-trivial element x € S of order p
(a) BCx(x) is the classifying space of a p—local finite group, and
(b) if(H,g) isaSylow p—subgroup for BCx(x), there is a group homomorphism
p: H — S that makes the diagram

BH —"~Bs
gi lf
BCx(x) —=X
commutative up to homotopy,

then, (S,f) is a Sylow p—subgroup for X and
(S, FispX), L{s p(X))
is a p—local finite group.
Furthermore, X =~ |Ls ¢)(X)| 1/7\ if and only if the natural map induced by evaluation

h(E)C(g(l)IoIpl Map(BE, X)s|,, — X

‘7:(5,7”)

is a mod p homology equivalence. Here F(q &) denotes the full subcategory of
Fs.(X) consisting of non-trivial fully centralized (Definition 3.1) elementary abelian
p—subgroups of S.
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Proof The proof is divided in five steps. First, we prove that (S,f) is a Sylow p—
subgroup of X. Next, that the fusion system of X over (S, f), F(ss)(X) is saturated. In
the third step we show that for each F(s f)(X)—centric subgroup P < S the map f|gp is
centric. Amap g: BP — X is called centric if the induced map f;: Map(BP, BP);; —
Map(BP, X), is a weak homotopy equivalence.

These two last steps are the hypothesis (a) and (c) of [14, Theorem 7.5]. According to
the remarks after the proof of this theorem in [14], this suffices in order to conclude that
(S, FspX), Efs J-)(X)) is a p—local finite group. This is the first part of the theorem.

The second part states that X ~ |Ls 5)(X)| lf if and only if the natural map induced by
evaluation hOCOlim]-'(é:g e Map(BE, X)|,, — X is amod p homology equivalence.
This is proved in steps 4 and 5. Notice that X ~ L5 (X)| Q is condition (b) in [14,
Theorem 7.5].

Step 1: (S,f) is a Sylow p—subgroup for X

Let (P, u) be a finite p—subgroup of X. Choose a central element x of order p in P.
It determines a homomorphism i,: Z/p — P for which Cp(Z/p) = P, and a map
woBiy: BZ/p — X. According to our hypothesis, BCx(x) is the classifying space of a
p-local finite group, and if (H, g) is its Sylow p—subgroup, there are homomorphisms
p: H— S and ¢: Cp(Z/p) — H that make the diagram

By

BCp(Z/p) —> BCx(Z/p, 11 0 Bi) <*— BH

:lev igv pr
1% f

BP X BS

commutative up to homotopy. Hence, p o p: P = Cp(Z/p) — S provides the factor-
ization of (P, p) through (S, f).

Step 2: The fusion system of X over (S,f), F(ss)(X) is saturated

This part of the proof will be based on Proposition 4.4. Define

X ={x € S|xof order p and f,: BCs(x) — BCx(x)
is a Sylow p—subgroup for BCx(x) } .
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Notice now that conditions (1) and (2) of Proposition 4.4 are satisfied by our hypothesis
and by definition of the class X. Condition (3) is easily verified, too. In fact, by
hypothesis, for each x € X, BCx(x) is the classifying space of a p—local finite group
and since f;: BCs(x) — BCx(x) is a Sylow p—subgroup for BCx(x), the fusion system
F (st £ (BCx(x)) is saturated.

It remains to verify condition (4); that is, that every element x € S of order p is
Fs,p(X)—conjugate to an element of the class X.

Assume that x € S has order p. It gives a homomorphism i,: Z/p — S and a map
foBiy: BZ/p — X. There is an evaluation map ev: BZ/p x BCx(x) — X. Let (H, g)
be a Sylow p—subgroup of BCx(x). Since (S,f) is a Sylow p—subgroup of X, there is
a homomorphism p: Z/p x H — S making the diagram

BZ/p x BH —>" = Bs

o

BZ/p x BCx(x) —%=X
commutative up to homotopy.

Let ¢ = p|z,, the restriction of p to the first component Z/p. From the above diagram
we deduce that ¢ € Homf(SJ,)(X)(Z/p, S). Let y = p(x).

Then, p induces
BH 22 BCs(y) &5 BCx(y) 2 X

where all maps are homotopy monomorphisms at p. The first one because p is a
monomorphism, the others by Lemma 4.3.

Now, ¢ induces a homotopy equivalence BCx(y) ~ BCx(x), hence also an isomor-
phism between the respective Sylow p—subgroups. Since (H, g) is a Sylow p—subgroup
for Cx(x), it follows from the above sequence of maps that (Cs(y), fy) is a Sylow p—
subgroup for Cx(y). Hence y = p(x) € X.

Step 3: f|pp is a p—centric map for each F(s s (X)—centric subgroup P < §

Suppose that P < § is Fsr)(X)—centric. Choose a central element x € S or or-
der p. Since P is Fs)(X)—centric, x € P and we have a sequence of homotopy
monomorphisms at p

BP B, gs I BCy(x) & X .
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By hypothesis, BCx(x) is the classifying space of a p—local finite group, and from
the above sequence of maps we easily obtain that (S, f,) is a Sylow p—subgroup for
BCx(x). Furthermore, P is also Fss,)(BCx(x))—centric, and then f;|pp is a p—centric
map. There is a sequence of equivalences

Map(BP, BP);q ~ Map(BP, BCx(x))y, |5
~ Map(BP x BZ/p,X)ﬂBpoBm ~ Map(BP, X)|,, (7)

where m: P x Z/p — P denotes multiplication by x, the generator of Z/p = (x).
The last equivalence is implied by the Zabrodsky’s lemma (cf. [22, Proposition 3.5])

applied to the fibration BZ/p — BP x BZ/p 5", BP. The homotopy equivalence (7)

shows that f|gp is a p—centric map.

Step 4: There is amap ~: |Lsf)(X)| ﬁ — X that induces homotopy equivalences
kp: Map(BP, | L5051 —> Map(BP,X)y(,, ,

for each non-trivial subgroup P < S.

The construction of the map «: \Efs f)(X)\ — X requires some technical constructions
and will be explained in Proposition 4.6. Indeed, it will be shown that there is a
homotopy commutative diagram

BS @®)
>N
|Lis 0] —= X
where we have identified BS ~ |BS].
We will show that the induced map
kp: Map(BP, |Lis p,(X)| o] — Map(BP, Xy, - )

is a homotopy equivalence by induction on the order of the group P.

If P = (x), for some x € S of order p, then BCx(x) = Map(BP,X)y|,, is the
classifying space of a finite p—local group, by hypothesis. According to Step 2 above,
we can assume without loss of generality that x € X, and so, the induced map
fr: BCs(x) — BCx(x) is the inclusion of a Sylow p—subgroup, and the fusion system
F(Cs.£0(BCx(x)) coincides with Cr X)) by Proposition 4.4.
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Now, diagram (8) induces the new homotopy commutative diagram

BCs(x) 10)

Map(BP, lﬁfsf)(X) ’1/;\)9|BP BCX(X)

Kp
where, according to [14, 6.3], the map 6; is the inclusion of a Sylow p—subgroup
of the mapping space Map(BP, |£fs J)(X)];,\)m »» Which is the classifying space of a
centralizer p-local finite group with fusion system Czx , x)(x). Furthermore, rp
induces an equivalence of fusion systems, and therefore a homotopy equivalence.

For an arbitrary non-trivial subgroup P < S, we fix an element x of order p in the
center of P. Again, we can assume that x belongs to X. There is a diagram

Map(BP, ‘Efsj')(x)‘)emp —— Map(BP x B<x> ) ‘ﬁfsf)(X)DabPOBm —

Kp i Kpx (x) \L

Map(BP, X)y|,, Map(BP x B(x) s X))f|ppoBm

—— Map(BP, Map(B(x) , | L{s +,(X))Binc1)o|s
l’Map(lﬁ(x})
—— > Map(BP, Map(B(x) s X)) |sp

where horizontal arrows are homotopy equivalences, by adjunction and by Zabrodsky’s
lemma (cf. [22, Proposition 3.5]) applied to the fibration BZ/p — BP x B(x) B,
BP, where we identify Z/p with the kernel of the multiplication homomorphism
m: P x (x) 2 P. Also, Map(l, K(y)) is a homotopy equivalence. That concludes the
proof that xkp in equation (9) is a natural mod p homology equivalence for subgroups
P <S.

Step 5: X ~ |L(s(X)|, if and only if the natural map

hocolim Map(BE, X),, — X
Fopom D S e

induced by evaluation is a mod p homology equivalence

Diagram (8) induces an isomorphism of fusion systems over S: ]—'(579)(|£fs J)(X)|) =
FispX). We will consider the full subcategories of non-trivial fully centralized
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elementary abelian p—subgroups £ < §. In order to simplify the notation, we will

For every elementary abelian subgroup E < §, the map xg, as defined in step 4, fits in
a commutative diagram

Map(BE, \ﬁfsf)(X)\)9|BE [t Map(BE, X)f |,

| Jo

’Efsif)(X)‘ = X

where vertical maps are induced by evaluation at the base point. As a consequence, we
obtain a map between the corresponding homotopy colimits together with compatible
maps induced by evaluation:

. C /\ - .
hocolim Map(BE, | Lis.p,(X)l; Yol ——=NOCOUMMap(BE, X)pisy (1)
EV\L \Lev
[Lisn @Ol - X

where K = hocolimreyr kg is the induced map between the respective homotopy
colimits. It turns out that ¥ is a homotopy equivalence because all kg are homo-
topy equivalences according to step 4. Also, the left vertical map of is a homotopy
equivalence by [14, 2.6 and 6.3].

Hence, the right vertical map ev in (11) is a homotopy equivalence if and only if & is
a homotopy equivalence. This proves step 5. |

Notice also, that, reciprocally, if X is the classifying space of a p—local finite group with
Sylow p—subgroup (S, f), then all conditions of Theorem 4.5 are satisfied according to
[14, §7].

There seems to be no natural way to construct a map between X and |£f51f) (X)| in either
direction. This problem was solved in [13] by means of some auxiliary constructions.
For the convenience of the reader we shall reproduce the argument here. For this aim
we will introduce a variation of the categories F(s ) (X) and Lss)(X), independent of
the choice of a Sylow p—subgroup.

For aspace X, we denote F,(X) the category in which the objects are finite p—subgroups
(P,f) of X, and the morphisms are defined

Morz,x)((P,f),(Q, 8) = { ¢ € Hom(P,Q) |f ~goBy}.
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Similarly, £,(X) is the category in which the objects are the p—subgroups (P, f) of X
and morphisms are defined as

Morz,x)((P,f), (2, 8)) = { (¢, [H]) | ¢ € Hom(P, Q) and
[H] is the homotopy class of a homotopy from f to go By }.

Notice that if (S,f) is a p-subgroup of X, then, there are obvious functors
FspX) — Fp(X) and Lsp)(X) — L,(X), sending and sending an object P of
FispX) (resp. Lsf) (X)) to the map f|gp: BP — X considered as an object of F,(X)
(resp. £,(X)). Furthermore, if (S,f) is a Sylow p—subgroup, then these are equiva-
lences of categories.

Proposition 4.6 Let X be a space, S a finite p—group, and f: BS — X a map. Assume
that (S,f) is a Sylow p—subgroup of X and that for each F s r)(X)—centric subgroup
P <'S, f|gp is a centric map, then there is a homotopy equivalence ks: |BS| — BS
and amap kx: |L{s ;(X)| — X such that the diagram

|BS| —=—~BS

~

. I

|LESJ)(X)| = X.

is homotopy commutative.

Proof We will sketch here the necessary constructions in order to obtain the map
Kx: |£fs f)(X)| — X. We refer to [13, §4] for full details.

We denote £;(X) the full subcategory of £,(X) whose objects are the p—subgroups
(P,f) of X where f is a centric map. The hypothesis on (S, f) and on Fs s (X)—centric
subgroups imply that the functor L5z (X) — L,(X) defined above restricts to an
equivalence of categories

snX) = LX)

In order to connect the nerve of [,;(X) and X, in [13], it is defined the simplicial
space M{(X) where n—simplices are maps 7: A(P) — X, where P = (P Ap A

2P isa sequence of p—subgroups of S and monomorphisms, and A(P) can be
regarded as the homotopy colimit of the sequence BPy B, BP, Bey .. Bon BP,,
with the condition that the restriction of 7 to any BP; is a centric map.

The inclusion of base points in BP; provides a map tp: A" — A(P), and then, an
evaluation map
evy: |M{(X)| — X,
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evx(t,n) = n(ep(2)).

For each i, the mapping cylinder of BP;_; . BP; embeds naturally in A(P) and
the restriction of 7 to this mapping cylinder can be interpreted as a homotopy between
n|sp,_, and n|gp, o By, thus, a morphism of £5(X) from 7|gp,_, — X to n|zp, — X.
In this way, the n—simplex 7: A(P) — X determines an n—simplex in N.(LI‘,'(X)) and
gives rise to a simplicial map from M{(X) to the nerve of £7(X), and therefore a map
between the respective geometric realizations:

X [ML(X)| — |£,(X)] .

Each object a: BP — X of L£;(X) is a centric map. In particular, Map(BP, X), =~
Map(BP, BP);; ~ BZ(P) is aspherical, and so, according to [13, Lemma 4.2] (see
its proof), 7x: [M{(X)| — |L;(X)| is a homotopy equivalence. Then, choosing a
homotopy inverse of 7x we can define ky: |£(CS f)(X)| — X as the composition

| L5y X —=> |£500] <2— [ME00| —> X (12)

In case X = BS, Proposition 2.7, Lemma 4.2 and Lemma 4.3 of [13] provide homotopy
equivalences

|L5(S)| — |L5(BS)| <—— |M(BS)| — BS (13)

hence, the key to finish the proof of the Proposition lies in the naturality properties of
this construction with respect to f: BS — X. However, in general, a subgroup P < §
which is centric in S, need not be centric when regarded as a p—subgroup of X by
considering the restriction f|gp : BP — X of f to BP. For this reason, we will have
to restrict M{(BS) to the subspace M3(BS) of simplices 77: A(P) — BS of M{(BS)
where every group in the sequence P is § itself. Accordingly, we call £g(BS) the full
subcategory of L7(BS) with objects the homotopy equivalences g: BS — BS. With
this notation we have a diagram of homotopy equivalences

BS| —=— |L3(BS)| <=— |M5(BS)| 22~ BS (14)
|L5(S)| —= | L5(BS)| <=— |MS(BS)| =~ BS
where same arguments as in [13] for the sequence (13) are used.

Now, for every equivalence g: BS — BS, the composition BS £ BS I, X defines a
centric p—subgroup of X, and then f induces a well defined map of simplicial spaces
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M3(BS) — M¢(X), that makes commutative the diagram

|BS| —=— |L3(BS)| <=— |MS(BS)| 2~ BS (15)

R

L5 O] —== | Lo(X0| =—=— |MECO)| —~ X

Then kg: |BS] =, BS is the composite homotopy equivalence in the top row of the
above diagram, and this finishes proof. a

S Homotopy fixed point p—compact groups

Let M be a space and G a discrete group. An action of the group G on the space M is
group homomorphism
p: G — aut(M)

where aut(M) is the topological monoid of self-homotopy equivalences of M.

Dwyer and Wilkerson introduced [26, § 10] the homotopy theoretic notion of proxy
actions. A proxy action of G on M is defined as a fibration

M——>M;—>BG (16)
Now, this is classified up to fibre homotopy equivalence by a map
BG — Baut(M).

Any action p: G — aut(M) of G on M determines a proxy action by taking Mg =
M X EG to be the Borel construction and the classifying map is Bp: BG — Baut(M).
Conversely, the proxy action (16) produces a rigid action of G on a space homotopy
equivalent to M by turning M — M, into a covering space.

We will adopt the more flexible notion of proxy actions throughout this paper and by
abuse of language will call just an action to a proxy action. In this setting, the total
space M of (16) is called the homotopy quotient space and the homotopy fixed point
space is defined as the space M"C of sections of fibration (16). In this section we use
obstruction theory to develop some basic structure results for M"¢, and we apply them
in the case where M = BX is the classifying space of a p—compact group and to the
proof of Theorem B.

We will show conditions under which M"® is nonempty, and if this is the case, a way to
describe the set of path-components. Fibration (16) induces an action of G on the set

Algebraic & Geometric Topology XX (20XX)



Chevalley p—local finite groups 1033

of path-components of M and mo(M)® denotes the set of path-components of M that
remain fixed under this action. Then, evaluation of a section at the base point b € BG
induces a map

mo(ev)

mo(M") == mo(M)° amn
thus, a necessary condition for M"C being nonempty is that mo(M)® is nonempty.

Fix now a point m € M which represents a G—invariant path-component of M, then,
there is a short exact sequence

1 — m(M,m) — m(Mpg,m) — m(BG,b) — 1 (18)

of fundamental groups, where b = p(m). If m € my(M)® happens to be in the image
of the evaluation map (17), then s(b) = m for some homotopy fixed point s € M"e
and then the exact sequence (18) does have a section, namely (s).

Define H!(G; (M, m)) [62] to be the set (possibly empty) of (M, m)-conjugacy
classes of sections m(BG,b) — m (Mg, m) of the exact sequence (18). Then, the
argument in the previous paragraph produces a well defined map mo(ev)~'([m]) —
H'(G;m(M,m)). In next Lemma it will be shown that, under certain conditions, this
is a bijection for every [m] € mo(M)°.

Since (Mg, m) acts on the homotopy groups m;(M,m) of the fibre, also G =
w1 (BG, b) acts on m;(M,m) through m(s), for a given element s € MG We let
(M, m)**C, i > 1, denote the fixed point group for this action.

Lemma 5.1 Suppose that G is a finite group of order prime to p and that w;(M,m)
is a module over the ring Z, of p—local integers for all i > 2 and all base points
m € mo(M)C. Then the following hold:

(1) A class [m] € mo(M) is in the image of the evaluation map (17) if and only if
the exact sequence (18) splits.

(2) If [m] € mo(M)° is in the image of the evaluation map (17), then there is an
exact sequence of pointed sets

s — H\(Gymy (M, m)) — mo(M"%) 72, )@

where [m] is the base point of mo(M)°.

(3) Ifs € M"C is a homotopy fixed point with s(b) = m then
mi(M"C,5) = (M, m)*©

foralli > 1.
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Proof The Postnikov functors P,, defined as nullification with respect to S"~! (see
[20]), determine a tower of fibrations

My — -+ — PiMug — Pr— 1My — -+ — PiMyc — BG
so that M"C is the homotopy inverse limit of a sequence
= (P — (P M) — - (PIM)'C

of Postnikov homotopy fixed point spaces.

Note that mo(P1 M) = mo(Mp) and that each path-component of P; M), is aspherical
with fundamental group 7 (P1 Mg, m) = w1 (Mg, m) for all m € P{M. It is now easy
to see that H'(G; (M, m)) is indeed the fibre over [m] € mo(PiM)® = mo(M)® of
the evaluation map wo(P1M"C) — 7o(M)° and also that 71 (P1M"C,s) = mi(M, m)*C
for any s € PiM"C with s(b) = m, cf. [47, §6]. Obstruction theory implies that
o(M"9) = 1o(PiM"C). This proves the first two items.

For the third item, suppose that the homotopy fixed point space is nonempty and let
s € M"S be a homotopy fixed point. Then the component (M"“,s) containing s is the
homotopy inverse limits of the corresponding components

o= (PMCs) — (ProiM™C s,) — o — (PIMTCsy)
of the Postnikov homotopy fixed point spaces. To finish the proof, observe [47, 3.1]
that the fibre of (P.M"% s.) — (P,_yM"% s,_;) is the Eilenberg-Mac Lane space
K(m (M, my*S, r). o

Theorem 5.2 Let M be any simply connected p-complete space, G a finite group of
order prime to p, and
M — My — BG

an action of G on M. Then the homotopy fixed point space M"C is nonempty,
7i(M"C) = 7;(M)C for all i > 0, and there is a homotopy equivalence

OM = QM"°) x FibM"® — M)
In particular, the fibre Fib(M"® — M) of the evaluation map M"® — M is an H—-space.

Proof The space of sections M"C is nonempty, connected, and 7,(M"%) = 7,(M)°
according to Lemma 5.1 since M is simply connected and p—complete. We will show
first how to turn this action with a homotopy fixed point into an honest action of G on
a space homotopy equivalent to M and with a fixed point. The pullback diagram

M _—=EG

]

My — BG
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realizes M — M} as aregular covering space with G acting on M. Liftings of sections
BG — M) provide G—equivariant maps EG — M. Let M/EG = M U C(EG) be
the homotopy cofibre of any such G-map. Then M — M/EG is a G—equivariant
homotopy equivalence and the G—action on M/EG has a fixed point.

Now, we can assume that there is an honest G—action on M with a fixed point. Let
QM denote the loop space based at any G-fixed point. There is a fibration sequence

- QM — OM — Fib(M"® — M) - M"® = M
and it suffices to construct a homotopy left inverse for QM"¢ — QM.

Define tr: QM — QM to be the map that takes any loop w to the product [] gw
of the loops gw where g runs through the elements of G in some fixed order. The
image of the induced map tr, : m,(Q2M) — m,.(Q2M), which takes a homotopy class « to
> 2cG 8+t is contained in the fixed group 7,.(Q2M )Y and the composition 7, (QM o -

T.(QM) L5 7, (QM)C is anisomorphism. This implies that the composition QMG —

OM — T, where T is the mapping telescope of QM Lom S ooisa (weak)
homotopy equivalence and we have the left inverse we were looking for. a

Let (X,BX,e) be a p—compact group or, more generally, a loop space. The above
arguments suggest the following definition of a (proxy) action of a discrete group G
on X.

Definition 5.3 Let (X, BX, e) be aloop space and G a group. A proxy action of G on
(X, BX, e) is a fibration

; p
BX—'>BX,c—=BG. (19)
S

with a section, fixed up to vertical homotopy.

When it is clear from the context that we refer to an action in the sense of this definition,
we will simply say that G acts on the loop space X. The section in (19) guarantees an
induced action of G on the space X, compatible with the loop structure. In fact, the
homotopy quotient for this action on X is defined as the pullback space in the diagram

Xno —— BG (20)

i

BG H&' BXhG .
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This diagram turns out to be a diagram of spaces over BG. The homotopy fibre of p
is X, and it has a canonical section s defined by the pullback diagram (20) that we can
interpret as the homotopy constant loop

7 p
X—'>X,6=——=BG.
)

The action of G on X depends on the section s: BG — BXj, and for this action we
obtain that the homotopy fixed point space X" is a loop space with classifying space
B(X"G) ~ (BX)"C, the connected component of (BX)"C with base point the section s.
Furthermore, the evaluation map X"¢ — X is seen to be the loop map of the evaluation
map (BX)"® — BX, thus we have a sequence of fibrations

X6 s x X /X"6 (BX)!6 —~BX

where we write X/X"C for the homotopy fibre of the evaluation map (BX)"¢ — BX.

In section 2 we have introduced Out(X) as the group of invertible elements of the
monoid [BX,BX] of unbased homotopy classes of unbased self-maps of BX. By
analogy with discrete group theory, we call outer action of G on X to a homomorphism
of groups p: G — Out(X). Since Out(X) is well understood (see Theorem 2.2), outer
actions will be a source for group actions on p—compact groups provided we can lift
outer actions to actions in the sense of Definition 5.3. Theorem B solves the problem
in case of finite groups of order prime to p.

Proof of Theorem B Fix a finite group G of order prime to p and p: G — Out(X) an
outer action of G on a connected p—compact group X. Recall that we have a fibration
sequence

B*Z(X) — Baut(BX) — BOut(X)

and that the center of X, Z(X), is p—local. By obstruction theory we obtain a unique
lifting of p to a map p: BG — Baut(BX), that determines an action BX — BX;g —
BG. Furthermore, since 7(BX) = 1, Lemma 5.1.(2) implies that 7o(BX"C) = x; that
is, there is a unique section

BX*>BX},G<:>BG. (2])
up to fibre homotopy equivalence; in other words, p lifts to a unique action of G on X.

This is part (1) of the Theorem. Now, Theorem 5.2 provides the splitting X =~
X"G x X /XhG . Tt follows that X/X"C is an F,—finite H—space, X"C is a loop space
with classifying space BX"C and itis also [F,~finite. Furthermore, BX"C is p—complete
because BX is p—complete [26, 11.13], hence X" is a connected p—compact group.
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The rational cohomology algebra H*(BY;Q,) is polynomial for any connected p—
compact group Y and it follows that the Hurewicz homomorphism induces an isomor-
phism

OH*(BY;Q,) — m.(BY)" ® Q

between the indecomposables and the rationalized dual (7" = Homy, (7, Z,)) of the
homotopy groups of the simply connected space BY [5, Theorem 3.2.3]. For the
connected fixed point p—compact group BX"C, in particular, we have

OH*(BX"%; Q) = m.(BX")Y ® Q = (m.(BX)” ® Q) , = (QH*(BX: Q))),;

for 7, (BX"®) = w,(BX)® as the order of G is prime to p. This proves points (2) and
3).

We finish by proving point (4). Assume p is odd. If X is a polynomial p—compact

group
H*(X;F,) = H*(X"%;F,) @ H*(X/X"%;F,)

is an exterior algebra, hence H*(X"G;]Fp) is an exterior algebra, too. Therefore,
H*BX"S; IF,) is a polynomial algebra. a

Example 5.4 At any odd prime, let C, act on E¢ through the unstable Adams opera-
tion 1) ~!. Since the fixed point p—compact group BEgC2 is the p—compact group BF4
(A.12), there is a splitting

E6 ~ F, 4 X E6 / F. 4

of homogeneous spaces. This splitting is due to Harris [36]. Also, BPEgC2 ~ BFy,
where PEg is the adjoint form of Eg, (A.12), thus there is also a splitting PEg ~
F4 x PE6/F4.

Let p be an odd prime and m a divisor of p—1 so that the cyclic group C,, of order m acts
on BSU(mn+s), 0 < s < m, through unstable Adams operations. Since the fixed point
p—compact group BSU(mn + s)"C is (A.9) the generalized Grassmannian BX(m, 1, n)
with polynomial cohomology H*(BX(m,1,n);F,) = Fplxu, ..., Xuml,
there is a splitting

Xim| = 2im,

SU@mn + s) ~ X(m, 1,n) x SU(mn + s)/X(m, 1,n)

of homogeneous spaces. This splitting is originally due to Mimura, Nishida, and
Toda [45]), although the recognition of X(m, 1,n) as a loop space is due to Quillen
[61] (see also [66, 71, 18]). The case m = 2 is the classical splitting SU(2n) ~
Sp(n) x SU(2n)/Sp(n). Similar splittings for central quotients of SU(n) can be worked
out.
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Similarly, at p = 5, let C4 act on BEyg through unstable Adams operations. The
fixed point p—compact group BE;’C4 is the p—compact group BX3; corresponding to
Zp,—reflection group number 31 on the Clark—Ewing list (see A.12), H*(BX31;F,) =
IF,[x16, X24, X40, x48] Where subscripts indicate degrees, there is a splitting

Eg ~ X31 X Eg/X31
of homogeneous spaces, that was obtained in [68].

At p = 3, BF, admits an exceptional isogeny of order 2 and the fixed point
group BF,;"© is [16] the p—compact group BDI, whose cohomology realizes the
Dickson algebra F3[x|2, x16]. The corresponding splitting

F4 ~ D12 X F4/D12

was first obtained in [37]. Later proofs of this splitting were obtained independently
by Wilkerson and by Kono, using Friedlander’s exceptional isogeny of F4 localized
away from two.

In these last two cases, it was Zabrodsky [71, 4.3], who first recognized the factors
X2 = DI, and X3; as loop spaces. Later, Aguadé gave a nice uniform construction
of a family of modular p—compact groups including these cases [1].

6 Homotopy fixed point spaces of twisted unstable Adams
operations

In this section we proof Theorem E. Part (1) of the Theorem follows from Proposi-
tion 6.2 and Remark 6.3, while Part (2) is Proposition 6.5.

Let X be a connected p—compact group and set v: X — X a p—compact group
automorphism. The homotopy pullback diagram

Bx"® ——— BX (22)

| e 12
(1,«

Bx % Bx x BX

serves as the definition of the space BX"® . If « is homotopic to o, then BX"® ~ BX"

In the special case where o = 7¢? is a twisted unstable Adams operation with g € Z,,,
g # 1, and g # 0 mod p, we also write B'X(q) = BX"™%", or just BX(q), if 7 = 1.
For g = 1 we trivially obtain BX(1) ~ A(BX), the free loop space.
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Assume that o represents an element of finite order r in Out(X), with r prime to
p, and X is a connected p—compact group. According to Theorem B, it defines an
action of the cyclic group C, on X. The next proposition shows that the natural map
A(BX"¢) — BX"* is a homotopy equivalence.

Proposition 6.1 Assume that X is a connected p—compact group. It 3: BX — BX
represents an element of Out(X) of finite order r, prime to p, then BX"? is homotopy
equivalent to the space of free loops on BX"C" | where the action of the cyclic group C,
on BX is given by (3.

Proof According to Theorem B, 3 defines an action of C, on X,
i P
BX——BXjc,—BC,.
A

Evaluation at the base point of BC, induces a map ev: BX"¢r — BXjpc, that makes the
triangle

commutative up to homotopy. Therefore, we can form a homotopy commutative
diagram

A(BX"Cr) BXhCr (23)
\ ‘ K
BXHCr A i BX'Cr s BXhCr
BX"5 BX
N
(1,B)

BX x BX.

We will show that A(BX"“) — BX"® is a homotopy equivalence. According to
Theorem 5.2, BX"Cr is the classifying space of a connected p—compact group and
by Lemma 5.1 the map ev: BX"Cr — BX induces an identification of the homotopy
groups of BX"C with the invariant elements in the homotopy groups of BX by the

Algebraic & Geometric Topology XX (20XX)



1040 Carles Broto and Jesper M. Mgller

action of C,: m;(BX"°") = m;(BX)“" — m;(BX). There is a Mayer—Vietoris long exact
sequence for the homotopy groups of BX"5,

. — m(BX") = m(BX) 1205 mi(BX) — mi(BX"S) — ..
and for the homotopy groups of the free loop space,

. — m(ABX")) = 1(BX"C) & m(BX"Cy — 1 (ABX"CTY) — ..

Both long exact sequences together give

0 ——> 741 (BX)© —— mi(ABX"")) ——— mi(BX)“"

| | |

0 —— Coker{l — 3,} —— m(BXhﬁ) —Ker{l — 5.} —0.

0

Now, Ker(1 — 3,) = m(BX)¢" and Coker(1 — ;) = m;+1(BX)c,. Since r is prime to
P, and the homotopy groups 7;(BX) are Z)—modules for every i > 2, the composition
T 1(BX)¢ — miy1(BX) — miy 1(BX)c, is an isomorphism. Hence also the middle
vertical map 7;(A(BX"")) — m;(BX"?) is an isomorphism. ]

Our next result contains Proposition 6.1 as a special case and it will reduce, in many
cases, the question of describing BX"® to two separate steps. The computation of the
homotopy fixed point space BX"Cr, for elements o of order r prime to p, and the
case in which a = ¢/? is an unstable Adams operation of exponent ¢ = 1 mod p (see
Theorem 2.2 and formula (3) in Section 2). It is one of the two claims of Theorem E.

Proposition 6.2 Let X be a connected p—compact group. If « is an automorphism of
X that factors o = 93 with
(1) g=1modp, and (y?)*: H*(X;F,) — H*(X;IF,) is the identity, and

(2) P is an automorphism of X that represents an element of finite order r, prime
to p, in Out(X),

then BX"* ~ BX"Cr(q) where C, = (3) C Out(X) is the cyclic group of order r
generated by the homotopy class of (3.

Proof Let BY = BX"® denote the homotopy fixed point p—compact group for the
action of the cyclic group C, = (3) C Out(X) and i: BY — BX the evaluation map.
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Now, [ restricts trivially to BY, an in the proof of Proposition 6.1, and then, since /¢
commutes with (3, up to homotopy, we have a homotopy commutative diagram

q
By —2 .y

—ah4
By VP py

that extends to
BY(q)

BY

\BY (Ldﬂ)‘ K
_ >

l BY x BY

—BX

. - K

BX ——— = BX x BX

B Xha

where the top and bottom faces are homotopy pullback diagrams, and the front face
commutes up to homotopy. Consequently, the homotopy fibres of the vertical maps
form another homotopy pullback diagram:

X/ ——— XY

| 3

x/y —5 x)y < x/y

with (X/Y)"* ~ hofib(BY(q) — BX"®), and where we still denote by « the self-
equivalence of X/Y induced by «: BX — BX. Theorem B says that X/Y is a
connected H-space and then we can also describe (X/Y)"® as the homotopy fibre of
l—a: X/Y — X/Y. Italso implies that the map (v9)*: H*(X/Y;F,) — H*(X/Y;F),)
can be read off the map ()9)* defined on H*(X; IF,), which by hypothesis is the identity.
This fact easily implies that (1 — «)* = (1 — 3)* on H*(X/Y;F,).

According to Proposition 6.1, the homotopy fibre, (X/Y)"?, of 1 — 3 is contractible,
hence (1 — )" is an automorphism of H*(X/Y;F,). Thus, a spectral sequence
argument shows that (X/Y)" is mod p acyclic. Finally, it is easy to see that (X/Y)"*
is p—complete, hence contractible, and therefore BY(q) ~ BX"*. a

Remark 6.3 If X polynomial, the effect of 249, ¢ = 1 mod p, onmod p cohomology

of X is determined by the effect of 17 on H*(BX,F,) and this is in turn determined
by the effect of ¢ on H*(BTx;[F,) which is multiplication by ¢, hence the identity.
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For X = F4, E¢, E7, Eg at the prime 3 or X = Eg at the prime 5, we also obtain that
M4, g = 1 mod p, acts trivially on H*(X;F,). In order to check this, we can look at
the Serre spectral sequence for the path—loop fibration X — PBX — BX. It turns out
that the generators for H*(X;F,) either transgress to elements detected in the maximal
torus of BX, or are linked to such elements by Steenrod operations (cf. [46, Ch7]). In
particular, 6.2 applies to all 1-connected p—compact groups, p odd, according to the
classification theorem [7].

In particular, BX((q) = BX"¢)(q) when ( is a (p — 1)th root of unity and ¢ = 1 mod p
satisfies the conditions of Proposition 6.2. If ¢ = 1 we obtain Proposition 6.1,
BX(() = BX"C) (1) = ABXM9), as a special case.

For the next result, we need to interpret BX"® as homotopy fixed point set by the action
of Z generated by a € Out(X). In fact, given v € Out(X), we denote again by «
a representative homotopy equivalence a: BX — BX. The mapping torus is defined
BXjo = BX x I/~, where I = [0, 1] is the unit interval and (x, 0) ~ (a(x), 1). There
is a fibration, up to homotopy,

BX — BXj — S

given by projection onto the second component. This fibration is classified by a loop
we: S — Baut(BX) that represents o € (B aut(BX)) = Out(X).

The space of sections for this fibration clearly coincides with BX"® as defined in
diagram (22), so we can interpret BX), and BX"* as the homotopy quotient space
BX),7 and the homotopy fixed point space BX"”, respectively, for the action of Z on
BX determined by o € Out(X). Notice that since X is connected, so is BX"® ~ BX"”
and therefore, there is a unique lifting, up to equivalence, of the action of Z on BX to
an action of Z on X, in the sense of Definition 5.3.

We will use this point of view in order to proof the second claim of Theorem E. We
will see that an action of Z on BX generated by an unstable Adams operation ¥¢ of
exponent ¢ = 1 mod p, extends to an action of Z, on BX, and that this implies that
the homotopy type of the homotopy fixed point space BX(g) = BX"” depends only on
the p—adic valuation v,(1 — ¢g).

Lemma 6.4 Suppose that BX;z, — BZ, is a fibration over BZ,, with fibre BX. The
p—completion map {: BZ — BZ, induces a homotopy equivalence BX"» — BX"Z of
spaces of sections.
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Proof The maps BZ——BZ,<~——BXjz, determine a commutative diagram

Map(BZy,, BXz,) Map(BZ, BXz,)

l l

Map(BZ,, BZ,) Map(BZ, BZ,)

~

which is a pullback diagram since ¢: BZ — BZ, is an [F,—equivalence [10, 12.2].
(To see that BX,z, — BZ, is an H,.[F,—fibration observe that the action of Z, on
H;(BX;F,), i > 0, is nilpotent because it factors through a finite quotient of Z,.)
Thus the fibre of the left fibration over the identity map of BZ,,, BX"%» | is homotopy
equivalent to the fibre of the right fibration over the p—completion map ¢: BZ — BZ,,
BX"Z. m

Using the description of Out(X) in Section 2 we will see that actions of Z on connected
p—compact groups given by Adams operations 17 extend to the p—adics precisely
when ¢ = 1 mod p. The inclusion of Adams operations in Out(X), described as
q e Z; — 14 € Out(X) induces a diagram of group homomorphisms

Hom(Z,, Z.)) —=— Hom(Z, Z)

| |

Hom(Z,, Out(X)) —= Hom(Z, Out(X))
where the horizontal homomorphisms are given by restriction.

Recall that, for an odd prime p, ZPX = 7Z/p — 1 x Z,, where Z/p — 1 corresponds to
the subgroup of Z, of roots of unity and Z,, is identified with the subgroup of elements
g € 7%, with ¢ = 1 mod p, via the exponential map:

a € Zp — exp(pa) € Z,

(exp defined by the usual expansion exp(pa) = 1 + pa + ...). Since there are no
non-trivial homomorphisms Z, — Z/p — 1, an action of Z on BX determined by an
Adams operation 19 can only be the restriction of an action of Z, if ¢ = 1 mod p.
On the other hand, if ¢ = 1 mod p, then, we can write g = 1 + pm, (m, = %log(q)),
and the homomorphism w,: Z — ZPX that maps 1 to ¢ is clearly the restriction to Z
of the homomorphism &, : Z, — ZPX defined w,(x) = exp(xpmy).

Now, we can prove the second claim of Theorem E.

Proposition 6.5 If ¢,q' € 7, both are of multiplicative order r mod p, and v,(1 —
q") = vp(1 — ¢""), then BX(q) ~ BX(q'), for any 1-connected p—compact group X.

Algebraic & Geometric Topology XX (20XX)



1044 Carles Broto and Jesper M. Mgller

Proof The proof is divided in two steps. First, we will consider the case ¢ = ¢’ =
1 mod p (r = 1). In these cases, the actions of Z given by 17 and Y, respectively,
extend to actions of the p—adics described by m, = %log(q) and my = %log(q’ ),
respectively. The homotopy fixed point space BX"%» depends only of the image of the
action Z, — Out(X). The image of the two actions are clearly the same if and only if
my and my differ by a p—adic unit; that is, if and only if v,(my) = v,(m,), if and only
if v,(1 — ¢) = v,(1 — ¢’), in which case, we have

BX(q) ~ BX"" ~ BX"» ~ BX"" ~ BX(q).
In the general case, we can decompose ¢ = ¢ - g9 and ¢’ = (- gf,, where ¢ and ¢’

are primitive rth roots of unity and go = g, = 1 mod p. Since ¢ and ¢’ generate the
same subgroup of Z,* we have that

BX(q) ~ BX"%)(q0) ~ BX""(g) ~ BX"<) (¢) ~ BX(q'). O

Remark 6.6 If g is a p—adic unit, we can find a prime number gg such that ¢ =
go mod p and v,(1 — ¢") = v,(1 — gp), where r is the order of ¢ mod p, and then,

BX(gq) ~ BX(qo0)
by Proposition 6.5.

In fact, we can assume that ¢ is an integer, otherwise change it by the sum of enough
first terms in its p—adic expansion. Then, by Dirichlet’s theorem there is a prime
number g of the form gy = pVc + ¢, with N > vp(1 — ¢"), satisfying the above
conditions.

7 General structure of Chevalley p-local finite groups

In this section we will study some general properties of the spaces BX(q), obtained as
homotopy fixed point spaces for the action of unstable Adams operations on classifying
spaces of connected p—compact groups. The main results being the identification of
the maximal finite torus, the Weyl group, and the fusion category of elementary abelian
p—subgroups of BX(q).

Proposition 7.1 Let X be a connected p—compact group and « a self homotopy
equivalence of X. Then

(1) BX" is connected and p—complete.
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(2) ¢: BX"* — BX is a homotopy monomorphism at p.
(3) For any finite p—group P, Map(BP, BX"®). ~ BX"*.

L

Proof From the definition we obtain a fibration X — BX"® = BX where X and BX
are p—complete, X is connected and BX is simply-connected. It follows that BX"* is
connected and p—complete.

For any finite p—group P, Map(BP, BX). ~ BX, and Map, (BP, X) ~ X for any choice
of base point. It then follows that .: BX"® — BX is a homotopy monomorphism at p,
and from the induced fibration

Map(BP, X) — Map(BP, BX"*), — Map(BP, BX).
it follows that Map(BP, BX"®). ~ BX" . ]
Lemma 7.2 Let X be a p—compact group, « a self homotopy equivalence of BX,
and (P,v) an object of F,(BX) fixed by « up to homotopy; that is, v ~ aov. If

Cx(P,v) is connected, then there is a unique lifting of v: BP — BX to a homotopy
monomorphism g: BP — BX"®, and

Map(BP, BX"*), ———— Map(BP, BX),
1
Map(BP, BX), — % Map(BP, BX), x Map(BP, BX),

is a homotopy pullback diagram.

Proof Since (22) is a homotopy pullback diagram, there is at least a lifting of v,
g: BP — BX",

The homotopy fibre of Map(BP, BX), A, Map(BP, BX),, x Map(BP,BX), is
Cx(P,v) = Q1Map(BP, BX),,, hence pulling back along 1 X a3 we obtain a fibra-
tion, up to homotopy,

Cx(P, v) — Map(BP, BX"*); <> Map(BP, BX),

where Map(BP, BX"“), consists of all possible liftings of v up to homotopy. The
base space consists of just one connected component, hence if we assume that the fibre
Cx(P,v) is also connected, then the total space must be connected, and therefore any
other lifting of v is homotopic to g. a

The following lemma will help us determine the restriction of « to the centralizers.
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Lemma 7.3 Let X be a connected p—compact group and « a self-equivalence of BX.
Let T(«) be a given restriction of « to the maximal torus T = Tx, and (P, v) an object
of F,(BX).

Suppose that v: BP — BX admits a factorization p: BP — BT through the maximal
torus j: BT — BX. Then, the object (P,v) is fixed by « if and only if T(a)p = wi
for an element w of the Weyl group. If this is the case, the restriction to the maximal
torus of the induced self homotopy equivalence o|cy(p,.) of the centralizer Cx(P,v) is
T(Oz‘cx(p,,/)) =wlo T(a).

Proof (P,v) is fixed by o means that v ~ « o By, and if v factors as j o u, that is
tosay, joBu ~ aojopu~joT(a)o u,and according to [55, 4.1], [49, 3.4], this is
equivalent to the existence of w, in the Weyl group of X, such that wo u ~ BT («) o .

Now assuming the existence of such element w, we read from the commutative diagram

T
BT @ BT w BT

:T@v ETW 21\9"
T(a)y

Map(BP, BT),, ———* > Map(BP, BT),,,, < Map(BP, BT),,

Nljn NJ/M —
(0% jjj

Map(BP, BX),, Map(BP, BX),,

that the restriction of | cy(p) = ay to the maximal torus of Cx(V, v) is wloT(a). O

If the centralizer Cx(V,v) is connected, this determines the restriction a|cy(v,1) (see
Section 2).

Corollary 7.4 Let X be a p—compact group and v: BV — BX a toral elementary
abelian p —subgroup such that its centralizer Cx(V, v) is connected. If 17 is an unstable
Adams operation of exponent ¢ = 1 mod p, g # 1, then

(a) there is a unique lift of v to g: BV — BX(q),
(b) Y| cy(v,) is an unstable Adams operation of exponent g, and

(c) the centralizer of (V,g) in X(q) is Cxy)(V,g) = Cx(V,v)(q).

Proof In particular, when v: BV — BX is a toral elementary abelian p—group in X
and o = 7 is an Adams operation of exponent ¢ = 1 mod p, then we can write
T(yp?) = ¢4, the gth power map in the maximal torus 7 = Tx and ¥? o p ~ u,
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where p: BV — BT is alift to BT of v: BV — BX, so, by Lemma 7.3, there is a
commutative diagram

T =21
BT W=y BT

\L | Cx(V,v) i

BCx(V,v) ———— BCx(V,v)

L

BX BX

this proves (b), namely, 1)?|pcy (v, is, as well, an unstable Adams map 9.

Now, (a) and (c) follow from Lemma 7.2. O

We will now restrict our attention to cases with ¢ = 1 mod p, ¢ # 1. According to
Proposition 6.2, the general case can be reduced to this one, in the cases that are of
interest to us (see Remark 6.3). Hence, essentially, there will be no loss of generality
in our assumption.

Proposition 7.5 Let X be a connected p—compact group, p an odd prime, and ¢ an
unstable Adams operation of exponent g € 7., with ¢ = 1 mod p, ¢ # 1. Then the
inclusion v: Bty — BX of the subgroup of elements of order p in the maximal torus
Tx has a unique lift to g: Bty — BX(q) and its centralizer is

Cx(g)(tx,8) = Tx(q) .

Proof Since Cx(tx,v) = Tx [49, 3.2] and Y|, = T()?) = 97 this follows from 7.3
(see 7.4). O

The group Tx(q) = T, = (Z/pg)”, where n is the rank of X and ¢ = v,(q — 1),
established in Proposition 7.5, embeds in BX(q)

i: BT} — BX(q)

as a subgroup (77, 1) that will be referred to as the maximal finite torus of X(¢). When
no confusion is possible we will simply write 7} for the maximal finite torus of BX(q).
Notice that T} is self-centralizing in BX(q). Then, we define the Weyl group of BX(q)
as the automorphism group

Wx(q)(Tg, )= Aut]:p(gx(q))(Tg) = {QO c aut(Tgl) ‘ i~io Bgo}
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of (T, i) inthe category F,(BX(q)). T} affords afaithful representation Wx (T}, i) —
GLy(Z/p").

The Weyl group of BX(g) can also be interpreted as the set of connected components of
Map, (BT}, BT}) that lie over the connected component of i: BT} — BX(q) through
the map Map, (BT}, BT}) — Map(BT};, BX(q)). The normalizer of the maximal finite
torus of BX(q), BNx(4)(T}), is defined by its classifying space, the Borel construction
for the action of Wx(,)(T}) on Map(BT}, BX(q));, together with the inclusion

i: BNxq)(T}) = (Map(BT}, BX(9)):),, , — BX(g)

Wxg)(T}

induced by evaluation at the base point of BT} .

Proposition 7.6 Let X be a connected p—compact group, p an odd prime, and 9 an
unstable Adams operation of exponent q € Z, with g = 1 mod p, g # 1. If (T}, i) is
the maximal finite torus of BX(q), then its Weyl group is

Wxo(T}) = Wx

the Weyl group of X, with action on T given by the mod p! reduction of the p—adic
representation of Wy . The normalizer of the maximal finite torus is the split extension
Nxg)(T}) = T} x Wx(T}), and its classifying space fits in a homotopy commutative
diagram

BNx(q)(T}) ——= BN 24)

| l,-

BX(q) —— BX..

where j: BN — BX is the inclusion of the maximal torus normalizer of X .

Proof We will first see that the automorphism in F,(BX) of T} as a subgroup of BX
via the composition ¢ o i: BT} — BX, Wx(T}), coincides with the Weyl group Wy.
In fact, an element w € Wy is a homotopy equivalence of BT over BX. Its restriction
to BT}, factors again to give a homotopy equivalence w of BT} and a homotopy
commutative diagram

BT} —— BT (25)

LN

w w

BT —— BT N BX

where BT ~ K(ZZ, 2) and the map BT} — BT classifies the extension class of the

4
exact sequence (Zp)" L, (Zp)" — (Z /pe)”. Hence, if w is represented by a certain
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matrix in GL,(Z,), then w is represented by its mod pZ reduction in GL,(Z/ pf). We
have produced a homomorphism Wx(T;) — Wx which is injective because Wy is
finite and mod p’Z reduction has torsion free kernel in GL,(Z,). Furthermore, since
Map(BT}, BX),.; = BT, it turns out that every homotopy equivalence of BT} over BX
can be extended to a diagram like (25) and therefore we actually have an isomorphism
Wx(Ty) = Wy.

Next, we compare Wx,)(T}) and Wx(T;). By composition with +: BX(q) — BX,
every homotopy equivalence w of BT} over BX(g) can also be considered over BX

BT}
| N
BT! —'> BX(q) ——> BX

what gives an inclusion Wy,)(T}) — Wx(T}). Now, Lemma 7.2 implies that this is
actually an isomorphism.

Finally, the natural maps

Map(BT}, BX(q)); ——~ Map(BT}, BX(q)).0i <~— Map(BT}, BX(q));

induced by composition with +: BX(q) — BX and with the inclusion BT} — BT,
respectively, are equivariant for the respective actions of Wx,)(T}), Wx(T}) and Wy,
respectively, induced by the natural actions on the first component. Applying the Borel
construction, we obtain a map

BNx(g)(T§) —> (Map(BT}', BX(@)):ci) ) = BN

and diagram (24) is induced by evaluation at base points. Moreover this maps extends
the map between classifying spaces of tori to give a diagram of fibrations

T———>T

.

BT} —> BNx(g)(T}) —= BWx(o)(T})

T

BT BN BWx

where T ~ QBT ~ K((Z,)",1). By [6, 1.2] the bottom row fibration has a section and
by [6, 3.3] this section lifts to a section of the fibration in the middle row. It follows
that Nx,)(T7) is a split extension. O
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For X a p—compact group and « a self equivalence, the inclusion v: BX"* — BX
induces a functor between the respective fusion categories

u: Fp(BX"™) — F(BX)

and Lemma 7.2 above gives some useful information in order to compare the morphism
sets. Thus, for instance,

Mor z gxia)((P, &), (@, h)) — Morz,sx)((P, ¢ 0 g),(Q, ¢ 0 h)) (26)

is abijection provided Cx(P, tog) is connected. Itrarely happens that those centralizers
are connected for a general p—group P, but it is not so unusual if we restrict to some
particular classes of small groups. For a space Y, we denote F,(Y) the full subcategory
of F,(Y) whose objects are the elementary abelian subgroups of Y.

Corollary 7.7 Let p be an odd prime. If X is a connected polynomial p—compact
group and « a self homotopy equivalence, then the functor

v Fr(BX") — F5(BX)

is both full and faithful.

Proof If X is a connected polynomial p—compact group, then centralizers of elemen-
tary abelian p—subgroups are connected and Lemma 7.2 applies. In fact, if (E, v) is an
elementary abelian p—subgroup of X, then the centralizer Cx(E, v) is also a polynomial
p—compact group, hence H YBCx(E, v); [F,) = 0 and therefore Cx(E,v) is connected
(see [29, 1.3]) and the map (26) is a bijection for every elementary abelian p—subgroups
(P, g) and (Q, h) of BX"*. O

Corollary 7.8 Let p be an odd prime. If X is a connected polynomial p—compact
group and ¢4 an unstable Adams operation of exponent q € 7, with ¢ = 1 mod p,
then

v Fp(BX(q)) — F,(BX)

is an equivalence of categories.

Proof By Corollary 7.7 we only have to check that ¢4 induces in this case a bijection
between isomorphism classes of objects, and this follows from Proposition 7.5, because
in a polynomial p—compact group every elementary abelian subgroup is toral. a
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Let X be a polynomial p—compact group with trivial center and g € Z,, a p—adic unit
with ¢ = 1 mod p, g # 1. Putting BCx,)(V,g) = Map(BV, BX(q)), for any object
(V,g) of f;(BX(q)) we get a functor from ]-";(BX(q))"p to topological spaces. There
is natural map

hocolim BC — BX
FoExqyr @ @

from the homotopy colimit of this functor. When Cx(V, g) is connected, we have

BCx)(V,8) ~ BCx(V, 10 8)(q)
according to Lemma 7.3 and Corollary 7.4.
Let Tx be the maximal torus and Wy the Weyl group of a p—compact group X, p
odd. As usually, we denote by tx the group of all elements of order p in T, and

g: Bty — X(g) the inclusion. For any nontrivial elementary abelian p—subgroup
E < T, write Wx(E) for the point-wise stabilizer subgroup of E.

Proposition 7.9 Let X be a polynomial p—compact group with trivial center, p odd,
and q € Z,, a p—adic unit with g = 1 mod p, q = 1. Assume that
H*(BX(q): Fp) = H*(BTx(9); Fp)"™
and that
H*(BCx(q)(E, 8|5£); Fp) = H* (BTx(q): Fp)"*®
for any nontrivial, subgroup E of tx. Then, the natural map

hocolim BC — BX 27
FeBxgyr D @ 7)

is an [F,—equivalence.

A similar statement holds with F;(BX(q)) replaced by the full subcategory generated
by all objects of the form (tx)’ where P runs through the subgroups of a Sylow
p—subgroup of Wy.

Proof The functor from ]—";(BX(q)) = .7-";(BX) to the category of IF,,—vector spaces
that takes an object E to H*(BCx)(E);F),) = H*(BTX(q);IFp)WX(E) is acyclic in the
sense that lim® = H* (BTx(q); FP)WX and the higher limits vanish [25, 8.1]. Therefore,
the Bousfield—Kan spectral sequence for the cohomology of the homotopy colimit

hocolim BCyy)
FE(BX(q)”

(see [11, XII.4.5]) collapses at Er—term, and then, it shows that (27) is an F,—
equivalence. The same conclusion holds if we replace the category F,(BX(q)) by
its full subcategory generated by all objects of the form (tx)” where P runs through
the subgroups of a Sylow p—subgroup of Wy [53, 2.16]. a
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This result motivates the research on the cohomology rings H*(BX(g);F,) and on the
invariant rings H*(BTx(q); ]F,,)WX, in the next two sections.

8 Cohomology rings

This section is devoted to the proof of Theorem F. The Eilenberg—Moore spectral
sequence is used in order to get a hold of the cohomology rings of the spaces BX(q)
of fixed points of unstable Adams operations acting on polynomial p—compact groups
BX. We follow the arguments of [64] that already contain the first part of the theorem.

Proof of Theorem F Part (1) is due to L. Smith [64]. We will sketch his arguments
here and then will continue with the proof of the second part of the theorem.

There is an Eilenberg—Moore spectral sequence associated to the pullback diagram

BX(q) —* BX (28)
P
1 x1p?
BX BX x BX.

This is a second quadrant spectral sequence with
Ey" = Tor}., xyye2 ' (BX:Fp), H'(BX: F))) = H*™(BX(9); F,)
converging to a graded ring associated of H*(BX(g); ).

For simplicity, we will write P[x;] = Plxy,...,x,] = H*(BX;FF,). The Koszul
complex
E(x;) = Plx;] ® Plx;] ® E[sx1, . ..5%,]

with bideg(sx;) = (—1,2d;) and d(sx;) = x; ® 1 — 1 ® x;, is a free resolution of P[x;]
as (P[x;] ® P[x;])—module, with module structure given by the multiplication m = A*.
Then, Tor}k,’fxl,]@) Pl (PLxi], Plx;]) is the homology of the complex

Plxi] ®ppxjopri) €(0) = Plxi] @ E[sx1, . . . sx,]

where now the action of P[x;] ® P[x;] on the left hand side term P[x;] in given by the
algebra map (1 x 19)*, hence one obtains the expression d(sx;) = x; — g%x; for the
differential, but since ¢ = 1 mod p, we actually have d(sx;) =0 forall i = 1,...,n.
This yields

E3" 2= Torji, o pp (PL1, PLGT) = Plxt, ] © Elsxi, - 5%,
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and, since the algebra generators appear in filtration degrees 0 and —1, the spectral
sequence collapses at the E;—page and then we can find elements y; in H*(BX(q);F),)
representing sx; in the graded associated ring, with

H*(BX(q); Fp) = Plx1, ..., %a] ® Ely1, ..., ynl -

Let Tx be the maximal torus of X and Wy the Weyl group. Since X is polynomial,
the mod p cohomology ring of BX coincides with the invariants by the action of the
Weyl group on the mod p cohomology of BTy, H*(BTx;F,)"* = H*(BX;F,) =
Plxy, ..., x,].

According to 7.4, 7.5, the classifying space of maximal finite torus of X(g) is BT(q) =
BT} and it is obtained from a pullback diagram

BT} —“—~ BT (29)

F o P
x4

BT —— BT x BT .
Furthermore, the Weyl group is Wx (7.6) hence, the restriction map
i*: H*(BX(q);F,) — H*(BT};F),)
has image in the invariant subring by the action of the Weyl group, Wx. It remains to
show that this restriction map is injective.
The pullback diagram (29) yields another Eilenberg—Moore spectral sequence:

Ey' = Tor}). e or(H*(BT;Fy), H'(BT: F,)) = HV(BT};F,).

We will pay special attention to the map between the two spectral sequences i*: EF* —

Ff* induced by the natural map from diagram (29) to diagram (28) given by inclusion

of the maximal torus. In order to describe the induced map at the level of E,—pages,
we need some elementary algebraic considerations.

Again for simplicity, we will write P[t;] = P[ty,...,t,] = H*(BTx;F,). The kernel
of the multiplication m: P[t;] ® P[t;] — P[t;] is a Borel ideal

Kerm=#tH®1—-1®¢t,...., 31 —1®1t,)
and then we can define derivations
0;: P[ti] — Plt;]

for i = 1,...,n, in the following way. For any homogeneous polynomial f € P[¢],
f®1—-1®f € Kerm, hence we can find an expression f@ 1 —1Qf = > ¢;(F)(t;® 1 —
1 ® t;), with coefficients ¢;(f) € P[t;] ® P[t;], and then define 9;(f) = m(c;(f)) € P[#].
A routine calculation shows:
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(1) 0; is well defined and does not depend on the choice of coefficients c;(f),.. .,
Cn(f) >
(2) 0; is a derivation of P[t;], and
3) 9i(t;) =1 and 6,'(1‘]‘) =0 ifj 7& i.
These properties show that these are the partial derivatives:

0
o) =

After these considerations we can easily describe the map between the respective E,—
pages and show that it is injective. In order to compute the F;* we define now the
Koszul complex

E(t) = P[t;] ® P[t;,] ® Elsty, . . . st,]
with bideg(st;)) = (—1,2) and d(st;) =1, ® 1 — 1 ® t;. As before, we obtain that
E," = Torpjepi (Pl Plti]) = Plti] ®pepr) €)= Plt]) @ Elsty, . .. sty] (30)

since the differential in this complex turns out to be trivial, again, because ¢ = 1 mod p.
Also as before, the algebra generators of F;* appear in filtration degree 0 and —1 and
therefore the spectral sequence E. collapses at the E>—page.

Now, the inclusion i*: P[x;] — P[¢;] extends to a map of Koszul complexes
i E(x) — E@)
which is a P[x;] ® P[x;]-module map defined by
i"(sx) = Y cilx) ® st
J
on generators. Then the induced map
i* 1 Torppy1opp (PLXi], Plxi]) = Plx;] @ Esxy, . . . sx,]
— Torpy, py, (Pltil, Plti]) = Plti] ® Elsty, . ... sty]
is determined by
. Ox;
i (sx;) = ;aj()fi) ® st; = ; a—t] ® st; .

Now, i* is injective because the Jacobian determinant is non-trivial,

ax[
J=det| — 0
) <3fj> 70
by [69]. Since both spectral sequences collapse at the E,—page, it follows that the
induced homomorphism i*: H*(BX(q);F,) — H*(BT};IF,) is also injective. O
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Remark 8.1 The argument with the Eilenberg—Moore spectral sequence used in the
proof of part (1) of the above Theorem applies more generally to the case of any
unstable Adams operation 7 of arbitrary exponent ¢ € Z; acting on a polynomial
p—compact group (see [64]). Under these more general hypothesis we obtain that if
H*(BX) = P[xy, . ..,x,] then the cohomology of BX(g) is

H*(BX(q);Fp) = Plxi,, ..., x; 1 ® Elyiy, ..., yi,]

where the polynomial generators x;; correspond to those x; with degree 2d; = degx;
where m|d;, if m is the order of ¢ mod p, and 2d; — 1 = degy;.

Notice that we can write ¢ = (¢’ where ( is an mthroot of onein Z, and ¢’ = 1 mod p.
Hence 94 = wa 0 ¢, and 1 has finite order m as automorphism of the p—compact
group X. It follows from 6.2, 6.3, that BY(q') ~ BX(q) if BY = BX"* Moreover,
by Theorem B, Y = XM s again a polynomial p—compact group. According to
Theorem F the cohomology of BY must be

H*(BY;F,) = Plx;,, ... x;,].

9 Invariant theory

Let X be a polynomial p—compact group of rank n and let g be a p-—adic unit,
g=1modp, q#1,and £ = v,(1 — g). In the second part of Theorem F we obtained
a monomorphism i*: H*(BX(q);F,) — H*(BT”;IFP)WX, where T} is the maximal
finite torus of BX(g) and Wx the Weyl group (see 7.5, 7.6). Whether or not i* is an
isomorphism, H*(BX(q); F,) = H*(BT}; IFP)WX, is now a question of invariant theory
and this is the subject of this section.

We recollect the necessary results from invariant theory and apply that in a case by
case discussion, based on the Clark—Ewing list, and restricted to our cases of interest,
namely:

(1) Non-modular groups. This consists of groups represented in a characteristic p
that does not divide the order of the group. (Example 9.2.)

(2) Family 1 in the Clark—Ewing list. These are the symmetric groups 3,4 repre-
sented as Weyl groups of SU(n + 1). (Examples 9.3 and 9.4.)

(3) Family 2a en the Clark—-Ewing list. The groups G(m, r,n), rim|(p — 1), m > 1,
(m,r,n) # (m,m,2). (Example 9.5.)

(4) Family 2b en the Clark—Ewing list. Dihedral groups Dy, = G(m,m,2), m > 3.
(Example 9.6.)
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(5) The Aguadé family. These are the groups Gi2, Gag, G31, and Gs34 in the
Clark—Ewing list (see [1]). (Example 9.7.)

We obtain that i*: H*(BX(q);F,) — H*(BT";IE‘I,)WX is an isomorphism in all cases
except for >3 at the prime 3 (included in class (2) above) and Wg, , the Weyl group of
G, and Gy, at the prime 3. It is also excluded the case 2b with m = 3 and p = 3,
that corresponds to PU(3) at prime 3.

From here one easily derives the structure of BX(gq) for Clark—Ewing p—compact groups
and this is done in Theorem 9.8. The Aguadé family and 2a family are our cases of
main interest and the discussion is postponed to sections 10 and 11, respectively. All
of the other cases correspond to compact Lie groups.

At the end of the section we illustrate this methods with some examples going from
9.91t09.13.

Continuing with the notation of the preceding section we write V = rx for the
elements of order p in the maximal finite torus and identify the dual vector space with the
two dimensional primitive elements in the cohomology of BT?, V* = PH?*(BTY; Fp).
The Bockstein operations provide a vector space isomorphism PHZ(BT”;FP) =
HI(BT”;IE‘,,), that we will denote as d: V* — dV*, of degree (—1). If P(V*) is
the symmetric algebra on V* and E(dV*) the exterior algebra on dV*, we can describe
the algebra structure of H*(BT};IF,) as

K(V*) = P(V)® EdV*) = P[x1,...,x,] ® Eldxy, . ..,dx,],

and d extends to an algebra derivation on K(V*). Moreover, any subgroup G < GL(V)
of linear substitutions acts on K(V*) in a natural way that commutes with the derivation
d, hence K(V*)C is still a differential algebra.

Assume that the ring of invariants, P(V*)® = P[py,..., p,] is a polynomial algebra;
in particular, G is a reflection group. Then dpy,...,dp, are also invariant under
the action of G. The purpose of the next theorem is to establish the cases in which
{p1,...,pn,dp1,...,dp,} is a free system of generators for K(V*)¢.

An element f of P(V*) is invariant relative to det™! if g - f = det™!(g)f for all
g € G < GL(V). The subspace of relative invariant elements, P(V*)gerl , 1s a module
over the invariant ring P(V*)¢. In fact, P(V*)get_ 1= [t P(V*)C is a free module
on one generator f;—1 € P(V*), unique up to an invertible of IF, [17]. For instance,
if we write dp; = Z]’.lzl a;dx;j, then the Jacobian J = det(a;) € P(V*), of degree
degJ = >"" ,(deg p; — 2), is invariant relative to det™!. In particular, Jyer—1 divides J

in P(V*) and degf,,—1 < > (degp; —2)
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Theorem 9.1 ([12]) Let V be a vector space of dimension n over a field of charac-
teristic p # 2. Assume that G < GL(V) is a group of linear substitutions such that
P(V*)Y = P[py, ..., pal is a polynomial algebra, then

K(V)S =Plpi,...,pa) ® Eldp1, . .., dpy]

if and only if f,;,,—1 has degree degfy,,—1 = > ._,(deg p; —2).

Proof Since P(V¥)¢ = Plp1,...,pn] 1s a polynomial ring of invariants, the Ja-
cobian is non-zero, J # 0 (see [69]), and this implies that the homomorphism
Plp1,-..,pn]l ® Eldpy, - . . ,dp,] —K(V*) defined from the free anti-commutative alge-
bra to the subalgebra of K(V*)® by mapping the variable p; to the polynomial p; of
P(V*)Y and dp; to the differential of p; in K(V*) is injective.

If I = (iy,...,i) is an ordered sequence of integers 1 < i; < -+ < iy < n, we write
dpr = dpj,dpi, . . .dp;, and also dx; = dx; dx;, . ..dx;, . Let FP(V*) be the graded field
of fractions of P(V*). Then, FK(V*) = FP(V*) ®p~+) K(V*) is a vector space over
FP(V*) spanned by {dx;};. And then, {dp,}; is also a base of FK(V*).

Assume that degf,..—1 = > _._,(deg p; —2). This is the degree of the Jacobian J, hence
J = fler1» Up to an invertible of F,,. Let w € K(V*)“ be an arbitrary element. We can
write w =) | ;widpy, with w; € FP(V*) and then we will show that actually, for each
index I, w; € P(V*). We choose I of minimal length such that wy, # 0. Let ) be
the complementary sequence, then
de,(/) = wlodplodpl(/) = wydpy ...dp, = £wyJdx; .. . dx,

is an element of K(V*)©, and, since dx; ...dx, is invariant relative to det, wr,J €
P(V*)gm_1 = fdet—IP(V*)G. So, our assumption implies that w;, € P(V*)?. Now we
can repeat the argument with w — wy,dp;, € K(V*)C. It follows that each w; belongs
to P(V*)® and then w € P[py, ..., p.] ® Eldp1, ... ,dp,].

Assume otherwise that degf,,—1 # Y ;_,(degp; — 2); that is, J = uf,,—1 for some
element ¢ € P(V*)C of positive degree, then

dpy...dp,
w = 2P apn = faer—1dx1 . . . dx,
L

is an element of K(V*)¢ which does not belongto Plp1, ..., pu]RE[dp1,...,dp,]. O

In the examples below, we explore the invariants K(V*)¢ for all groups G in the
Clark—-Ewing list that have polynomial invariants. We proceed by looking at the
different families, as they are listed at the beginning of this section, and we isolate
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the cases G where K(V*)C is not a free graded anti-commutative algebra; namely, >3
(from Family 1 in the Clark—-Ewing list), D1, (from Family 2b in the Clark—Ewing
list), and G, all of them at p = 3.

Example 9.2 (G a non-modular group [3]) If G < GL(V) is a reflection group of
order not divisible by p, then it is known that P(V*)¢ = P[py, ..., p,] is a polynomial
algebra and also that the degree of f;..—1 is twice the number of reflections in G. On
the other hand, the number of reflections in G is El'-‘:l(% — 1). Hence degf;,,—1 =
> i (deg p; — 2) and then Theorem 9.1 implies

K(V*)¢ = Plp1,...,pal @ Eldp1, . ..,dp,].

For a group G < GL(V) we denote [x] = {gx| g € G} the orbit of an element x € V*.
The coefficients ¢; of the polynomial Hye[x] X=y)=X"+c X" " depi X+cpm
are the Chern classes of the orbit [x] and belong to P(V*)S. The element ¢,, = Hye[x] y
is also called the Euler element of [x]. If we choose just one element z; € L N [x] for
each 1-dimensional vector subspace L of V* that intersects the orbit [x] non trivially,
E[x] = ][]z is the pre-Euler element of the orbit [x], defined up to a non-zero scalar.
This is a relative invariant respect a linear character y of G that we can associate to
the orbit [x] by the equation g(E[x]) = x(g) - E[x], for all g € G. (See [12, 17].)

Example 9.3 (Family 1 in the Clark—Ewing list: X, 1, except X3 at p = 3) The
symmetric group Y, acts on the integral lattice of SU(n + 1) that we can describe

as V = Z{(t — tht1), (&2 — Tyt1)y - - -, (In — Ty41)} where X, permutes the letters
t,...1,e1. Dually, V* is generated by classes f1,1,...,1,, and 3, permutes
t,t, ... Iy, the1 With the relation ty +t, +--- +t, + 1,41 = 0.
The orbit of ¢ is [11] = {ti1,t2,...,tn,ta+1}, and the Chern classes of this orbit,
obtained as the coefficients of the polynomial Hl’.‘:ll (X — t), are, up to a sign, the
generators ¢; of the invariant ring P(V*)¥nt1 = Plca, ... cny1l.

The orbit of 1; — 1 is
[t -]l ={tG—t)|1 <ij<n+1,i#j}
:{i(t,—lj)‘1§l§]§n+l}
={£ti -1 <i<j<npu{Et+ - +24+---+1,)|1 <i<n},

thus the pre-Euler element associated to this orbit is

E=En-nl= [ G-t [+ 42+ +t).
1<i<j<n 1Zi<n
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Notice here the exception n = 2 at p = 3, in which case E[t; — ] = (t; — ).
With this exception, we can check that the linear character associated to the pre-Euler
element is precisely the determinant (det = det™! in this case) and also that the degree
of E, n* + n, coincides with the degree of the Jacobian J. Thus for (n, p) # (2,3), we
have

K(V¥)E+ = Plcy, ..., cup1] @ Eldcy, . .. depi] .

Example 9.4 (X5 at the prime 3) The integral lattice of SU(3) is m(Tsy@3)) =
Z{(ly — 13), (1 — 13)} with the action of X3 that permutes 7, 7, and 73. If 33 is
generated by the 3—cycle o and the transposition 7, the representation afforded by
m(BTsy(3)) is determined by

-1 -1 0 1
— — .
7 1 o0) "7 o
The dual action in mod 3 cohomology V* = H*(BTsya):F3) = Fi{t;,nn} gives

P(V*)* =2 Plx4, x¢], where x4 = 112 + t1to + 12> and xg = t112(t; + t»). This is the
particular case of Example 9.3 with n = 2 at the prime 3.

The action extends to K(V*) = P[t1, h|QE[dt,, dt,] where we obtain invariant elements

v3 =dx4 = (2 — t1)dt] + (11 — t)dt
ys = dxg = (12° — ti)dt) + (1% — t112)dn

and
y4 = (ty — t1)dtdt,

so that
y3ys = (1% 4 tity + 022)(t2 — ty)dtidty = x4Y4 .

These elements together with the polynomial invariants generate the invariant ring
K(V*)>s:

Plxs,x6] ® E[y3,y4,ys]
(V3Ys — X4Y4, Y3V4, Y4Ys)
The proof follows the method of Theorem 9.1. In this particular case 1,dt, dty, dt dt»
is a basis of K(V*) as a free P(V*)—-module, while 1,ys,ys,y3ys or 1,ys3,y4,ys are
basis of FK(V*) as graded FP(V*) vector spaces.

K™ = (€29)

Assume that w is an element of K (V"‘)23 of even degree. We can write w = wgy +wyyq4,
with wo,w; € FP(V*). First, multiply the equality by y;: wys, € K(V*)™ and

wys = woys = woltz — t1)dndty. Then, wo(ty — 11) € P(VS)3 ) = (12 — )PV,
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hence wy € P(V*)™3. Now, we also have w;ys € K(V*)>3, hence the same argument
implies that w € P(V*)*3,

Next, assume that w is an element of K(V*)>3 of odd degree. In this case, w =
way3 4+ ways with wo, w3 € FP(V*). If we multiply this equality by ys € K(V*)™ we
get wys € K(V*)™ and wys = wyysys = waxsYs, and then again the equality woxgys =
waxa(ty — t)dtidty € K(V*)™ implies that woxs € P(V*)™. Since P(V*)™ =
Plx4,x6], we can write wy = ¢ + )\%, g» € P(V*)™ and \ € F3, r > 0. A similar

argument, in which we multiply w by y3, implies that w3 = g3 + ,u%, q3 € P(V¥)™
and p € F3, s > 0. If we substitute these expressions in w = wpy3 + wiys we can
easily check that this element can only belong to K(V*) provided A = 1 = 0. It follows
that w, = g5 € P(V*)®3 and w3 = q3 € P(V*)¥3 . This proves the isomorphism (31).

Example 9.5 (Family 2a in the Clark-Ewing list: G = G(m, r,n), rim|p — 1, [12])
G(m, r,n) is the subgroup of GL,(Z,) generated by the permutation matrices and the
diagonal matrices diag(f, ..., 6,), where 67" = 1 and (6, ...0)7 =1.1In particular,
G(m, 1,n) is isomorphic to the semi-direct product (Z/m)" x ¥,. In this case we
clearly have P(V*)Cm1m) = Plp ... p,], where 1+ p1 + -+ py = [, (1 +x),
if we write P(V*) = Plx,...,x,]. Now, p, = (x1...x,)" is the Euler element
associated to the orbit of x;, [x;]. The pre-Euler element is E; = E[x;] = x1...x,. It
carries an associated linear character i, defined by x;(diag(f,...,0,)) = 61...0,
and yi(o) = 1 if 0 € %, is a permutation matrix. Notice that G(m, r,n) = Ker X?
and .
POV = Plpy,. . put, BV ]

The orbit of (x| — x2) is [x1 — x2] = {61x; — Oox; |0 = 0 = 1,i < j} and
its pre-Euler element is E, = [, <" — xj"). In this case the associated character
is x» defined by ya(diag(d;,...,6,)) = 1 and x2(0) = sg(o) is the sign of the
permutation. We clearly have det = x> and then det™! = X?_l x2. It follows that
Jaer-1 = E?_IEZ. Counting degrees, we obtain Z?:_]l (degpi —2) + deg(E? )—2 =
Z;’z_ll (2im—2)+2n"! =2 = n(n— )m+2n(": — 1) = degfy..—1 . Hence, Theorem 9.1
implies

m m

KW = Plpy, ..., pa1, E{ 1@ Eldpy, ..., dpa—1,d(E] )]

Example 9.6 (D, at the prime 3) In family 2b there are two modular cases at odd
primes, namely, Dg and Dj; at p = 3. The first one is the Weyl group of PU(3)
which is not polynomial at p = 3, the second case corresponds to the Weyl group of
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the exceptional Lie group G,. The action of D> on m(BT¢,) gives a representation

0 -1 . 0 1
= .
Y7o ) T oo
The dual action in mod 3 cohomology V* = H*(BTg,;F3) = F3{t;,} gives

P(V*)P12 2 P[xy, x15], where x4 = 112 + t1tr + 1° and x12 = (t112(1) + 12))*.

The extension of this action to K(V*) gives now

Plx4,x12] ® E[y3,¥10,Y11]
(V3¥11 — X4Y10, Y3Y10, Y10Y11)
with elements y3 = dx; and y;; = dxia, so that y3y;; = (11> + tits + b)0(H —
12)dt dt, = X410, Which serves as definition for y;o. The isomorphism (32) is proved
with same arguments of Example 9.4.

K(V*Pr =~

(32)

Actually, the inclusion of SU(3) as maximal subgroup of G, induces an inclusion
Y3 < Dj,, identifying the generator 7 and o with w?. The induced inclusion
K(V*)Pr2 < K(V*)®s identifies the generators x4 and y3 and maps xj» to X62, Y10 to
—Xey4 and yi1 t0 —xeYs.

Example 9.7 (G2, Gag, G31, and G34 in the Clark—Ewing list at modular primes)
The groups Gy» (rank 2, p=3), Gy9 (rank 4, p=5), G3; (rank 4, p=5), and G34 (rank
6, p=T), of the Clark—-Ewing list have polynomial invariants [1, 2, 70].

We obtain by direct calculation that the generator of the det ™! —relative invariants Jaer—1
has the same degree as the corresponding Jacobian in cases Gig, G31, and G34, and
then Theorem 9.1 applies.

The case G = GL(2,3) is special. Notice that all those groups contain a copy of
the symmetric group of the same rank affording the representation of Example 9.3.
G1y contains X3 as described in Example 9.4. The invariant ring K(V*)GL(2’3)
computed by Mui [56] (alternatively, use the arguments in Example 9.4):

Plx12,x16] @ E[y10, Y11, Y15]
(V11Y15 — X16Y10, Y10Y115 Y10Y15)

was

where 3o 30
(t'n” —n’h7))

(11123 — Bo113)
yi11 = dx12, y15 = dx16, and yjg is defined by the relation yi1y;5 = x16V10-

i’ —nn?)
(nn® —nn3)’

1
X12 xX16 = P (x12) =

We can easily obtain the description of the inclusion

K(V*)GL(Z,S) AN K(V*)Z3
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as

re P, xi6l ® Elyioyinyisl - Plxa, Xe] @ Elys, y4, ys]
Or11y15 — X16Y105 Y10Y11, Y10Y15) (V3Y5 — X4Y4, Y3Y4; Y4Ys)
mapping
X12 = X4° + Xg” )
X16 > X6 X4,
Yis > X6"Y3 — XaXeYs ,
Yi1 > —XgYs , and

Y10 — X6Y4 -

Let X be a Clark—-Ewing p—compact group; that is, a connected p—compact group for
which p does not divide the order of the Weyl group. Models for these p—compact
groups were constructed by Clark-Ewing [19]. If Wy is the Weyl group of X, the
action of Wy on the maximal torus Ty is determined by the induced representation
p: Wx — GL,(Zp), where n is the rank of X. This representation gives Wy the
structure of a Z,—reflection group, thus product of irreducibles listed in [19]. It turns
out that BX ~ (BTpw, ;,\, where the action of Wx on BT is given by p [24]. Our next
result is a similar description of X(g), for ¢ = 1 mod p.

Theorem 9.8 Let X be a Clark—Ewing p—compact group and ¢ = 1 mod p, g # 1,
then

BX(q) = ((BTx(@)wy ), = B(T} x Wx))
with Tj = (Z/pg)", where n is the rank of X and { = v,(q — 1).
Proof In Proposition 7.5 we have obtained a map BT} =, Map(BV,BX(q))pi —
BX(g) and according to Proposition 7.6 we have a factorization
BT} =~ Map(BV, BX(q))pi — (Map(BV, BX(9))s:) ,yy,, —> BX(q)-
The induced maps in cohomology are
H*(BX(q):Fy) — H*((BT{)wwy) ——= H*(BT})"x

where the second arrow is an isomorphism because the order of Wy is prime to p and
the composition is a monomorphism by Theorem F.

According to theorems Fand 9.1, H*(BX(q); F,,) and H* (BTg‘)WX has the same Poincaré
series, hence H*(BX(q);F,) = H*((BT})nwy) and the result follows. O
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Example 9.9 (SU(2) at odd primes) The Weyl group of SU(2) is Z/2 acting on the
maximal torus S' C C by sign change, that is, as 1»~!. Then, Theorem 9.8 applies.
All spaces will be considered completed at p > 2.

Let 1% be an Adams map of exponent ¢ € Z3, g # 1. We have that BSU(2)(q) =
BSUQ2)(—q) as ¢p~7 = 1)~ o9p? = )7 because 1)~ is the identity. For ¢ = 1 mod p,
define ¢ = v,(1 — ¢), and then BSU(2)(g) has maximal finite torus Z/pe and Weyl
group 7Z/2, acting by sign change, so

BSUQ2)(9) = (BZ/p"Viz
is an equivalence at the prime p.

Notice that if ¢ # +1 mod p, then we can write ¥¢ = ¢ o 1/;‘7', where ( is a
(p — 1th root of 1, different than 1, and ¢’ = 1 mod p. Then, by Proposition 6.2,
BSU(2)(q) ~ BSU(2)"¥*(¢'), and according to Proposition A.5 (see A.8), BSU(2)"*
is trivial, hence BSU (2)(q)1/,\ is also trivial.

For g a prime power, prime to p, SU(2)(g) is equivalent at p to the finite Chevalley
group SLy(q) and SU(2)(—¢q) to SU2(q). This agrees with the above calculations, for
in any case £ = v,(1 — 7).

Example 9.10 (Sullivan spheres S*"~!, m | p — 1) This generalizes the previous
example. When m > 2 divides p — 1, the cyclic group C,, of order m acts on Z/p>.
The Sullivan sphere BS?"~! is the p—completion of the classifying space of the semi-
direct product Z/p*> x C,, for this action and H *(BSZ’"_I;IE‘,,) = Plx2,]. If u is any
p—adic unit then

A(BS*1) u" =1
BS™ Yu) = { BZ/p* x Cp) u™ # 1,u™ =1mod p, £ = v,(u" — 1)

* u™ % 1 mod p
All spaces are understood to be completed at p. To see this, note that BS>"~!(u)
is contractible if ¥™ % 1 mod p by Theorem B. Otherwise, if ¥™ = 1 mod p, then
u = (q with ( € C,, € Cp_1, ¢ = 1 mod p and BS>~'(u) = (BS¥"~ YO (q) =
BS?"l(q) = B(Z/pZ x Cy,) by Proposition 6.2, A.8, and Theorem 9.8, because
vplg — 1) = vp(g" — 1) = pp" — 1).

Example 9.11 (SU3)(g) at the prime 3) Fix ¢ a 3-adic integer with 0 < ¢ =
13(1 — g) < 0. According to Theorem F

H*(SUB)(); F3) = Plxs, x6] ® Ely3, ys],
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with Si)(y3) = x4 and S)(ys) = xe.
According to propositions 7.5 and 7.6, Tlg >~ (7Z/3%? is the maximal finite torus of
SU@3)(q) with Weyl group ¥3. Now, the invariant ring
Fy)Ss o Plx4,x6] ® E[y3,y4, ys]

(V3Y5s — Xay4, Y3Y4, Y4Ys)
computed in Example 9.4, turns out to differ from H*(SU(3)(¢g); F3). The natural
map H*(SU(3)(¢); F3) — H*(T?;F3)*3 (see Theorem F) has cokernel isomorphic to

Plxelys.

H*(T};

Example9.12 (G, atthe prime 3) The exceptional Lie group G, has rank two and the
Weyl groupis dihedral D1, = 313X C3, listed in family 2b for m = 6 in the Clark—-Ewing
list. The category F3(G») of non-trivial elementary abelian 3—subgroups of G has an
isomorphism class of rank two elementary abelian 3—subgroups with automorphism
group D>, the Weyl group of G, and two classes of elementary abelian 3—subgroups
of rank one, with automorphism group of order two. It is equivalent to the category
I(2) of Appendix B, with G = Dy, H; = 33, and H, = ¥;. The centralizer diagram
for elementary abelian 3—subgroups is

$33)P\(D12)°”
C2C BSU(3) (£3)"\(D12)

BT? BUQ) )¢ .

U (Z)P\(D12)?

(D12)°P

By Corollary 7.8 the categories of non-trivial elementary abelian 3—subgroups of G,
and G(g) coincide: F5(Ga(gq)) = F5(G»), and furthermore, for every object (E, v)
of F7(G2), BCq,g)(E,v) =~ BCq,(E, v)(q), thus the centralizer diagram of elementary
abelian subgroups of G,(q) is

—~ (£5)P\D12)” )
(. BSUB)g) 5;73 oo BV e
Di2)”?

(33)
and there is a natural map hocolimze(G,(g)» BCa,y) — BG2(g) which is a a sharp
homology decomposition [21]; that is, the Bousfield—Kan spectral sequence for the
homotopy colimit collapses at the E>—term and gives

H*(Gy(q);F3) = 1im®  H*(BCiy(q); F3) = Plxa, x12] @ Elys, ynl -
FL(Gaq)
This result can also be obtained by direct calculation from Proposition B.1 using the
invariant theory calculations in Examples 9.4 and 9.6. Notice that Proposition 7.9 does
not apply to BG»(g) at the prime 3 (see Example 9.11).
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Example 9.13 (G, atprimes p > 3) Let p be a prime > 3. The compact Lie group
G, at the prime p, is a Clark—Ewing p—compact group and H*(BG2;F),) = Plx4, x12].
The Weyl group has order |[W(G,)| = 12 and the center is cyclic of order two. Let
u # +1 be a p—adic unit, and let r denote the order of # mod p. Then

BGy(u*) = B(T} x W(Gy)) re{1,2}, £ =uvpu® — 1)
BGy(u) = { BSY(ub) = B(Z/p* x Cs) r € {3,6}, £ =v,ub —1)

* otherwise,

where itis understood that all spaces are completed at p. To see this, write u = (g where
¢ is a (p — 1)th root of unity and ¢ = 1 mod p. Note first that BG,(u) = BG,(+u)
as the Weyl group of G, contains —1. In case u> = 1 mod p (4> # 1), we have
that u = =£q so that BGy(u) = BGy(+u) = BG,(u*) = B(T} x W(G,)) by 9.8
and 6.5. If u> # 1 modp,u® = 1 modp, then u = =+ og where 0> = 1 and
BG,(u) = BGy(+aq) = BGy(0q) = BGA")(g) = BS'\(g) = BS"(u®) by 6.2, A.10;
the last equality follows from 6.5 since v,® — 1) = v,(¢® — 1) = v(g — 1). If
u® # 1 mod p then BG,(u) is contractible by Theorem B. It follows that

Plx4,x12] ® E(y3,y11) r€{1,2}
H*(BGy(u);Fp) = ¢ Plx12] ® E(y11) r € {3,6}

F, otherwise

with higher order Bocksteins as explained in Theorem F. This provides the geometric
explanation of Kleinerman’s computation [39, Thm 1-1] of cohomology rings of finite
Chevalley groups of type G».

10 Chevalley p—-local finite groups from Aguadé p—compact
groups

In [1], Aguadé constructed the exotic p—compact groups X;, i = 12,29, 31, 34, with
Weyl groups the groups G1; (rank 2, p = 3), Gog (rank 4, p = 5), G3; (rank 4, p = 5),
and Gs4 (rank 6, p = 7), on the Sheppard—-Todd and Clark-Ewing lists, respectively.
All four of them are obtained as the homotopy colimit of a diagram that we proceed by
describing.

Write G; to denote one of the groups G2, Gag, G31, or Gi4, and Z its center, namely,
Z = 7/2 for Gip, Z = 7./4 for Gy, Z = 7/4 for G31, Z = 7/6 for Gaa, in all cases
represented by diagonal matrices with entries p — 1 roots of unity. In all four cases
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we also fix a subgroup isomorphic to X,. Then, the index category is the opposite
category of I(1), with two objects 0 and 1 and

Auty(0) = G,
Autyy(1) = Ng,(5,)/, = Z,
Mory1y(1,0) = £,\G;, and
Moryy(0,1) = 0.
The functor assigns BTP~! to 0 and BSU(p) to 1, up to homotopy, where the center

of G;, Z, acts on BSU(p) via unstable Adams operations. The diagram is described in
the following picture

Ep)P\(GH?P
zC BSU(p) ’ BTP—! Q«;,w.

Each X; is a p—compact group with maximal torus Tx, = 7P~ ! and Weyl group W,
G;. The respective cohomology rings coincide with the invariant rings H*(BX;; [F,)
H*(BTx;; IF,,)G" , and these are the polynomial rings ([1, 2, 70]):
H*(BX12; F3) & Plx12, x16],
H*(BXa9; F's) = Plxg, X16, X24, X401 ,
Pl
P

11l

H*(BX31;Fs) =
H*(BX34;F7) =

X165 X24, X40, X48] ,

X12, X24, X36, X48, X60, X84] -

Throughout this section we fix an unstable Adams operation ¢)? of exponent g € Z,
with ¢ = 1 mod p, g # 1. We will describe the p—local structure of the spaces BX;(g)
and will show that they are classifying spaces of p—local finite groups. In particular,
cases i = 29, 34 provide new exotic examples of p—local finite groups.

The first results on the p—local structure of BX;(g) are given by Propositions 7.5
and 7.6. Set { = v,(1 — ¢g). The maximal elementary abelian p—subgroup of X;,
(tx;, V), factors as a p—subgroup (fx,, g) of X;(¢g), and the centralizer of this group

Cxio(txi @) = T} = @ /p'y™!
is the maximal finite torus of X;(g). All elementary abelian p—subgroups of X;(q)
factor through this one. Moreover, the Weyl group is Wxi(q)(Tf _1) = G;j, and the

normalizer le.(q)(Tf _1) = T‘Z 1y G; sits in the maximal torus normalizer of X;(g),
making homotopy commutative the diagram

BNx,(T) ") — BNx,(T"~")

| |

BXi(g) BX;.
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Now, we fix the Sylow p—subgroup S = (Z/p")?~D x Z/p of Nx,o (T} ~1, generated
by Té’ “landa p—cycle of ¥, < G;. We will denote by f: BS — BX;(g) the homotopy
monomorphism obtained as the composition BS — BNx, (T} _1) — BX(g). Then
(S,f) is a p—subgroup of BX;(g), and it will play the role of a Sylow p—subgroup.

Since X;, i = 12,29,31, 34, are polynomial p—compact groups, according to Corol-
lary 7.8, ¢: BX;(g) — BX; induces an equivalence of categories

vy Fp(BXi(q)) — F,(BX,).

Thus, we obtain that every elementary abelian p—subgroup (£, u) of BX;(g) factors
as a subgroup of rx,: E < fx; and u ~ v|gg. There is a distinguished subgroup
Z)p = Z < tx, such that, Z < rx, < Tx, < SU(p) = Cx,(Z,v|pz). If E < 1x, is not
conjugate to Z in X;, then the centralizer Cx,(E, v|gg) is a p—compact group whose
Weyl group, the point-wise stabilizer of £ < Tx,, Wx,(E), has order not divisible by
p. In X;(q), we obtain:

Proposition 10.1 There is one conjugacy class of elements of order p in X;(q),
(Z, g|Bz), such that the centralizer is

Cxi¢)(Z, 8lBz) ~ SU(p)(q)

and contains (S,f):
BS

|
Bincl

BSU(p)(q9) — BX(q)
as Sylow p—subgroup of SU(p)(q).
If E < tx, represents another conjugacy class of elementary abelian p—subgroups, then
Cxio)(E, 8lpe) = T) ' x W, (E)
where the order of Wx,(E) is not divisible by p. Furthermore, the diagram

BTép_l) Bincl BS

Bincli lf

BCx,¢)(E, g|BE) —L s BXi(g)

is commutative up to homotopy, where j: BCx,y)(E, g|pe) — BXi(q) is the natural
map induced by evaluation.
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Proof For Z < tx,, we have Cx;,)(Z, glpz) = SU(p)(q) by Corollary 7.4.

If E < tx;, be another subgroup, not conjugate to Z, then the centralizer in X; is
the Clark-Ewing p—compact group BCx,(E,v|pr) ~ B(Tx, x Wx,(E)),, and then,
first, Corollary 7.4 implies that BCx,)(E, g|se) =~ BCx,(E,v|ge)(g), and secondly,
Theorem 9.8 gives BCx, (E, v|e)(q) =~ B(T) ' x Wx,(E))).

Finally, we use the inclusions BE — Btx, — BS J, BX(g) in order to compare the
centralizers of E and tx, in S and X;(g):

~

BT}~ ~ BCs(rx,) BCs(E) BS

P
BCx,¢)(tx;, 8) — BCx,¢)(E, g|sr) — BXi(q)

and the proof follows. |

Proposition 10.2 For i = 12,29,31, 34, the natural map

hocolim BCx., — BX; 34
FeBXigyr D (@) (34)

is a mod p homology equivalence.

Proof According to Theorem F the cohomology rings of BX;(q) are:

H*(BX12(9); F3) = Plx12, x16] ® Ely11, 151

H*(BX29(q); Fs5) = P[xs, x16, X24, X40] ® E[y7, 15,23, y39]1 ,

H*(BX31(q); Fs) = Plx16, X24, X40, X48] @ Ely15, 23,39, Y471 ,

H*(BX34(q); F7) = Plx12, X24, X36, X48, X60, X841 @ E[Y11,Y23,¥35, Y47, Y59, Vs3] ,
and they embed in the invariant rings H*(BX;(q);[F,) C H*(BTf _I;FP)G". These

invariant rings are described in the Example 9.7. It turns out that the above inclusion
is an isomorphism if i = 29,31, 34, but it is not surjective when i = 12.

The centralizers of elementary abelian p—subgroups of BX;(g) are described in Propo-
sition 10.1. The centralizer, Cx,)(E, g|ge), of an elementary abelian p—subgroup
E < tx; in X,(¢g) is either SU(p)(q) or C(g) where C is a Clark—-Ewing p—compact
group.

In cases i = 29,31,34, H*(Cx,q)(E, glpr);Fy) = H*(BTx,;F,)VE is satisfied by
Theorem F and examples 9.2 and 9.3, hence we meet the conditions of Proposition 7.9
and the map (34) is a mod p homology equivalence.
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In the case i = 12, Proposition 7.9 does not apply, so we will need a separate analysis.
The p—compact group Xi», p = 3, is also denoted DI, because G, = GL(2,3) and
H*(BDI,;F3) = H*(BT?;F3)CL23) = F3[x2, x6] is the rank two Dickson algebra at
p = 3. Itadmits two conjugacy classes of elementary abelian p—subgroups, one of rank
one and another of rank two, hence so does BDI,(g), as well. We have equivalences
of categories

F4(BDL) = F{(BDL(q)) = (1)

with Autm)(O) = GL(2,3), Autﬂ(l)(l) = NGL(273)(E3)/23 = Z/Z, where
NGL(Z,S)(ES:) = 23 X Z/Z, and MOI‘]I(l)(l,O) = Z3\GL(2, 3), MOI‘H(])(O, 1) = @ The
centralizers diagram BCpy, () is described in the picture

SP\GL(2,3)% - .
z/2(_ BSUG)(@) BT} )GLe3” . (35)

The Bousfield—Kan spectral sequence
E; = % H(BCppy(y); F3) = H"*f(h%fg;’jm BCpiyg); I3)

computes the cohomology of the homotopy colimit hocolimyy» BCpp,(g) -

The computation of the E>—term follows from Proposition B.1. Since Ngr23)(23) =
Y3 xZ/2 and H*(GL(2,3); A) = H*(Ngr 3)(23); A) = H*(33; A), for any GL(2,3)-
module A, there is an exact sequence

0 — 1im® H*(BCpry(q): F3) — H*BSUG)(q): F3)*/* & H* (BT} F3) ™

I(1)

— H* BT F3) % = lim' H* (BCpiyg);F3) — 0, (36)
I(1)

and lilllﬂ(l)BCDlz(q) =0ifi> 2.

The invariant rings H*(BT2;F3)““® and H*(BT2;F3)™ as well as the restriction

R: H*(BT?; IF3)GL(2’3) — H*(BT?; IF’g)23 have been described in examples 9.4 and 9.7.
The cohomology of BSU(3)(gq) is identified with the subalgebra P[x4,xs] ® E[y3, ys]
of H*(BT?2;F3)>. The cokernel of the inclusion is isomorphic to P[x]ys, and then
the exact sequence (36) is simplified to

Plx1z, Ely1o,
0 — 1im® H* (BCpry(: F3) — [x12, X16] ® Ely10, Y11, Y15]
K%, (V11Y15 — X16Y10, Y10Y115 Y10)15)

R z)2 . .
— (Plxelys) 2 ELHIH (BCpry(g); F3) — 0,
I(1)

Algebraic & Geometric Topology XX (20XX)



1070 Carles Broto and Jesper M. Mgller

and (P[x6]y4)z/ g P[x6>1(x6y4) which is in the image of R. It follows that

liglo H*(BCpry(g); F3) = Plx12,x16] ® Ely11,y15]
1(1)

and @i 10) BCpyp,g = 0if i > 1, so, therefore the Bousfield—Kan spectral sequence

collapses to an isomorphism

H*(h(])fl(;}pimBsz((,); F3) = 1@0 H*(BCpry(g);: F3) = P[x12,x16] ® E[y11, 1513
I(1)
that is, hocolimyjy»r BCpp,q) — BG2(g) is a sharp homology decomposition at the
prime 3 and

H*(DIy(q); F3) = liLno H*(BCpr,(g); F3) = Plx12,x16] ® El[y11,y15] . O
(1)

Theorem 10.3 Fix g € Z,, 1 # q = 1 mod p. Then, (S,f) is a Sylow p—subgroup
for BX;(q), the fusion system F s r)(BX;(q)) of the space BX;(q) over the p—subgroup
(S,f) is saturated, and

(S, Fis,nBXi(q), Lis.f)(BXi(q))
is a p—local finite group with classitying space

|Lis.nBXi@)]) ~ BXi(q) .

Proof Itisaconsequence of Theorem 4.5, using the above propositions 10.1 and 10.2.
O

Now, we will go deeper into the structure of the fusion system F = Fg 1) (BXi(g)).
According to Remark 6.6 we may assume that ¢ is an integer and a prime power. We
have seen that the fusion category of elementary abelian p—subgroups is equivalent to
that of the p—compact group X;; in particular, every elementary abelian p—subgroup is
toral; that is, F'—conjugate to a subgroup of Tép ~Y If we denote Z = Z(S) the center of
§, then (10.1) BCx;y(Z) = BSU P)(q)) ~ BSLp(q)/\ , S0, the centralizer fusion system
Cr(Z) over Cs(Z) = § coincides with the fusion system of SL,(g) over S. Hence,
we can identify S with the Sylow p—subgroup of SL,(q) and then use the notation
of Example 3.5. Recall from 3.5 that any centric radical subgroup of S in Cx(Z) is
conjugate to either S, Tép_l), or an extraspecial group I'1(¢"), r =0,...,p — 1.
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Proposition 10.4 Any centric radical subgroup of S in F = Fsr(BX(q)) is conju-
gate to one of the groups in the table:

0 Out£(Q) Conditions

Tép_l) G;
S Z/p-D)XZ/p-1) (37)
Iy GLx(p)

' SLy(p) if¢ > 1orp > 3.

Proof The proof is divided in four steps, where we first determine a set of represen-
tatives for centric radical subgroups of S in F, and then refine it to a minimal set of
representatives and compute their automorphisms groups in F .

Step 1: Toral and non toral centric radical subgroups

T, ~!is centric in F and Outz(T} 1Y >~ G; is p—reduced, hence T) ~!is also radical in
F . No other subgroup of Tf ~!is centric, so for any other centric and radical subgroup
Q < S in F, there is a morphism of extensions

Qo— Q0 ——1/p (38)

L

7 S 1Zp

where Qg = Tf_l no.

We are assuming that Q is centric, hence the center Z = Z/p of S should be contained
in Qp. Butif Qp = Z, then Q = Z/p x Z/p is elementary abelian and then toral in F,
hence it would not be centric. Thus Z # Qg and the center of Q is Z(Q) = Q(%/ P=7z.
In particular, every automorphism of Q restricts to an automorphism of Z, so we obtain
a homomorphism Autr(Q) — Autr(Z). The kernel is composed of automorphisms
of Q that restrict to the identity in Z; that is, automorphisms of Q in the centralizer
fusion system Cx(Z), hence we have an exact sequence

I — Autc,z)(Q) — Autz(Q) — Autr(Z) (39)

where Autr(Z) < Z/p — 1 lifts to Aut]:(Tép_l)) and Autz(S) as unstable Adams
operations (the center of G;). Thus, if Q is radical in Cx(Z), then it is radical in F.
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Step 2: Non-abelian centric radical subgroups, all of which abelian characteristic
subgroups are cyclic

Assume that all abelian characteristic subgroups of Q are cyclic, then a theorem of
Hall implies that Q is the central product of an extraspecial group I' of exponent p and
a cyclic group C, where the elements or order p in C, €21(C), coincide with the center
Z([T) of T' (cf. [35, Chap. 5, 4.9, 5.3]).

The faithful irreducible representations of the central product of an extraspecial group
I" of order p'*2" and a cyclic group of order p® over the algebraic closure of a field of
g elements, (¢, p) = 1, have degree p”, and there are exactly p*~!(p — 1) inequivalent
representations in this degree.

Hence, only the case r = 1 can appear in GL,(q). We denote I'y the extraspecial
group of order p* and exponent p, and I'; the central product Z/p* o T'y. The different
irreducible faithful representations of I'y in GL,(q) are obtained by composing with
the extension to I'y of the automorphisms of Z/ p", z/ pk)*. Thus, there is at most
one subgroup isomorphic to I'y in GL,(g), up to conjugation. A subgroup of GL,(q)
isomorphic to I'; is described in Example 3.4. Since Cgr,p)(I'1) = Z(GL,(g)) =
GLi(q), 'y is a subgroup of GL,(q) if and only if 7./p* < GLi(q). Hence T,
¢ = v,(1 — gq), is the biggest one that can occur in GL,(q) (see Example 3.4).

Finally, the intersection of I'y with SL,(g), and hence, of any conjugate of Iy, is
isomorphic to I';, and there are exactly p conjugacy classes of such subgroups I';(¢")
(see Example 3.5). These are radical in Cx(Z), and so, therefore, they are also radical
in F.

Step 3: Non-abelian centric radical subgroups having non-cyclic abelian charac-
teristic subgroups

Assume now that Q contains a non-cyclic abelian characteristic group. If Q is radical
in Cx(Z), then it is radical in F. Now, we assume also that Q is not radical in Cx(Z).

We can view Q < § as subgroups of SL,(g) and GL,(q), for an appropriate prime
power g such that S is the Sylow p—subgroup of SL,(q): ¢ = v,(1 — q). Write
N = NgL,(Q). The arguments of [4, (4A)] show that (up to conjugacy in GL,(g))

Q<NN(Z/PVZIp) <N
for some k < £, or, taking the intersection with SL,(g)
O<NNS <N
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where Sy = (Z/p* 1 Z/p) N SL,(g) < S and N = NN SL,(q) = Nsi,(g)(Q), an then

Inn Q < (N N Su)/Z(Q) < Autc,z)(Q)

where N/Csz,(Q) = Autc,z)(Q). We will see that (N N S;)/Z(Q) is still normal in
Autr(Q).

Assume that ¢ € Autz(Q) restricts to Z as the unstable Adams operation ¢C, ( a
(p — D)st root of unity. If PS(Q) = Q' < 8, then ¥'/C o ©: Q — Q' is a morphism
of JF, that restricted to Z is trivial, hence a morphism of Cx(Z). Since, we have
assumed that @ is not radical in C£(Z), zpl/ ¢ 0 should be obtained as composition of
restrictions of automorphisms of centric radical subgroups of Cx(Z), by Alperin fusion
theorem [14, A.10]. This is the fusion system of SL,(g), and the Sylow p—subgroup §
itself is the only centric radical that contains Q, hence, there is x € Autc,(z)(S) with
Xlo = ¥'/C o, hence p = 9 o x| extends to an automorphism ¢ o x of Autz(S).
Notice that 1/°(Sx) = Sy and also x(S;) = Sk, hence, if g € S normalizes Q, we have
Y ocg 0@l = cy, with p(g) € N N Sk. This proves that we have

Inn Q < (N N Sx)/Z(Q) < Autr(Q)
and since Q isradical in F, Q = Sk.

We claim that only the case Sy = § is radical. First we compute the normalizer
of Z/p* 1 Z/p in GL,(q). The subgroup (Z/p*)y is a characteristic subgroup of
7./p*2Z/p, for it is the only abelian subgroup of index p, hence, Nar,)(Z/ PRz /p) <
Ner,((Z/p*V). Tt is not difficult to compute N, (Z/p*)F) = GLi(g) 1 5y, the
group of invertible matrices with only one non-trivial entry in each line and column. By
direct computation one can obtain that Ner,(q)(Z/p*VZ/p) = GL\(q)(Z/p*WNs,(Z/p)),
where GL1(q) is identified with the subgroup of all diagonal matrices of GL,(g); that
is, the center of GL,(q).

Call Ny = Ngr,g)(Z/p* 1 Z/p) N SLy(q). We have Ny = By x Ny, (Z/p), with
B ={(z-x1,...,2-x,) € GLi(q)’ |x; € Z/pk, Pxix,=1}%

and Ngr,(g)(Sk) = Ni. Notice that, when k < £, S; has index p in the Sylow p—
subgroup By x Z/p, and this is normal in N, hence only S = S, is radical in SL,(q).

The centralizer of Sy in SLy(q) is Csr,(Sk) = Z = Z/p and then Autc,(z)(Sk) =
Autsy, (Sk) = Ny/Z. (By/Z) x Z/p is normal in Ni/Z, and, since the Adams
operations zpC, ¢ a (p — 1)stroot of unity, act internally in By, (Bx/Z) x Z/p is also a
normal of Autz(S;):

Inn Sy = Sk/Z/p < (Bx/Z/p) ¥ Z/p < Autz(Sk)
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thus, Sy is radical in the fusion system F if and only if k = /; that is, only the case
Sy = § is radical. In this case we have obtained Autz(S) = Ny/Z x Z/(p — 1), where
Z/(p — 1) on the right is generated by the Adams operations of exponent a primitive
(p — 1)st root of unity, and Outz(S) = Z/(p — 1) x Z/(p — 1), given by the Adams
operations and Nx. (Z/p)/Z/p.

Step 4: Minimal set of representatives and automorphism groups

It remains to check which of those are F—conjugate to one of the others in the list and
also to compute their F—automorphisms.

For O = § the restriction Autr(Q) — Autr(Z) is split because unstable Adams
operations extend to S. Moreover, since they are realized by the center of G;, the
JF —automorphisms of S are given by conjugation in the normalizer Ny ; of the maximal
finite torus Tép ~D We have seen already that the same is true for Q = Tép_l) .

Finally, we analyze the case Q = I"1(¢"), r =0,...,p— 1. Assume that ¢ € Autr(Q)
and that the restriction to the center Z is the unstable Adams operation *. This extends
to an F—automorphism of S. Write Q' = ¢%(Q). Then y = ¢* o p"D: Q0 — Q'
is a homomorphism of F that restricts to the identity in Z, hence it belongs to the
centralizer fusion system Cx(Z). In other words, every automorphism ¢ € Autz(Q)
is the composite of an isomorphism x: Q@ — Q' of Cx(Z) and a unstable Adams
operation ¥°.

It is then enough to compute the effect of unstable Adams operations on the family of
subgroups I'1(£"). Itturns out that unstable Adams operations restrict to automorphisms
of I'y = I'1(£9) so that Out=(I')) = GL,(g), while, for p > 3 or £ > 1, they conjugate
") forr=1,...,p — 1 to each other and Outx(I'1(§) = SL,(q). O

Corollary 10.5 The fusion system of BX;(q) is

FsnBXi(q) = (Fn, ,(S); Fr(GL2p)) , Fr,6)(SLa(p)) )

for p > 3 or £ > 1, and Fs5(BX12(9)) = (Fn, (S); Fr,(GLy(p))), for p = 3 and
¢ =1, where Ny; = Nx,(TY ") = TP ™D % G;.

Proof It is a consequence of Proposition 10.4 and Alperin’s fusion theorem for satu-
rated fusion systems (see section 3). O
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We end this section with a case by case study in order to determine which spaces BX;(q)
are p—completed classifying spaces of finite groups and which cases correspond to
exotic examples of p—local finite groups.

As we shall see, S contains no proper strongly closed subgroups in F = Fs ) (BX;(q))
and so, according to [14, 9.2], if F is the p—completed classifying space of a finite
group, this group is almost simple.

In fact, a strongly closed subgroup of S in F is a normal subgroup P of S such that
no element of P is F—conjugate to any element in S\ P. Now, if P is non trivial it
contains at least an element of order p, and this is /' —conjugate to an element of order
p in Tép ~ Now, the maximal elementary abelian p—subgroup ¢ of Tép Y turns out
to be an irreducible G;—module, hence ¢+ C P and since the cycle of order p generating
S/ Tép_]) is conjugate to an element of ¢, the extension of ¢ by this cycle is in P. Thus
we have a diagram of extensions

PT4>P*>Z/]9

L

Ty ——=S—=1/p

where t < Pr =PNT. Now S/P = Tépfl) /Pr is abelian. The abelianization of S is
seen to be Z/p x Z/p, and then we obtain that Tép_l) /Pr is either trivial or has order
p. It follows that all elements of order up to p*~! of Tép - belong to Pr. Taking

the quotient by this subgroup we obtain an inclusion of G;—modules Py < Tép D but

again, this last is an irreducible G;—module, hence Py = Té” _1), and then P = §.

Example 10.6 BXy9(g) at p = 5 and BX34(q) at p = 7 are classifying spaces
of exotic p—local finite groups. We have seen that the Sylow subgroup does not
contain any proper strongly closed subgroup in Fs ) (BX;(q)), hence if this is the p—
completed classifying space of a finite group G, then G is almost simple [14, Lemma
9.2]. A complete list of almost simple groups with a Sylow subgroup isomorphic to
S is provided by [14, Proposition 9.5]. No group in the list contains Gyg9 or Gi4 as
automorphisms of Tép_l) induced by conjugation in the group. Hence X29(g) at p =5
and Xs34(g) at p = 7 are exotic.

Example 10.7 BXi,(g) at p = 3 is the 3—completed classifying space of a twisted

Chevalley group of type F4. More precisely, BX1>(q) = B(2F4(23271))3A where ¢ =
vs(g® — D).
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The 3—completed classifying space of the twisted Chevalley group 2F4(2%"*!) can
be described at p = 3 as B(F4(2%"t1)) ~ BFY, for a = ¢ o )%, where ¢ is the
Friedlander’s exceptional isogeny of F4 [32]. ¢ has the effect of reflecting the Dynkin
diagram of F4 by sending the short roots to the long roots and the long roots to 2
times short roots. Furthermore, > ~ 12, and then we can choose ¢ a square root
of —2 in Zs such that 3 = ¢ o ¥'/¢ is a self equivalence of BF, at p = 3 of order
two and 2"¢ = 1 mod 3. We can write a = (3 0 9", and then, by Proposition 6.2,
BF$ ~ (BF4)"”(2"¢). In [16] it is shown that (BF4)"® ~ BX),, hence BX2(2"() ~
B(°F4(2*"1))4. Since 1~ ! belongs to the Weyl group of X1z, BX12(q) ~ BX12(—q),
and then, according to Theorem E, the homotopy type of BX|,(£¢) does only depend on
¢ = v3(g> — 1), thus, if we choose n with £ = 13(g*> — 1) = v3(1 —2"¢) = v3(1 4221,
then we have
BX12(q) ~ BX12(2"¢) ~ BCF42*" )3 .

In particular, BX15(q) ~ B(¥F4(2>™" )5 . The local structure of %F4(22"1), also called
Ree groups of characteristic two, was studied by Malle [43].

Example 10.8 For any 5-adic unit, ¢ € Z%, BX31(q) at p = 5 is the 5—completed
classifying space of a Chevalley group of type Eg, namely, BX31(g) ~ BE8(22’”+1)5A if
vs(g* — 1) = vs(1 4 2412).

Let i = y/—1 be a primitive 4th root of unity. Since 1)’ belongs to the Weyl group
of X3;, we can assume that ¢ = 1 mod 5 for otherwise we can multiply g by an
appropriate power of i and still have BX31(g) ~ BX3,(i"q). Moreover, according to
Theorem E, the homotopy type of BX3;(g) will only depend on ¢ = vs(g* — 1).

We fix a prime power gg with gg = +2 mod 5 and ¢ = v5(Figo — 1) = vs(got — 1) =
vs5(qo”> + 1), where we choose +i or —i in order that the equality makes sense.

We can write go = i - (—i- go), where now —i-go = +1 mod p. Since 1)~ belongs to
the Weyl group of Eg, we can apply Proposition 6.2 and get BEg(qo) ~ (BEg)""' (—iqop)-
Now we have seen in Example A.12(2), that (BE3)"' ~ BX3, so, therefore

BE3(q0) ~ BX31(—iqo) ~ BX31(qo),

and this last is homotopy equivalent to BX3;(g) by our choice of gg with v5(go* — 1) =
vs(g* = D.

Similar considerations can be made, more generally, at any prime p such that p =
1 mod 4; thatis, any prime at which X3; can be defined, and then obtain that BEg(gg) ~
BX31(qo) for a prime power gy with go> + 1 = 0 mod p.

The local structure of Eg(g) was described in [41].
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Remark 10.9 One can easily obtain natural maps BXi(¢"") — BX,-(qP"H ), that at the

level of maximal finite tori induce inclusions Tﬁ;l) < Tﬂ;ﬁl , and then obtain that

the p—compact group X; can be reconstructed by means of a telescope construction
BX; ~ hocolim BX;(¢"") .
n

In particular, we may obtain the p—compact groups BXj; (at p = 3) and BX3; (at
p = 5) as telescopes

BX12 = hocolim BX12(43n) — hocolim B(2F4(23”))
BX3; = hocolim BX3(16>") = hocolim BEg(2*")

of p—completed classifying spaces of finite Chevalley groups.

11 Chevalley p-local finite groups from generalized Grass-
mannians

We discuss here the Chevalley p—local finite groups of type X(m, r, n). Let p be an odd
prime, m > 1, r > 1,and n > 1 with r|m|(p — 1). The simply connected polynomial
irreducible p—compact group X(m, r, n) has Weyl group G(m, r, n) (see Section 2) and
its cohomology is the invariant ring

H*(BX(m, r,n); Fp) = H*(BT(X(m, r,n)); Fp)“™" 22 Plxy, ... x,1, €]

with deg(x;) = 2mi and deg(e) = zir" See [61, 59, 53] for the construction of these
spaces. We are here interested in the associated spaces BX(m, r, n)(q) defined by the
pull-back diagram (22) with o = )7 where g is a p—adic unit.

Remark 11.1 Many cases already appear in the literature ([30, 34, 61]). We can
extract the following equivalences, up to p—completion, for a prime power ¢, prime to

p:
(1) BSU(n + 1)(q) ~ BSL,+1(q).
(2) BU(n)(q) ~ BX(1, 1,n)(q) ~ BGL,(q).
(3) BX(m, 1,n)(q) ~ BGLyn(q).
4) BX(2,2,n)(q) ~ BSOQ2n)(g) ~ BSOZ,(9).
By Remark 6.6, we have that, also for any p—adic unit g, BSU(n+1)(q), BX(m, 1, n)(q)

and BX(2,2,n)(g) are homotopy equivalent to classifying spaces of finite groups, up
to p—completion.
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These also include the cases BX(m,2,n)(q), that can be reduced to BX(2,2,n)(q’)
using propositions A.10 and 6.2, so they are also equivalent, up to p—completion, to
classifying spaces of orthogonal groups over finite fields.

The above observations will be used as the starting point of the induction arguments
that we will develop in the rest of this section in order to study the structure of
BX(m, r,n)(g), for ¢ = 1 mod p, g # 1, and general values of m, r, and n.

Fix ¢g =1 mod p, ¢ # 1. The p—compact groups X(m, r,n) are polynomial, hence
propositions 7.5 and 7.6 apply. The maximal elementary abelian p—subgroup of
X(m, r,n), (tx,v), factors as a p—subgroup, (tx, g), of X(m, r,n)(g), and the maximal
finite torus of X(m, r, n)(q) is

BT} ~ BCxX(m,rn)q)(tx, &)

where ¢ = v,(q — 1). The Weyl group is Wxgn,rng(T;) = G(m,r,n), and the
extension Nx(m,rnq)(Ty) = T; X G(m,r,n) sits in the maximal torus normalizer of
X(m, r,n), making the following diagram homotopy commutative:

BNX(m,r,n)(q)(TEl) —_— BNX(m,r,n)(Tn)

| |

BX(m, r,n)(q) L BX(m,r,n).

Corollary 7.7 implies that the functor

vy FpyX(m, r,n)(q)) — Fy(X(m, r,n)) (40)
is an equivalence of categories. The next result is a description of the centralizers of
elementary abelian p—subgroups.
Proposition 11.2 [53, 7.11] Let p be an odd prime, m > 1, r > 1, n > 1 with
rlm|(p — 1), and ¢ = 1 mod p, g # 1. Then,

(1) any elementary abelian p—subgroup h: BE — BX(m, r,n)(q), factors through
the maximal finite torus, and

(2) for any subgroup E < t, < T}, the centralizer of (E, g|gg) in X(m, r,n)(q),

BCX(m,r(q)(E, 8|E) =2 BX(m, r,no)(q) X BU(n1)(q) x -+ x BU(ns)(q)

n =ngp+ny + - -+ ny, is determined by the point-wise stabilizer of E < T} in
the Weyl group G(m,r,n), G(m,r,n)(E) = G(m,r,ng) X X, X -+ X X, .
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Proof All elementary abelian p—subgroups of X(m, r,n) are toral, hence the same
is true for X(m, r,n)(q) by the equivalence (40). If E < tx, by Corollary 7.4, the
restriction of 17 to the centralizer of (E, g|pg), is ¢? again, )4 ‘Cx<m,r,n><q>(E,g\ ) = V4,
and

BCX(m,r,n)(q)(Ev g‘BE) ~ BCX(m,r,n)(Ev V’BE)(Q) .

The centralizers Cx(n,rn)(E, v|pe) are known to be connected p—compact groups of
maximal rank, with Weyl group G(m, r, ng) X £, X - - - X X,,_, the point-wise stabilizer
of E in T" by the action of the Weyl group G(m, r,n):

BCxX(m,rm)(E, v|pg) ~ BX(m,r,ng) x BU(ny) x --- x BU(ny) ,
thus,

BCxn,rm(E, v|e)(q) = BX(m, r,n9)(q) x BU(n1)(g) x - - x BU(ny)(q)

contains the same maximal finite torus 7} as X(m,r,n)(q), £ = vp(g — 1), n =
no+ny+- - -+n, and the Weyl group is G(m, r, ng) X 3, X - - X2, (see Propositions 7.5
and 7.6). O

Proposition 11.3 Let p be an odd prime, m > 1, r > 1, n > 1 with r|m|(p — 1), and
g = 1 mod p, g # 1. The natural map

hocolim BC — BX(m,r,n
fpf(X(m,r,n)(q))”" X(m,r,n)(q) ( s Iy )(Q)

is a mod p homology equivalence.

Proof According to Theorem F and Example 9.5

H*(BX(ma r, n)(Q), IE‘p) = H*(BTH, ]Fp)G(m,r,n)
= P[XI, cee ,xnfl,e] ®E[y1, N ,yn,hu]

2mn
r b

2mn
T - 1-

with deg(x;) = 2mi, deg(e) = deg(y;) = 2mi — 1, and deg(u) =

Since this is true for all values of m, r, n, we obtain from Proposition 11.2 that also,
for every elementary abelian p—subgroup E < tyx,

H*(BCx(m,r.n)q)(E, g|BE); Fp) = H*(BTy; Fp)G(m’r’")(E)
where G(m, r,n)(E) is the point-wise stabilizer of E in T}, by the action of the Weyl

group G(m,r,n). So, then, the result follows from Proposition 7.9. a
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Fix a Sylow p—subgroup of Nxnrny)(Ty)> Sne & Z/pe ! S,, where S, is the Sy-
low p—subgroup of the symmetric group X,. Call f the composition BS,, —
BNxX(mn,rn)q)(Ty) — BX(m, r,n)(q), Thus (S, ¢,f) is a p—subgroup of BX(m, r,n)(q).

We will denote by
F(m,r,n,q) = }'(Sn_’é,f)(BX(m, r,n)(q))

the fusion system of BX(m, r,n)(q) over (S, ¢,f) and by

E(m7 r,n, Q) = E(Sn’g,f)(BX(ma r, n)(‘])) 5

the associated centric linking system. Recall that the underlying category of the system
F(m,r,n,q) is equivalent to F,(BX(m,n, r)(q)).

Theorem 11.4 If g is a p—adic unit suchthatq = 1 mod p, g # 1, and { = v,(1 —q),
then, (S, ¢,f) is a Sylow p—subgroup for BX(m, r,n)(q) and

(Sn7£7 f(m7 r? n? q)? E(m7 r7 n7 q))
is a p—local finite group with classifying space

|L(m, r,n,q)|, ~ BX(m, r,n)(q) .

Proof We proceed by induction on n, the p-rank of X(m,r,n)(g). For n < p,
X(m,r,n) is a Clark-Ewing p—compact group, and then, X(m,r,n)(q) is the p—
completed classifying space of a finite group (see 9.8). Also, for BX(1,1,n) ~ BU(n)",
Remark 11.1 characterizes BX(1, 1,n)(q) as p—completed classifying spaces of finite
groups. In all that cases, the conclusion of the theorem is clearly satisfied (see Sec-
tion 3).

Assume that n is large and that the theorem holds for every ny < n. That is, for
every ng < n, the space BX(m,r,ng)(q) is the classifying space of the p—local finite
group

(Snp,0s F(m,r,ng, q), L(m,r,n9,q)). The result about BX(m, r,n)(q) will follow from
Theorem 4.5. We will show that the space BX(m, r,n)(¢g) and its p—subgroup (S, ¢, f)
meet the conditions of 4.5. Condition (1) of 4.5 is satisfied by Proposition 7.1.

Condition (2a) of Theorem 4.5 amounts to show that if E < #x, then the central-
izer BCxgn,rnyq)(E, glse) is the classifying space of a p-local finite group. This
follows by the induction hypothesis. In fact, by 11.2, there is a homotopy equiv-
alence BCx(mn,rnq)(E, &|e) ~ BX(m, r,no)(q) x BU(n1)(q) x --- x BU(n,)(q), for
n =ng+n; +...ng, anon-trivial decomposition of n into positive summands, and by
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the induction hypothesis and [14, 1.4] this is the classifying space of the p—local finite
group defined as the product

(Sno,ﬁa ]:(ma r, no, Q)a ‘C(ma r,no, C]))
X (Sn|,f7f(17 1:”17@7['(17 lanl7q)) X X (Sns,€7f(17 17”qu)7['(17 lansaq))'

Condition (2b) of 4.5 establishes that Sylow p—subgroups of centralizers of elementary
abelian subgroups of BX(m, r, n)(g) factor through (S, ¢, f). This is proved by reducing
the question to unitary groups, obtained as centralizers of the center of S, ;.

Let Z = Z/p denote the diagonal elements of order p in T} = (Z/ phr < Sy, Then,
the point-wise stabilizer of Z in T} by the action of G(m,r,n) is ¥, and therefore,
according to Proposition 11.2, BCgxX(m,rnq)(Z, &|8z) ~ BU(n)(q).

By naturality of the construction of the normalizer of the maximal finite torus, we
obtain a diagram
BNuayg)(Ty) —= BNX(m,r.m)(T7)

|

BU(n)(q) BX(m, r,n)(q)

hence a factorization of (S, ¢,f):

BS, ¢ 41)

Bj

BU(n)(q) BX(m,r,n)(q) .

Choose any other subgroup E < 1y < S, ,. Assume that the point-wise stabilizer of
E in T} by the action of G(m, r,n) is G(m, r,n)(E) = G(m,r,ng) X X, X -+ X Xy, .
Define E' = Z - E < ty, then, the point-wise stabilizer of E’ will be G(m, r,n)(E") =
Ynp X X, X - -+ X 3, . The inclusions E < E’ > Z induce a commutative diagram of
centralizers

Bj}
BCxm.rmyg)(E', 8l8E") —>= BCX(m.r o) (E> 8| BE) (42)

| o

Bjn
BCx(m.r ) Z, 8|Bz) ———> BX(m, r,n)(q) .

Now,

BCxn,rmq)(E, 8|E) = BX(m, r,n0)(q) x BU(n1)(q) % - -+ x BU(ns)(q)
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with Sylow p—subgroup S,,, o x - -+ x S, , while
BCxm,rnq)(E', 8lEr) = BU(no)(q) X BU(n1)(q) X - - - x BU(ny)(q)

and from the above discussion we have a factorization

B(Spg,0 X -+ X Suy ) BU(no)(q) x BU(n1)(q) x - -- x BU(ns)(q) (43)

\ iBj%Bj,,Oxlx---xl

BX(m, r,no)(g) x BU(n1)(q) X - - x BU(ny)(q) -

Diagrams (41), (42), and (43) provide a homotopy commutative diagram

//\

Bj}
B(Spy0 X -+ + X Spy 0) ——= BCX(n,rnyg)(E's &l BE") — BCX(m,r.n)9)(E 8|BE)

| o

Bj
BS, 0 ————— BCx(m,rn))(Z, &|B2) d BX(m,r,n)(q)

where the existence of the homomorphism p: S, ¢ X --- xS, , — §,, making
homotopy commutative the left square is obtained because S, ¢ is a Sylow p—subgroup

of U(n)(q).

We have proved that BX(m, r,n)(q) and (S, ¢,f) satisfy the conditions (1) and (2) of
Theorem 4.5, and therefore, that (S, ¢, f) is a Sylow p—subgroup of BX(m, r, n)(q) and
(Sn,e, F(m,r,n,q), L(m,r,n,q)) is a p-local finite group.

Finally, BX(m, r,n)(q) is the classifying space |L(m,r,n,q)| [f according to Proposi-
tion 11.3 and Theorem 4.5. O

Proposition 11.5 For ¢ = 1 mod p, g # 1, X(m, r,n)(q) is a exotic p—local finite
groupifr >2,n > p.

Notice that in the above hypothesis r|(p — 1), thus r > 2 can only occur with p > 5,
so that we are implicitly assuming also that p > 5.

Proof We will first reduce the question to the rank p—case. Then we classify the
centric radical subgroups in the fusion system of BX(m, r,p)(q) and show that they
coincide with the p—local finite groups of [14, Example 9.4].

There is an elementary abelian p—subgroup E < tx, in X(m, r,n)(q), of rank n — p
such that

Cx(mrmyg)(E; glE) = X(m, 7, p)(q) x U1 (q)" ™"
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(see Proposition 11.2). If we assume that there is a finite group G such that BGI/,\ ~
BX(m, r,n)(q), then the map Bg|pg: BE — BX(m,r,n)(q) ~ BG, is induced by a
homomorphism ¢: E — G, and

BCG(p(E)), =~ BX(m,r,p)(q) x BU),(@)"".

Since BU(l)ﬁ(q) ~ BZ/pE, the projection BCG(go(E))ﬁ — BU(I)I/,\(q)"_” is the p—
completion of the map induced by a homomorphism p: Cg(p(E)) — (Z/p")"P. 1t
has a section, also induced by a homomorphisms o: (Z/ pe)”_l7 — Cg(p(E)), hence p
is an epimorphism. Therefore, we have a short exact sequence Ker p — Cg(¢p(E)) —
(Z/p")"~? and an induced fibration B(Ker ), — BCo(p(E)), — B(Z/ Pty P, from
which we obtain an equivalence B(Ker p)[/,\ ~ BX(m, r,p)(q). Thisreduces the question
to showing that X(m, r, p)(g) is an exotic p—local finite group.

We will show now that X(m, r, p)(q) coincide with the p—local finite groups constructed
in [14, Example 9.4] in purely algebraic terms. For this aim we will need to describe
the centric and radical p—subgroups of X(m, r, p)(q).

Recall that T} = (Z/ pb) is the maximal finite torus of X(m, r, p)(q) with Weyl group
G(m, r, p) and they form a split extension

Tg - NX(m,r,p)(q)(Tg) - G(m7 r, p)

that contains S, ¢ = T X Z/p < Nxm,rp)q(T}), a Sylow p—subgroup of X(m, r, p)(q).
For simplicity we will denote F = F(m, r,p, g), the fusion system of BX(m, r, p)(q)
over (Sp.0,f).

The center of the Sylow p—subgroup is Z(S,,) = Z/ p’ embedded diagonally in
Tf , and, if we write Z(zy) for the elements of order p in Z(S, ), then we obtain
BCX(mJ,p)(q)(Z(SPJ) =~ BCX(m’r,p)(q)(Z(tx)) ~ BU(p)I/j\(q) (see Proposition 11.2). We
also know (see Remark 11.1) that BU (p)l/j\(q) ~ BGLp(qO)[/,\ for a prime power g with
¢ = v,(1 — q) = v,(1 — qo), hence we conclude that the centralizer fusion system
Cr(Z(S,,0)) coincides with the fusion system of GL,(qo), that has been described in
Example 3.4.

The Sylow p—subgroup S), ¢ is clearly centric and radical. Té’ is centric and Out y:(Té’ )=
G(m, r,p) hence it is also radical (p > 5). Proper subgroups of Tg are not centric, so
we will look at subgroups O < S, ¢, not contained in Tf . such a subgroup fits in an
extension

Qo—Q0——1Z/p

L

10— Sy ——Zjp
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where Qo = O N T}/, and since Q is centric, Z(S,¢) < Qp. It turns out that this is
actually a characteristic subgroup of O, Hence there is an exact sequence of groups:

1 — Aute,zs, )(Q) — Autr(Q) — Autr(Z(Sy )

where Autr(Z(S, ) = Z/(m/r) is given by the action of the Adams operations of
exponents a (m/r)th root of unity.

Assume that Q is abelian. Then Qo = Z(S,,) and Q is either Z/p x Z(Sp,0) or
cyclic Z/p**!. In the first case, Q is F—conjugate to a subgroup of 77, hence it is
not centric while in the second case, it is conjugate to the group Up;; described in
Example 3.4. Adams operations do not act internally in Uy, hence Outr(Upy1) =
OUtC}‘(Z(S’,’Z))(U£+1) = Z/p and then Upiq is not radical in F.

Assume that Q is non-abelian. The same arguments as in 10.5 show that Q is either
S,¢ or I'y, and both are radical in C£(Z(S), ¢)). Thus we obtain that they complete the
list of conjugacy classes of centric radical subgroups of S,  in F.

In order to complete the picture it remains to compute the F—automorphisms of I'y.
We have Outc(zs, ) (I'e) = SLa(p). Now, the Adams operations act internally in I'
and we get Outr(I'y) = SLy(p).(m/r).

By Alperin’s fusion theorem, a fusion system over § is generated by the automorphisms
of its fully normalized centric radical subgroups in S. Since in our case all the
automorphisms of 7 are induced by conjugation in Nxmrp)q)(T}), we can write

Fm,7,0.0) = (Fugy () Sp.0): Fro(SLa(p).(m /1))

(see Section 3) but this is precisely the definition of the fusion systems in [14, Exam-
ple 9.4]. |

The cases BX(m,r,n)(g) with r = 1,2 or n < p, are homotopy equivalent to
p—completed classifying spaces of finite groups according to Theorem 9.8 and Re-
mark 11.1.

A Recognition of homotopy fixed point p—compact groups

The objective of this appendix is to obtain a recognition principle for the homotopy
fixed point p—compact group BX" where p is an odd prime, X a connected p—compact
group, G a finite group of order prime to p, and p: G — Out(X) and outer action.
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Let N — X be the maximal torus normalizer for the p—compact group X. The short
exact sequence of topological monoids

BZ(N) = aut(BN); — aut(BN) — Out(N)
induces a fibration sequence
B*Z(N) — Baut(BN) — BOut(N)

which shows that equivalence classes of fibrations over BG with fibre BN is in one-to-
one correspondence with

[BG, BOut(N)] = Hom(G, Out(N)) .

Also, we know from Theorem B that equivalence classes of fibrations over BG with
fibre BX is in one-to-one correspondence with

[BG, BOut(X)] = Hom(G, Out(X)) .

However, Out(X) = Out(N) [53, 7] and therefore there is a bijective correspondence
between fibrations with fibre BX over BG and fibrations with fibre BN over BG. We
shall now make this correspondence more explicit.

Define the group-like topological monoid aut(Bj) to be the submonoid of aut(BN) x
aut(BX) consisting of all pairs (a, b) € aut(BN) x aut(BX) such that the diagram

BN —> BN
Bji lBj
BX —— BX

commutes.

Lemma A.1 Assume that p is odd. The forgetful homomorphisms
aut(BN)<——aut(Bj)——aut(BX)

are homotopy equivalences.

Proof The group homomorphisms 7y aut(BN) «— mg aut(Bj) — mp aut(BX) are injec-
tive because X has N—determined automorphisms [53, 7]. The group homomorphism
to the left is surjective because X is N—determined and the one to the right is surjective
because any self-homotopy equivalence of BX lifts to a self-homotopy equivalence of
BN [51, §3]. The identity components fit into a map of fibrations [28, 11.10]

autgy(Bj); — aut(Bj); aut(BX);

l X

autgx(Bj)l —_— aut(BN)] —_— Map(BN, BX)B/
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where the right vertical map, defined by composition with Bj, is a homotopy equiv-
alence [28, 7.5, 1.3] [26, 9.1] [51, 3.4]. The fibre, consisting of the space of maps
BN — BN over BX and vertically homotopic to the identity map of BN, is (one
component) of the space (X /N)hN which is contractible [49, 5.1]. O

Thus we have bijections
[B, Baut(BN)] = [B, Baut(Bj)] = [B, Baut(BX)]

for any space B and this means BN —fibrations and BX —fibrations over B are in bijective
correspondence.

Proposition A.2 Let X be a connected p—compact group with maximal torus nor-
malizer N — X. If G is a finite group of order prime to p, then any outer action
p: G — Out(X), lifts to a unique G-action on BX and unique G-action on BN.
Moreover, these actions make the map BN — BX G—equivariant; that is, the diagram

BN —— BN;,c —— BG

.

BX — BXy)¢ — BG

is homotopy commutative.

Proof Let us say that our input is an outer action
p: G — Out(X) = W\NGL(L)(W) = Out(N) 44)

of the finite group G on X and N. By Theorem B, p lifts to a unique action of G on
BX, and by Lemma A.1 the same is true for BN. In particular, p determines a unique
map, up to homotopy,

Bp: BG —> Baut(Bj)

inducing p on fundamental groups.

Over Baut(Bj) there are two related fibrations

BN} auy(8)) BX, aut(Bj)

>~

Baut(Bj)

with fibre BN and BX, respectively. Pull back these two related fibrations along the
map Bp to obtain the commutative diagram of the Proposition. a
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Next, we need to lift the action of G on BN and BX to an action on the loop spaces N
and X (see Definition 5.3), such that the inclusion N — X is still equivariant.

Lemma 5.1 applies to show that the fibration BX — BX;g — BG admits a section,
unique up to vertical homotopy, when X is connected; that is, there is a unique lifting
of the action on BX to an action on X. However, BN is not simply connected as
w1 (BN) = W and then Lemma 5.1 ensures neither the existence nor the uniqueness of
a lifting of the action of G on BN to an action of G on N. Instead, it leads to the next
description of the possible actions.

Proposition A.3 If a finite group G of order prime to p acts on BN with outer action
p: G — W\Ngrw)(W) = Out(N), then there are natural one-to-one correspondences
between the sets:

(1) 7(BN"9),
(2) W—conjugacy classes of lifts in the diagram

Neriy(W)

-~

G T> WA\NGLwL)(W).
If these sets are non-empty, then they are also in one-to-one correspondence with
H' (G, W).
Proof An action of G on BN is by definition a fibration
BN — BN — BG, (45)
and according to A.2 this action of G on BN is uniquely determined by p.

Next, we map 7o(BN"O) directly to the set (2). Let ¢: BG — Baut(BN) be a
classifying map for the fibration (45). Thus, ¢ extends to a map of fibrations

BN BNc BG

i lgp

BN —— Baut,(BN) —— Baut(BN)

into the universal BN—fibration. Here, aut.(BN) is the topological monoid of based
self-homotopy equivalences of BN. On the level of fundamental groups we get an
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induced morphism

W —— mo(Nng) G (46)

| lp

W —— Ngry(W) —— W\Ngrw)(W)

of group extensions. Here we use the short exact sequence from [50, 5.2] in combination
with the vanishing results from [6, 3.3].

We have seen (Lemma 5.1) that the existence of an action of G on N lifting the action
on BN is equivalent to the existence of a section of the exact sequence on the top row
of (46), and the diagram shows that this is equivalent to the existence of a lifting of p
to a homomorphism o: G — Ngr)(W). This gives the bijection between 7o(BN"G)
and the set (2).

Finally, if these sets are nonempty, then obstruction theory as in Lemma 5.1 shows that
they are in one-to-one correspondence with the set H Y(G; W) = H'(G; 7 (BN)). O
Proposition A.4 Let X be a connected p—compact group with Weyl group W and
maximal torus normalizer N — X. If G is a finite group of order prime to p and
p: G — Out(X) = W\Ngrr)(W)
is an outer action, then p lifts to a unique action of G on X, and each lift
o:G— NGL(L)(W)

determines a unique action of G on N such that the inclusion N — X is G—equivariant.
Proof The first part was proved in Proposition A.2. According to Proposition A.3,

the actions of G on N that lift the given outer action are in one-to-one correspondence
with lifts of p to Ngrr)(W). If we view one of these actions as a sectioned fibration

BN — BN —= BG
it clearly induces an action on X that makes N — X equivariant:

BN, ——— = BX)¢
‘\ ;/7
U BG.

The proposition follows because there is only one action of G on X inducing p. O
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Proposition A.5 Let p be an odd prime and G a finite group of order prime to p.
Assume that G acts on the connected p—compact group X and that

p: G — Ngrw)(W)
is a lift of the given outer action. If Y is a connected p—compact group that satisties

(1) WPC contains a subgroup W, complementary to the kernel of WP® — GL(LPY),
such that (W, L(X)P%) is a Zp—reflection group isomorphic to (W(Y), L(Y)), and

(2) QH*(BY;Q,) = QH*(BX;Q,)g.,
then BY = BX"C.

Proof By the classification theorem for p—compact groups at odd primes [53, 7],
it suffices [52, 1.2] to find an map BN(Y) — BX"C that induces an isomorphism
on H*(—;Q),) and restricts to monomorphism on the p—normalizer N,(Y), is a p—
monomorphism. The homomorphism p corresponds (A.4) to compatible G—actions
BG — BN(X)pg — BXng on N(X) and X. Taking homotopy fixed points we obtain a
commutative diagram of loop space morphisms

NX)'G —— xhG
NX) X

which shows that N(X)"¢ — X"C is a p—monomorphism. Since the discrete ap-
proximation to N(X), N(X)"¢, and N(Y) are semi-direct products [6], there is a
p—monomorphism N(Y) — NG for W(Y) is a subgroup WPO = moN(X)'S by
the first condition. By the second condition, H*(BY;Q,) = H*(BN(Y);Q,) and
H*(BX"C, Qp) are abstractly isomorphic graded vector spaces. Therefore, ¥ and Xxho
have the same rank [26, 5.9] so that 7(Y) — N(X)"® — X"C is a maximal torus and
H*(BX"%;Q,) — H*(BN(Y); Q) is injective [26, 9.7], hence bijective. ]

A special case arises when G acts through unstable Adams operations so that the
action mgp: G — Out(N) — Out(W) is trivial. Then the image of G in Out(N) =
WA\NGLz)(W) is contained in the subgroup Z(W)\Cqriy(W) [53, 3.16] and we have a
morphism

To(NhG) G

| l‘”

W —— W.Cqr)(W) —— Z(W)\ Cry(W)

/4
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of group extensions. The possible extensions occurring in the upper line, realizing the
trivial action G — Out(W), are classified by H*(G;Z(W)); they are all isomorphic to

W — ZW\D x W) — G

for some central extension Z(W) — D — G [42,IV.§8]. If Z(W) is trivial, mo(Nyg) =
G x W and H'(G; W) = Rep(G, W).

Assume that G = C, is a cyclic group of order r, and the outer action of G on X,
p: C, — Out(X), is given by an Adams operation p(\) = 1)*, where \ € Zy is
a p—adic unit of order r|(p — 1). We can lift v* € Z(W)\Cgrw)(W) to an element
¢ € Cora)(W), such that " € Z(W). If there is a choice of ¢ with (" = 1, then
pA = ( provides a lifting of p.

Assume, otherwise, that (" has order s in Z(W). Since p is odd, Z(W) has order prime
to p, hence s is prime to p. Now, even if there is no lift of the action of C, on X to an
action on N, we can reduce the problem by extending the action of C, to an action of
Cyr on X determined by p/(\) = Y € ZW)\Cqriy(W) C Out(X), that now admits
the lift 5'(\) = (. Notice that C; = (\") acts trivially on X, so that BX"s ~ BX, and
then BX"Cr =~ BX"Cr | so we can still determine BX"C by analyzing the equivariant
action of Cy, on N and X.

Notice also, that if W is irreducible, then Cgr1)(W) consists of diagonal matrices and
therefore ¢ is an Adams operation.

Corollary A.6 Let A\ € Z; be a p-adic unit of order rl(p — 1). Consider the
outer action p: Cr» = (\) — W\Ngrw)(W) through unstable Adams operations given
by p(\) = ¢*. Then, if p admits a lift p: C, — Ngrw)y(W), then all possible lifts are
parameterized by H'(C,; W) = Rep(C,, W), the set of conjugacy classes of order r
elements w of W, and

(WPC, 1P = (Cw(w), L)

for the lift p(\) = Aw corresponding to w.

Proof The lifts
W.Coray(W)
7

|

C, = (N T’ ZW)N\Corwy(W)

P

are given by p(\) = wiy) where w € W is any element of order r. O

We next apply the recognition principle (A.6) in some concrete cases.
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A.7 The three infinite families

We identify the fixed point p—compact groups for the actions of finite cyclic groups
of order prime to p through unstable Adams operations on the p—compact groups of
the three infinite families of irreducible p—compact groups, namely the projective or
special unitary groups, the generalized Grassmannians, and the Sullivan spheres (as
defined in Section 2).

Proposition A.8 (Sullivan spheres) Let p be an odd prime. Suppose that m and
r > 1 divide p — 1. Consider the outer action through unstable Adams operations
i Cp — Out(§¥ 1) = Zy |Cw of the cyclic group C, < Z,* on the Sullivan sphere

§?m=1_ Then the homotopy fixed point group is
2m—1
(§2m=1yhCr — s rim
* otherwise,

Proof Let A be a primitive rth root of unity, so that C, = (\) < Z7. According
to Theorem B, ($2"~ 1)V is a connected polynomial p—compact group. If r does
not divide m, Hzm(w’\) = A" is nontrivial, so that the vector space of covariants
QH*(BSZ’"_l;Qp)<,\> vanishes in positive degrees, and the fixed point p—compact
group is trivial. If r does divide m, 1)* acts trivially on $*"~!, because the kernel of
1 is C,, which contains C,, and the fixed point p—compact group is again $>"~!. O

Proposition A.9 (Special unitary groups) Let p be an odd prime. Suppose that
m > 1 divides p — 1, and let C,, = (\) C Zy; be the cyclic group generated by a
primitive mth root of unity acting through unstable Adams operations. Then

X(m, 1, >0
X(mn + $)'" = U(mn + 5)' = { (m,1,n) n
k n= 0
for any p—compact group X(mn + s) locally isomorphic to SU(mn +s), 0 < s < m.

Proof In the rational cohomology algebras H*(BU(mn + s); Q,) =Q)lc1, . . ., Cpunts]
and
H*(BX(mn + 5);Q,) =Qplca, . . ., Cunts] We have

c; is preserved by HY () — mli
and therefore

QH"(BU(mn + );Qp)c,, = Qplem, -, cun} = OH(BX(m, 1,n); Q)
= QH*(BX(mn + 5); Qp)c,, -
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The Weyl group W = %,,,4 is the symmetric group in its natural representation on
L= Z;m“. Let ey, ..., emnnts be the canonical basis vectors of L. The permutation

w=({1---m(m+1---2m)---(m(n — 1)+ 1---mn) € X,4s
has order m and
(s W), L)
= (Cpu 1 X, X X, Zp{)\el + )\262 —+ o+ )\mem, ce )\em(n_l)+1 + -+ /\memn})

contains the Z,-reflection group G(m, 1,n) = C, X, as a a subgroup complementary
to the kernel, Xy, of the action of (Cy,,,,,(w) on L) This means (A.6) that the fixed
point p—compact group U(mn + s)"“n = X(m, 1, n).

From the two short exact sequences of 7,3, +s—modules [53, § 10]

0—>ZPA>L—>LPU(mn+s)—>O, 0— LX(mn+s) — LPUmn+s) — 1 — 0

where A is the diagonal and 7 a subgroup of 7 (PU(mn + s)) = Z,,/ Z,(mn + s) (with
trivial X,,,+s—action), we get that

LY = LPUmn + s)™) = LX(mn + 5)™)

as Z,Cs,,,,,(w)—modules. d

The proof of (A.10) will make use of the following elementary facts:

e For arbitrary natural numbers m and n we write m,, for m/ gcd(m,n). Then
mun = lem(m, n) and m,n,, = lem(m, n)/ gcd(m, n).

o Ciemigom = (A, p|AT =1, 1™ =1, A\pp = pX, M = pi™).
o Let A(a,t) € GL(Zy, ) denote the linear automorphism
A((l,t)()C], oo axt) = (axtaxla e axtfl)
where a € ZPX is a unit. The ith power A(a, 1)’ has characteristic polynomial
(x' — ag')!/% and A(a, 1)’ = aE.

o If A€ Z; has order ¢, then A(A™9", g,,) also has order g for A(A™9", g, )" =
A\~ E has order gcd(g,m). The \~! eigenspace of A(A\~9",q,,) has rank one
and A(\~%"_ g,,)"" acts on it as multiplication by .

e In the exact sequence 1 — Al®) — Caxgla,g) — Cg(g) the image in Cg(g)
consists of those 1 € Cg(g) that fix a € A/(1 — g)A.
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Proposition A.10 (Generalized Grassmannians) Let X(m,r,n), m > 2, r > 1,
n> 2, r|m|p—1, be the irreducible polynomial p—compact group corresponding
to the imprimitive Z,—reflection group G(m, r,n). Suppose that the natural number ¢
divides p — 1 and let the cyclic group Cy C Cieme,m) C Z; act on X(m, r,n) through
unstable Adams operations. The homotopy fixed point group for this action is

X(em(4, m), r,n/t,,) rl | mn
X(m, r,n)"t = X(Iem(l,m), 1,n/l, — 1) ré{mn 0|mn,
Xdem(l, m), 1, [n/ly])  Ctmn

where (,, = ¢/ gcd(¢,m) and [n/{,] is the biggest integer < n/(,,. (By convention,
G(m,r, 1) is cyclic of order m/r and G(m, r,0) is the trivial group.)

Proof Let A € Z, be aprimitive £throot of unity. In the rational cohomology algebra
H*(BX(m, r,n); Q) = Qplx1,...,x,—1,e] the degrees |x;| = 2im and |e| = 2%n so
that

x; is preserved by H*"((p*) = A" < 0 | im < £y, | i

e is preserved by H>7"(y) = A*" < £ | nm/r & bpyr | 1

and thus QH*(BX(m, r,n); Q,)c, is isomorphic to the indecomposables of the rational
cohomology algebra of the p—compact group on the right hand side of the equation.

We have rl | mn < Ly, | n, £| mn < Ly | n,and £y | £, | £)p — 1.
C/r | n: The element

w = diag (AN, 6, ... ,AN",£,))) € G(m, r,n)
n/lm

has order ¢. Since ((\~‘m)n/tmym/r — \=mn/r — 1 pecause £|(mn/r) by assumption,
w does indeed belong to the index r subgroup G(m,r,n) of G(m,1,n) = C, 1 %,.
Let {ey,...,e,} be the canonical basis for the free Z,-module L = Z on which
G(m, r,n) acts. The free Z,—module

LO‘W) = <€1 +Xey + -+ )\emilegm, e €yl T )\e(n,gm)Jrz + -+ )\emilen> ,
has rank n/¢,. We shall now compute the centralizer of w. Let ¢ be a generator

of the cyclic group Cieme,my C Z, so that C,, = (u) and Cp = (N) with p = I
and A\ = (™. The homomorphisms A(¢, 1,n/l,)—=CGm,1nW)<—A(m, 1,n/l,,)
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defined by

\i — diag (E,...,E, A0 0,)" E, ... E),
N——
i—1
diag (E,...,E,uE,E,... ,E) «—
N——

i—1

combine to a homomorphism defined on A(lem(¢, m), 1,n/¢,,) since they agree on
their common domain A(ged(l, m), 1,n/0,,) = (ume)"n = <)\€'">n/ b Observe that
A9, Ay € AL, 1, n /) lies in the subgroup A(lem(¢, m), r,n/¢,,) if and only
if its image lies in G(m, r,n) and that (u®,..., u“/m) € A(m,1,n/ly) lies in the
subgroup A(m, r,n/¢,,) if and only if its image lies in G(m, r,n). Together with the
diagonal A: %, — X, given by A(o)((i — D)y +j) = () — Dy +j, 1 < 4li <
n/lm, 1 <j<4{,,we obtain a group isomorphism

G(lem(l, m), 1,n/tyn) — Cim,1,m(W)
that restricts to a group isomorphism G(lem(¢,m),r,n/ly) = CgGun,rn(w) between
index r subgroups. This isomorphism identifies the pair (Cggn,r.n)(W), L)) and the
imprimitive Z,—reflection group (G(lem(¢, m), r,n/ty,), Zz/ Z’").

byt 1, Ly | n: Tt will suffice to consider the case of G(m,m,n) where ¢ { n and
{y | n. The element

w = diag (AN, ), ... LA 6,), AT 0,)17 ) € G(m, m, n)

n/lm—1

has order ¢. Note that A~! is not an eigenvalue for A\, Em)lfn/ tn because

AN 0,)! 7 has eigenvalue A™' < AT £,)"/ 1 has eigenvalue A\
o Aftat = N Dt s 0| (L)1 + b/ — D,
<l n/gedWpy,n/ly —1) =L |n=4y|n

which is not the case. Therefore the A\~!-eigenspace
LOw) —
<el FAer e+ X ey ent, 1 + Aoy + o+ V"’flen—ém>

has rank n//,, — 1. The two monomorphisms A(¢, 1,n/l, — 1) — Cganmm(w) and
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CGmmpny(W) < A(m, 1,n/¢,, — 1) given by

N — diag (E, ..., E, A0 0,)" E, . ELANT 4y))
——
i—1
diag (E,...,E,uE.E,...,E,u”"E) < p;
N——
i—1
agree on their common domain A(ged(¢, m), 1,n/¢,, — 1) and together with the mono-
morphism X, /em_fiEn_zm(%Em they define a homomorphism on the group
A(lem(¢,m), 1,n/ly, — 1) x X, /tu—1 such that the composition
A(lem(l,m), 1,n/ly — 1) x 3,0 1 = Cimmmny(W)
—» Im (CG(m,m,n)(W) - GL(L<>\W>))
is an isomorphism with image isomorphic to G(Icm(¢, m), 1,n/¢,, — 1) as Z,-reflection
group.
{1 n: Tt will suffice to consider the case of G(m,m, n). The element
w = diag (A", ), ... AT 0,), N/l 100 1) € Gamym,n)

[n/€m] n—L[n/m)

has order ¢. Note that A~! is not an eigenvalue for A*/%n] because
Al nd = X"V s 0] L[/ 0] + 1 Ly ged(l,m) | bln/ln] +1 = £y | 1

which is not the case as £,, > 1. Therefore the \~! eigenspace L) has rank [n /m].
The two monomorphisms A(Y, 1, [n/4,,])—=CGmmn(W)<—A(m, 1, [n/l,]) given by

N — diag (E,...,E, A0 0,)" E, L E AT 1L 1)
N—— N———
i~y n—L[n/lm]
diag (E,...,E, pEE, ... ,E,ui=" 1,..., 1) « p
N—— N —
i~y n—ém[n/fm]

agree on their common domain A(ged(¢, m), 1, [n/¢,,]) and together with the inclusion

of permutation groups E[n/f,n]gzﬁm[n/ém]gzm , they define a homomorphism on
the group A(lem(¢, m), 1, [n/€]) 3 Xy, /4,1 such that the composition

A(lcm(ﬁ, m), 1, [n/fm]) X E[n/gm] — CG(m,m,n)(W) —» Im (CG(m,m,n)(W) N GL(L<>\W> ))
is an isomorphism with image isomorphic to G(lem(¢, m), 1, [n/¢,,]) as Zp—reflection

group. m|
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The outer automorphism group of X(m, r,n) is isomorphic to A(m, r, n)\ZpXA(m, 1,n)
except in the cases (m,r,n) € {(2,1,2),(4,2,2),(3,3,3),(2,2,4)} [59, §6] [53,7.14].
The (exotic) homotopy action

p: Cm = () — Out(X(m, r,n)) = A(m, r,n)\Z;A(m, 1,n)

that takes the generator p of Cy,, to A(m,r,n)(i, 1, ..., 1) is distinct from the actions
through unstable Adams operations of (A.10) when ged(r,n) > 1 [53, 7.14].

Proposition A.11 (Exotic actions on generalized Grassmannians) Assume that m >
2, r>1,n2>2,and (mr,n) ¢ {2,1,2),(4,2,2),(3,3,3), (2,2,4)}. Then the
homotopy fixed point p—compact group

X(m, r,n)"“" = X(m,1,n — 1)

for the above exotic homotopy action on X(m, r,n).

Proof The second assumption of (A.5) is clearly satisfied as the action preserves
the generators xj,...,x,—; but does not preserve the generator e. To verify the
first assumption, take p: C, — Ngrr)(G(m, r,n)) = Z; G(m, 1,n) to be the obvious
choice p(u) = (i, 1,...,1). Then

G(m, r,n)’“" = A(m,r,n) x £,_,, LPO" = ZZ_I
and the composition
A(m, 1,n — 1) X B, ——=G(m, r, n)PSn—s=Im (G(m, r,n)P“» — GL(LP"))

where the first morphism is (12, . . ., pm) — (2~ ) ™" fi25 - -+ fin)s St < S,
identifies the group to the right as the Z,-reflection group G(m, 1,n — 1). a

The results of A.9 and A.11 were obtained by Castellana [18] using different methods.

A.12 The sporadic p—compact groups

As in Section 2 we write G;, 4 < i < 37, for the sporadic irreducible and simply
connected Z,—reflection group with number i in the Clark—-Ewing classification table,
and X; for the corresponding simply connected p—compact group. When X; is defined
at the odd prime p and r divides p — 1, X denotes the fixed point p—compact
group for the homotopy action ¢ : C, — Out(X;) through unstable Adams operations
on the p—compact group X;. We identify the fixed point p—compact groups for actions
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through unstable Adams operations on the 34 sporadic irreducible p—compact groups.
We may summarize our results in the following diagrams

//\\T

X6 <—— X3 X0 <+— X34 —— §83

NNk

539 <7 X31 S47 S59

A

Xo

18 14

$35 X36

lsT/lw\ 4 /\

X26 s19 X <— Xog

N S AL

gls X5 —5> 523

where for instance, X3, 4 Xp means that X;ZZC“ = Xjo (when p = 1 mod 12) and

X3, ER 5> means that th5 = 5% (when p = 1 mod 30). The relevant primes are
mentioned in the more detailed explanations below but not displayed in the above
diagrams. We use (A.6) to identify the homotopy fixed point groups. With a computer
algebra program it is quite easy to find eigenspaces for the elements of these Z,—
reflection groups. We used the program MAGMA.

(1) (G337 = W(Eg), C3,G3,p = 1 mod 3) There is an element w € G37 of order 3
and a primitive 3rd root of unity A € Z, such that
A
(Coyy (W), L") = (Gsa, L)
meaning that that EhC* = XhC* X35.

(2) (G371 = W(Eg),C4,G31,p = 1 mod 4) There is an element w € G37 of order 4
such that _
(Cgz, (W), L§I7W>) = (G31,L31)

meaning that Ehc4 Xg‘7c * = Xj;.
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3)

“)

&)

(6)

(N

®)

€))
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(G37 = W(Eg), Cs,G16,p = 1 mod 15) There is an element w € G37 of order
5 and a primitive Sth root of unity A € Z such that

(Coyy (W), L") = (Gig, Lis)
meaning that EQ'CS = th7Cs = Xy¢.
(G34,C4,Gr9,p = 1 mod 12). There exists an element w € G34 of order 4, a
(index 4) subgroup G of Cg,,(w), and a primitive 4th root of unity \ € ZPX
such that
(G, L") = (Guo, Lo)
meaning that X;’f“ = Xjo.

(G33,C4,Gro,p = 1 mod 12) There is an element w € G3, of order 4 and a
primitive 4th root of unity i € Z, such that

(Ca W), LY = (G, Lio)
which means that Xg’zc“ = Xjo.

(G33,C30,Cs,p = 1 mod 30) There is an element w € G3; of order 5 and a
primitive Sth root of unity A € Z,* such that

A
(Con ), L") = (C30,7Z,)
which means that Xé'zc 5 =859,

(G31, C3,Gro,p = 1 mod 12). There exists an element w € Gs; of order 3 and
a primitive 3rd root of unity A € Z such that

(CG31(W),L§]\W>) = (G0, L1o) -

This means that Xg’? = Xjo. (The group that the computer finds is Gy and
not G5 (of the same rank and the same degrees) because the elements of order
8 square to central elements [63, p. 281].)

(G31,Cg, Go,p = 1 mod 24). There exists an element w € G3; of order 8 and
a primitive 8th root of unity A\ € ZPX such that the Z,—reflection group
A
(Cay W), L5™) = (Go, Lo)
which means that nglcg = Xo.

(G190, Cg, Co4,p = 1 mod 24) There is an element w € Gy of order 8 and a
primitive 8th root of unity A € Z,* such that

(Cory W), L") = (Ca4, Z,)

which means that X$* = §%7,
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(10)

(11)

(12)

(13)

(14)

(15)

(16)

(Gg, C3,Coq,p = 1 mod 24) There is an element w € Gg of order 3 and a
primitive 3rd root of unity A € Z such that

(Cay ), L) = (Caa, Z,p)
which means that XgC3 =5,

(G34,Cg,C13,p = 1 mod 18) There is an element w € G34 of order 9 and a
primitive 9th root of unity \ € ZPX such that

(Cop W), L) = (C13,7Z,)

which means that ngg = §7,
(G3g = W(E7), Cg, Gag,p = 1 mod 6) There is an element w € Gsg of order 6
and a primitive 6th root of unity A € Z;* such that
A
(Cas W), L") = (Gas, Log)
which means that E;ZC" = Xg’gﬁ = Xo.

(G3¢ = W(E7),C4,Gg,p = 1 mod 8). There is an element w € Gsg of order

4, a subgroup W < Cg,,(w) of index 8, faithfully represented in L§igv> ,and a
primitive 4th root of unity i € Z, such that

W, L") = (Gs, Lg)
which means that Eélc“ = Xg’g“ = Gg. (The Z,-reflection group W contains

elements of order 8 with central square so it is not isomorphic to Gy3 [63, p.
281].)

(G3¢ = W(E7),C14,C14,p = 1 mod 14) There is an element w € Gsg of order
14 and a primitive 14th root of unity A € Z; such that
A
(ConW), L") = (C14,Z,)
which means that Eé’c“‘ = Xé’g 4= 527,
(G3g = W(E7),C13,Ci8,p = 1 mod 18) There is an element w € G3¢ of order
18 and a primitive 18th root of unity A € Z, such that
)\ )
(Can W), Lig") = (C15,Z,)
which means that E;’C“‘ = ng 18— ¢35

(G26, C13,C13,p = 1 mod 18) There is an element w € Gy of order 18 and a
primitive 18th root of unity A € ZPX such that

(Caps W), L") = (C13,Z,)

which means that Xg’g 18 = 6%,
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(17)

(18)

(19)

(20)

1)

(22)

(23)

Carles Broto and Jesper M. Mgller

(Gg, C12,C12,p = 1 mod 12) There is an element w € Gg of order 12 and a
primitive 12th root of unity A € Z; such that

(Cos W), L™ = (€12, Z,)
which means that XgC” =52,

(Gsg, Cg, Cg,p = 1 mod 8) Thereis an element w € Gg of order 8 and a primitive
8th root of unity A € Z, such that

by
(Ca,m), L™ = (Cs,Z,)
which means that chg =8,

(G3s = W(Ep), Ca, Gog = W(F4),p = 1 mod 2) There is an element w € G3s
of order 2 such that

(Cay5(w), L§§W>) = (Gas, Lag)
which means that Eng = X’;SQ =Fy.

(G35 = W(Es), C3,Gas5,p = 1 mod 3) There is an element w € G35 of order 3
and a primitive 3rd root of unity A € Z such that

A )
(Cay5(w), L§5w>) = (Gas, Los)
which means that Egc3 = Xg’? = G»s.

(G35 = W(Es), Cs,Gas,p = 1 mod 5) There is an element w € G35 of order 5
and a primitive Sth root of unity A € Z; such that

(Cays ), L") = (Cs,7Z,)

which means that Egc5 = Xg’scS =9

(G35 = W(Eg),C4,Gsg,p = 1 mod 4) There is an element w € G35 of order 4
and a primitive 4th root of unity i € Z, such that

(Coy ), L) = (Gg, Ly)

which means that Egc“ = Xg’g“ = Gg.

(Gps,Ca, Gs,p = 1 mod 6) There is an element w € G5 of order 2 such that
(Caps (W), LS5™) = (Gs, Ls)

which means that ngcz = Xs.
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(24) (G = W(Fy),C3,Gs,p = 1 mod 6) There is an element w € G»g of order 3
and a primitive 3rd root of unity A € Z* such that

A
(Cn W), L") = (Gs, Ls)
which means that F,"C = ngc‘ = X;.

(25) (G = W(Fy),C4,Gy,p = 1 mod 4) There is an element w € Gjg of order 4
and a primitive 4th root of unity i € Z, such that

(Cop (W), L)) = (G, Lg)
which means that F4"® = X}$* = Xj.

(26) (Gas,C12,Cr2,p = 1 mod 12) There is an element w € G,5 of order 12 and a
primitive 12th root of unity A € Z;* such that

A
(Caps W), LX) = (C12,7Z,y)
which means that ng” = 523,

27) (Gys,C12,C12,p = 1 mod 12) There is an element w € Gy5 of order 12 and a
primitive 12th root of unity A € Z; such that

(Casw), L) = (C12, Z,)

which means that ngclz =823,

B Derived functors of inverse limit functor

In this appendix we discuss higher limits over some finite categories of a special type.

Given a finite group G and subgroups Hi, H>,...,Hy < G, we define a finite cate-
gory I(k) with objects {0,1,2,...,k}, where G is the group of automorphisms of 0
and for each i > 0, H;\G = Homy,(i,0) as G—sets and Autyy)(i) = Ng(H;)/H;, and
other morphism sets are empty. Those categories appear in the context of the Aguadé
p—compact groups and other compact Lie groups, as categories of elementary abelian
subgroups. The next result is essentially contained in [1, 53].

Proposition B.1 Let M be a given diagram of Z,-modules index by the category
(k). Assume that

(a) Restriction gives an isomorphism H/(G;A) = H/(H,;A), for any ZyG—module
Aandj> 1.
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(b) p1|Ng(H;)| and M; = M(I){", forevery i > 2.
Then there is an exact sequence
0 — h&lOM —>MIIVG(H1)/H1 @MOG _ MSVG(HI) _ yLnl M —0,
(k) (k)
and Mﬂ(mM =0ifj>2.

Proof We consider a star-shaped category I(k) with k + 1 objects {0, 1,2,... k}.
There is an exact sequence of the form [53]

0 —1im® M — MG x T mMe ™ — T myo™
i>0 i>0

—lim' M — H'(G;Mo) x | [ H'(No(H) /Hi: My) — [ | H' (No(H:); Mo)
i>0 i>0

—lim? M — HX(G: Mo) x | [ H*(Na(H))/Hi: M;) — | [ H*(Na(H;): M)
i>0 i>0

—lim*M — -

Under condition (b) this exact sequence reduces to the exact sequence

0 —=lim°M — Mg % MQVG(HI)/HI _ MévG(Hl)

—lim' M — H'(G: Mo) x H'(Ng(H1)/H1; M1) — H'(Ng(H1); Mo)

—lim* M — H*(G: Mo) x H>(Ng(H1)/H1; M1) — H*(Ng(H1); Mo)

—lim*M — -
Condition (a) implies that H; and G have the same Sylow p—subgroup. Hence p does
not divide |Ng(H1)/H| and so therefore H*(Ng(H});A) = H*(Hy; AYNeHD/Hi  Now,
in the diagram given by restrictions H/(G;A) — H/(Ng(H));A) — H/(H| ;A),j > 1,
the composition is an isomorphism and the second arrow is a monomorphism, hence
both arrows are isomorphisms:

H(G;A) = H/(Ng(H\); A) = H(Hy;A), j>1,

and the Proposition follows. a
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