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Fundamental Groups of Section Spaces

J. M. M@LLER,

1. Introduction

There are two standard ways, both used with success in the literature, of
decomposing a mapping space into a sequence of fibrations: One is induced
by a cell decomposition of the source and the other by a Moore-Postnikov
factorization of the target space. We shall here apply the latter method to
compute the first interesting homotopy group, i.e. the first one not given
by elementary obstruction theory, of a general section space.

Throughout this note, let F % Y & B be a fibration of connected
spaces, X a connected CW complex, and u : X — Y a continuous map. Put
u1 = pu and write F,, (X; Y, B) for the space of all lifts of u; and F?(X;Y, B)
for the component of F,(X;Y,B) that contains u. These section spaces
. are considered as having u as base point. In order to assure continuity
of evaluation maps we shall work in the category of compactly generated
spaces; so for example all'mapping spaces are equipped with the compactly
generated topology associated to the compact-open topology.
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2. The case of a simple fiber

In this section we shall assume that F' is a simple space and that there exist
integers 1 < k < n such that m;(F) =0 for 0 <¢ < k and k < i < n. Put
d =dim X.

Elementary obstruction theory shows that if d < n, then

mF,(X;Y,B) = H* ' (z;uymi (F))

for 0 < 2 < n —!d. We shall here go one step futher and compute
7"'n—dlpu()(;Y;-B)' )

Since F' is simple, m.(F) is a m;(B)-module. Let ¢, : m(B) —
— Aut, (F') be this local coefficient system and

L: L(m,(F),n+ 1;0,)2 K(m(B),1) ‘=: D

the classifying sectioned fibration for (n + 1)-dimensional cohomology with
coefficients in . There exists a Postnikov factorization (8]

|

K(m,(F),n) — Yo PL

Pn+1 l
L
D

|~

K(mp(F), k) — Yin

B —

where the upper square is a pullback; PL — L is the path space fibration
over and under D [8]; B — D is some map inducing the identity on 7. Let

k: Fu(X;Yir1,B) = Feu(X; L, D)
by the map defined by composition with the k-invariant k.
Lemma 1. There are weak homotopy equivalences

Bx i Fu(X; Ve, B) =[] KEH(X;uim(F)), 6)
a+B8=k

Ox : Fou(X;L,D)— [ KEH(X;uima(F)), B)-
a+p=n+1
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This was proved in [11]; see also [4], [12].
Put H* := HY(X;u]m,(F)). Let

[Prosi-a 0 @x o k] € H" "4 (F)(X;Yyy1,B); HY)

be the homotopy class of ®xk followed by the projection onto the factor
K(H%n+1-d).
Apply the composite homomorphism

H™" 4 (F)(X; Y41, B); HY) —

@) (T i . rrd
- S H" HK(H Z(X;Ulﬂ’k(f))’z);ﬂ -

o o =1
tnt1-a O

n-d Hn+1—d (H—k—n-l-d"l (X;u}mc(}")),n +1— d, Hd) @
® H™ 4 (KP4 (X uimy(F)),n — d; HY),

where i,11-4 and i,-4 are inclusions, to [pr; o ®x o k] and call the image
(Ou,€u). Note that

9, € Hom(H* nt+d~1 (X;uim(F)), HY(X; u;mn (F)))
and that
€ HrHimd (gkntd (X;uymi(F)),n — d; Hd(X;UIWn(]:)))

classifies central extensions if n — d = 1 and abelian extensions if n — d > 1
of H*" "4 (X;uim, (F)) by HY(X; ujm,(F)); see [9).

Theorem 2. Suppose that F is simple and that d < n. There exists an
(n — d)-connected map

Fu(X;¥, B) — [] K(H* (X;uim(F), )

=0

and an exact sequence

Hk—n+d'1 (X,Uzﬂ-k(f)) a—u) Hd(X,UIWn(f)) — Trn—dFu(X)Y;B) _>
— H* " (X uim (F)) — 0

involving 0,. The extension

0 — Cokernd, — mp-q Fo,(X;Y, B) — H* "4 (X; w7 (F)) — 0
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is central if n —d = 1 and abelian if n—d > 1 and classified by €, (or rather
the image of €,, under an obvious coefficient group homomorphism).

Proof. Since ¢ : F,(X;Y,B) — F,(X;Yp1,B) is (n 4+ 1 — d)-connected
we may assume that ¥ =Y, ;. Then F,(X;Y, B) is the pullback of the

diagram
PF,(X;L,D)

Fu(X;Y1,B) 2  F.(X;L,D)

where P is the path space functor based at ku. The (n — d)-dimensional
homotopy group is, because of the structure of Fr.(X;L,D) as a product
of Eilenberg-MacLane spaces, equal to 7,-4 of the pullback of

PK(H*n+1-d)

Fu(X;Y1,B) 2  Fu(X.L,D)

and it is well known that this homotopy group is determined as asserted in
the theorem. In particular we see that the extension is central because the

path space fibration to the right is orientable. m

More surprising than the actual statement of Theorem 2 is perhaps
the fact that 0, and e, are explicitly computable entities given sufficient
information on the k-invariant. I shall illustrate this with a few examples
thus giving a unified approach to a number of short exact sequences occuring

in the recent literature [1], [5], [7].
The computations of the examples are based on two observations:

A ([11], Remark 3.2). The splitting ®x of Lemma 1 of F}, := Fru(X;Y, B)
is determined [11] by an isomorphism (also denoted @y )

n+1
B H™ (7 x X;prouyma (F)) — @Hi(?;H"+l—i (X prima(F)))
i=0
of contravariant functors. The vertical homotopy class of the adjoint
K:FY(X;Y,B)yxX — L
of k: F)(X;Y,B) — Fy, is a cohomology class

[K] € H"" (F)(X;Y, B) x X; pryu;mn(F))
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and [pro1-q4 © @x o k] = pro1-4 ®x K.

B. For any space Z (e.g. Z = FJ(X;Y,B)) the following diagram com-
mutes

H™(Z x X; prouym,(F))
®/ |
H"*l_d(Z)(X)Hd(X;uIWn(]:)) L prpsi-q 0o ®x
N\
H™174(Z, HY( X ; uym, (F))

where ® is exterior cross product, as in the Kiinneth sequence, and the
unmarked arrow is the first homomorphism of the Universal Coefficient
Theorem ([9], Exercise 2, p. 172).

Example 3. Let Y = P(V) — B be the projective bundle associated to a
complex vector bundle of dimension n + 1 and suppose d = dim X < 2n. In
the Postnikov factorization P(V), = K(Z,2) x B and ([10], Lemma 2.1)

k: K(Z,2) x B— K(Z,2n +2)

is the Euler class k = ¢,4; (A ® V) where ) is the tautological line bundle.
According to Theorem 2 there is an exact sequence of the form

H°(X) % H™(X) % m F,(X; P(V), B) — H'(X) — 0.

We shall now determine 9, and e,. Choose a free Z-basis {z;} for
H'(X) and let {2} be the dual basis for H*(H"(X);Z) = Hom(H? (X),2).
(We assume that H'(X) is finitely generated). Under the identification

F)(X; P(V), B) = K(H°(X),2) x K(H'(X),1)
the adjoint of k : F;)(X; P(V),B) — K(Z,2n +2)* is the map
K: K(H°(X),2) x K(H'(X),1) x X — K(Z,2n + 2)
given by ([10], Lemma 2.2), ([7], p. 236; [1], Lemma 3.2)

n+1 | nt+1-i
K:ZI®1®CiU(L®1®1+Zl®m;®xj) +1

=0 J
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where ¢; = ¢;(u" (A\) ®V) and « € H?(H°(X), 2;Z) is the fundamental class.
By observations A and B,

pra®k : K(H°(X),2) x K(H'(X),1) — K(H?"(X),2)a
is then represented by

pr:®PK =1®1Q®c¢, — Z 1Q 7,7, @ 2T,TiCn—1.

s<t

Consequently,
0u(1) =ca(u’(N)®V)

and if Z,,7; € mF,(X; P(V), B) project onto z,,z; € H'(X), s <t, then
the commutator

[Zs,Ts) = 6(2T,T1Cn-1 (U (X)) @ V).

This formula was also obtained by a different method by Crabb and Suther-
land ([1], Theorem 2.12); see Hansen [5] and Larmore and Thomas (7] for

the case n = 1.

Example 4. Let V, B and X be as in Example 3. Form the associated

lens space bundle
L** (m) - L(v) — b

relative to the action of a cyclic group Z/m of order m > 1. Let u: X —
— L(V) be a map. There is then a central extension

0 — H*(X) 5 mF,(X;L(V),B) — H(X;2/m) — 0

classified by the extra information that there exists an element ¢ € pi; F, (X;
L(V), B) which projects onto 1 € H°(X;Z/m) and satisfies

"™ = ke, (U (A)QV)
~where ) is the tautological complex line bundle over L(V).

Example 5. Let V — B be an (n + 2)-dimensional real vector bundle and
Y = G§ (V) — B the associated bundle of oriented 2-planes. If n = 2r + 1
is odd, then the only homotopy groups in dimensions < n of the fibre
Gfipn = O(n+2)/O(n) x SO(2) are ([13], Theorem 1V.10.13) 7, = Z
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and m, = Z/2. Let u : X — G5 (V) be a map on an (n — 1)-dimensional
complex. Then

mF(X;G;(V),B) 2 H'(X) ® H" ' (X;2/2)/0.

where 8, = Y 1_, (r+1—4)u"wy(A)" * Uws; (u” V); again ) is the tautological
2-dimensional real vector bundle over G (V).

I omit the detailed computations of the last two examples since they
are very similar to those of Example 3.

As shown by these examples, and in fact already by Federer 2], 7, F,
need not be abelian even though F' is simple. What is true, though, is that
this fundamental group is given by a central extension if d < n. In the next
section we shall see that non-central extensions may arise if F' is no longer
assumed to be simple.

3. The case of a non-simple fiber

We now assume that m;(F) = 0 for 1 < ¢ < n and we allow m;(F) to
act non-trivially on M := =,(F). Then M is no longer a m;(B)-module
but M = 7,44 (B,Y) is still a m (Y)-module and a ; (X)-module through
U 2 T (X) = 1 (Y). Also 7 (F) =2 my(B,Y) is a 71 (X )-module in this way
and we let w1 (F)* be the subgroup of 7, (X)-invariant elements.

This time the Moore—Postnikov factorization has the form [6], [8]

Y
|
K(M’ n) - n+1 - ?L(Man"' 1790)
! !
K(m(F)1) — Y, -5 L(Mpn+1p) =1L
! k1Tk
B K(m(Y),1)=:D

where the square is a pullback and ¢ the m;(Y)-module structure of M.
Note that the k-invariant is no longer a map over K(m;(B),1) but over
K(m(Y),1) and that as a consequence, the induced map

E: Fuz(X;}G,B)—*Fkuz(X;L):LX
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goes into the full space Fy,(X;L) and not just the subspace Fy, (X;L,D)
as in Section 2. It is however still possible to determine the source as well

as the target space for k.
Assume from now on that X is a finite complex of dimension < n.

Lemma 6 ([11], Theorem 6.3). F, (X;Y3,B) is an aspherical space with
fundamental group m Fy), (X; Yy, B) = m (F)".

Consider the sectioned fibration

Fo,(X; D)2 F,, (X;D)

e T i

induced by k and k. By Gottlieb [3], or Lemma 6 above, the base space
Fi (X3 D) = K(m (Y)",1)

is an aspherical space with fundamental group equal to the centralizer

m(Y)" of u. (71(X)) in 71 (Y). For any £ € m(Y)", let . (§) be the coeffi-

cient group automorphism on cohomology induced from the automorphism

©(€) of the local coefficient system u;M. Form the associated classifying

fibrations
LH™ (X;u, M), ;0. )2 K(m(Y)*,1), 2<i<n+]1,

n+1
and their pullback @ L(H"*17¢ (X;uyM), ;) along the diagonal.

=2
Lemma 7 ([11], Theorem 5.1). As a space over and under F}, (X;D) =
= K(m(Y)",1),
n+1
Fo.(X; L) = @ LH (X;u, M), i; 02).

=2

The composite map pry o k of the diagram

FO(X;L) 5 LH™* (X;u; M), 2; 0+ )
k/ 1T 1T
K(m(F)*,1) = F)(X;Y;,B) — F) (X;D)=K(m(Y)",1)

is a lift of 4. : K(m (F)",1) — K(m1(Y)",1) and hence its vertical homo-
topy class is an element

eu € Hy ;, (m(F)"; H™* (X;u; M)
of the second cohomology group of m; (F)* with coefficients in the 7 (F’)
module H™ ! (X;u; M).

u
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Theorem 8. Assume that m(F) =0 for 1 < i <n and that X is a finite
CW complex of dimension < n — 1. Then there is a group extension

0— H" " (X;uyM) —» m FO(X;Y,B) —» m(F)* = 1
with operators
m(F)* 5 m (V)" 5 Aut H (X u, M)
classified by €,, € H2 , (m (F)*; H" 1 (X;uyM)).

7.

With this theorem, proved formally as Theorem 2, it is easy to give ex-
amples of non-central extensions. On the other hand, Theorem 8 shows that
the arising operators in all cases must be coefficient group automorphisms.

Example 9. Let Y = P(V) be the projective bundle of a real vector
bundle V"' — X and X a simply connected complex with top cohomology
H"1(X) =Z/m cyclic of order m = 2 mod 4. The extension

0— Z/m — mF,(X; P(V),B) = Z/2 — 0

is central if n is odd but Z/m acts as multiplication by —1 if n is even. In
either case, reduction mod2 induces an isomorphism

p-: H*(Z/2; H* ' (X)) — H*(Z/2; H" *(X;2/2)) = H ' (X,Z/2)
and, cf. Example 3,

pr(ey) =u w1 (V) = wp—1.

Consequently
Z/mxZ/2 nodd, w,-1 =0
Z/2m n odd, w,-; #0
F, X,P ,B) = y Wn
71 Fy ( (V),B) Z/mxZ/2 neven, w,—, =0
Q n even, W,—; # 0

where Q = (a,bla™ =1, b = a*, b"rab = a™'), 2k = m, is a sort of
generalized quaternion group.

* Remark 10. The short exact sequence of Theorem 8 also follows from the
fibration

Fu(X;Y,Y,) = Fu(X;Y, B) — F,(X;Y,, B)
where each component of the base is aspherical. This also shows that the
higher homotopy groups of F,(X;Y,B) agree with those of F,(X;Y,Ys)
which are given in Theorem 2 through a range of dimensions.




410 J. M. MULLER

References

[1] M. C. CrABB and W. A. SUTHERLAND, Function spaces and Hurwitz—Radon
numbers, Math. Scand. 55 (1984), 67-90.
[2] H. FEDERER, A study of function spaces by spectral sequences, Trans. Amer.
Math. Soc. 82 (1956), 340-361. .
[3] D. H. GOTTLIEB, Covering transformations and universal fibrations, Illionis
J. Math. 13 (1969), 432-437.
[4] A. HAEFLIGER, Rational homotopy of the space of sections of a nilpotent
bundle, Trans. Amer. Math. Soc. 273 (1982), 609-620.
[5] V. L. HANSEN, On the space of maps of a closed surface into the 2-sphere,
Math. Scand. 35 (1974), 149-158.
[6] R. O. HiLL, JR., Moore-Postnikov towers for fibrations in which 7 (fibre) is
non-Abelian, Pacific J. Math. 62 (1976), 141-148.
[7) L. L. LARMORE and E. THOMAS, On the fundamental group of a space of
sections, Math. Scand. 47 (1980), 232-246.
[8] J. F. MCCLENDON, Obstruction theory in fiber spaces, Math. Z. 120 (1971),
1-17.
[9 S. MACLANE, Homology, Die Grundlehren der mathematischen Wissenschaf-
ten Springer (Berlin, 1963).
[10] J. M. M@LLER, On the homology of spaces of sections of complex projective
bundles, Pacific J. Math. 116 (1985), 143-154.
[11] J. M. M@LLER, Spaces of sections of Eilenberg-MacLane fibrations, Pacific
J. Math. 130 (1987) 171-186.
[12] R. THOM, L’homologie des espaces fonctionells, Colloque de topologie algé-
brique (Louvain, 1956), Thone (Liége, 1957), 29-39.
[13] G. W. WHITEHEAD, Elements of homotopy theory, Graduate Texts in Math-
ematics 61, Springer (New York, 1978).

Jesper Michael Mgller

Matematical Inst.
Universtitetsparken 5
DK - 2100 Kpbenhavn O




