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HOMOTOPY FIXED POINTS FOR CYCLIC p-GROUP ACTIONS
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(Communicated by Thomas Goodwillie)

ABSTRACT. The homotopy fixed point p-compact groups for cyclic p-group
actions on nonabelian connected p-compact groups are not homotopically dis-
crete.

1. INTRODUCTION

It is a classical result that cyclic groups acting on nonabelian compact connected
Lie groups have no isolated fixpoints [2, Lemme 1, p. 46]:

Theorem 1.1. Let X be a nonabelian connected compact Lie group equipped with
an action of a cyclic group G. Then the identity component of the fixed point group
X6 is nontrivial.

In this note we prove an analog for p-compact groups of this statement. First,
we need a few concepts.

Suppose that X is a p-compact group [4] with classifying space BX and that G
is a finite group.

Definition 1.2. A G-action on X is a sectioned fibration

BX — (BX)ne =~ BG
Ba

over BG with fibre BX.

If G is a finite p-group, it is known [4, 5.8] that each component of the sec-
tion space (BX)"Y is the classifying space of a p-compact group. We define the
homotopy fixed point p-compact group for the G-action to be the p-compact group

Xh¢ = Q((BX)"C, Ba)

whose classifying space is the component containing the section Ba.

Having introduced these concepts, we can now formulate the main result of
this note. (A connected p-compact group is nontrivial if its classyfying space is
noncontractible.)

Theorem 1.3. Let X be a nonabelian connected p-compact group equipped with an
action of a cyclic p-group G. Then the identity component of the homotopy fized
point p-compact group X" is nontrivial.
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The following consequence of this theorem, whose proof relies on a Lefschetz
number calculation, is immediate.

Corollary 1.4. Letv: G — Y be a monomorphism of a cyclic p-group into a (not
necessarily connected) p-compact group Y which is not a p-compact toral group.
Then the identity component of the centralizer Cy (G) of v is nontrivial.

The self-centralizing diagonal subgroup (Z/2Z)™ of O(n) shows that noncyclic
subgroups may have discrete centralizers.
Corollary 1.4 plays an important role in the proof of the main result of [9].

2. A LEFSCHETZ NUMBER CALCULATION

Let X be a connected p-compact group, G = Z/p",r > 0, a cyclic p-group and

BX — (BX)na <B_5 BG

an action of G on X. The homotopy fixed point p-compact group X" is the section
space of the fibrewise looping

X — Xne & BG
of the G-action. Consider the associated monodromy homomorphisms
(1) G — Aut,(BX),
(2) G — Aut.(X)

of GG into the groups of based homotopy classes of based self-homotopy equivalences
of the fibres and the induced representations

(3) G — Aut Hy (BX),
(4) G — Aut Hj (X)

of G in the p-adic rational cohomology algebras. Of course, representation (4)
induces yet another representation

(5) G — QHy (BX)

of G in the graded vector space of indecomposables.
Let Bg: BX — BX and g: X — X be the self-homotopy equivalences induced
by a generator g € G. We shall compute the Lefschetz number

AX;G) = Z(—l)i trace H&p (9)

for the action of G on X in terms of the irreducible summands of the representation

(5).

Recall [4, §4] that the cyclic group G admits r + 1 essentially distinct irre-
ducible representations pg, p1, . . ., pr over the p-adic numbers. Here, pg is the triv-
ial representation and p;,1 < ¢ < r, is the composition of the reduction map
G = Z/p" — 7Z/p' with the action of Z/p’, regarded as the group of p‘th roots of
unity, on the extension field Q,(w;) of Q, by a primitive p’th root of unity w;. The
dimension of p;,1 <i <7, is [Qp(w;) : Qp) = p' —p'~ L.
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Proposition 2.1. Suppose that the G-representation QH@F (BX) contains the ir-
reducible representation p; with multiplicity n;, 0 < ¢ <r. Then

nitectne g =0
Ax:0) =17 Jmo =0
0 if ng #0
is the Lefschetz number for the action of G on X. In particular, A(X;G) = 0 if
and only if G fizes a nonzero vector of QH@) (BX).

Proof. Note that the monodromy action (2) of G on X = QBX is the looping of
the monodromy action (1) on BX and that the Eilenberg-Moore spectral sequence
provides a functorial isomorphism between the graded object Gr(Hg, (X)) associ-
ated to a filtration of Hg (X) and the exterior algebra E(X~'QHg (BX)) on the
desuspension of QHg (BX). Combining this with the isomorphism

QH@, (BX) = nopo ®@nip1 @ - O nppr
of G-representations induces yet another isomorphism
Gr(Hp, (X)) 2 B(S™p0)®™ @ B(S™1p1)®™ @ -+ @ B(S™}p,)®™

of G-representations. By the additivity [4, 4.12] of traces in exact sequences, then,

the Lefschetz number .

AX;G) =[] Ay
i=0
where A; is the trace for the action of G on E(X~1p;).

Since E(X"1pp) is the trivial representation, Ay = 0.

When i > 0, we pass to an algebraic closure of Q,. Then p; splits into 1-
dimensional representations and we see that A; = ®;(1) where ®; is the character-
istic polynomial for g acting on p; or, equivalently, for w; acting on Qp(w;). Hence
®; is the p'th cyclotomic polynomial so ®;(1) = p and the proposition follows. [

The consequence below is evident if we recall [4, 4.5, 5.7, 5.10] that the Lefschetz
number A(X;G) computes the Euler characteristic of X" and that a p-compact
group is homotopically discrete if it looks so in p-adic rational cohomology.

Corollary 2.2. The following conditions are equivalent:

(1) X" has a nontrivial identity component.
) x(X hG) > 0.

(2
(3) A(X;G) > 0.
4) G ﬁ:ces a nonzero vector of QHg (BX).

The proof of Theorem 1.3 has now been reduced to the following

Lemma 2.3. Suppose that X is nonabelian (i.e. not a p-compact torus). Then G
fizes a nonzero vector of QH@F (BX).

Proof. Let T — X be a maximal torus with Weyl group W. The dual weight
lattice L = mo(BT') is then a Z,[W]-module whose rationalization L ® Q exhibits
W as a reflection group over Q,. The action of G on the symmetric invariants
Sym((L ® Q)" = Hg (BX) factors [4, 8.11, 9.5, [8, §3] through N(W)/W
where N (W) is the normalizer of W < Aut(L ® Q).

Suppose first that X is almost simple, i.e. [5, 1.6] that the center of X is finite
and that L®Q is a simple Qp[W]-module. Then the reflection group W is one of the
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irreducible reflection groups on the Shephard—Todd-Clark—Ewing list as presented
e.g. in [6, p. 165]. The list provides information about the indecomposables of the
invariant ring in that the degrees of each reflection group are given.

If p > 2, the list shows that dimg, QH(SP (BX) < p—1 for all i. (In fact
QH@F (BX) has dimension < 2 with dimension 2 occurring only in case 2a (where
the degrees given in [6] are incorrect) and in case 19, neither of which are realizable
for p = 3.) Since a nontrivial p-adic representation of a cyclic p-group requires at
least p — 1 dimensions, G’ must act trivially on all of QHg (BX) (which is nonzero
if X is nontrivial [4, 5.10]).

The case p = 2 requires separate treatment. The only irreducible 2-adic re-
flection groups are the classical Coxeter groups together with group number 24 of
rank 3, W = Z/27Z x GL3(Fs), realized by DI(4) [3]. If W is one of the classi-
cal Coxeter groups, the effect of an element of the normalizer N(W) on the de-
gree 4 invariants is multiplication by u?, 2u?, or 3u?, where u € Qj is a 2-adic
unit [7, 1.7]. Since —1 doesn’t have this form, the 1-dimensional G-representation
Hép (BX) = QH@F (BX) is the trivial one. Generators for the ring of invariant
polynomials of the unique nonclassical 2-adic reflection group are [1, p. 101]

3 3 3
Ys = X1T5 + X2T3 + X377,

2
y12=det( Oys >7

8xi8xj
66258 %y12
yos = det I 8 ,
8wj

where the subscript on the variable y denotes the dimension of the corresponding
indecomposable cohomology class. Note that if an element of N (W) takes ys to
its opposite, then also y;2 is taken to its opposite but ysg remains fixed. Thus
any element of 2-power order in N(W)/W must fix either yg or yog (considered as
clements of Hj (BX)).

This proves the lemma for all almost simple p-compact groups.

Next suppose that X is simply connected and nontrivial. Then there exist, by the
splitting theorem [5], almost simple p-compact groups Xy, ..., X,, with dual weight
lattices L4, ..., L, and Weyl groups W1,...,W, such that X = X; x --- x X,
and L 2 L1 X -+ x L, as W 2 Wy x --- x W,-modules. The efffect of Bg on
Hg (BX) =@ H{, (BX;) has, cf. [8, 3.5], the form

Hg (Bg) = (A1®- - ®Ay)o0

where A; is an automorphism of H@p (BX;), 1 <i < n, and o is a permutation
within the isomorphism classes of these algebras. Hence

QHG, (Bg) = (QA1@ - ®QAn) 00

on QHg, (BX) = @QH@F (BX;). There are now essentially two distinct cases
to consider. Namely, the case where ¢ is trivial and the case where ¢ is a cyclic
permutation of p-power order > 1. The first case was treated above and in the
second case, QH@F (Bg) fixes the diagonal. Hence the fixed point vector space
QH@(BX )G is nontrivial for any nontrivial simply connected p-compact group X.

Finally, up to isogeny any connected p-compact group has the form X x S [11,
5.4] where X is simply connected and S is a p-compact torus and any automorphism
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is a product of an automorphism of X with an automorphism of S [10, 4.3]. Hence
QH} (BX x BS)® = QH}y (BX)® & QH} (BS)©
is nontrivial if X is nontrivial. |
We conclude this note with the easy proof of Corollary 1.4.

Proof of Corollary 1.4. Let w be the component group and X the identity compo-
nent of Y. The p-compact group extension

XM Oy (G) — Cr(G)

shows that X"¢ and Cy (G) have isomorphic identity components. O
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