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HOMOTOPY FIXED POINTS FOR CYCLIC p-GROUP ACTIONS

W. G. DWYER AND J. M. MØLLER

(Communicated by Thomas Goodwillie)

Abstract. The homotopy fixed point p-compact groups for cyclic p-group
actions on nonabelian connected p-compact groups are not homotopically dis-
crete.

1. Introduction

It is a classical result that cyclic groups acting on nonabelian compact connected
Lie groups have no isolated fixpoints [2, Lemme 1, p. 46]:

Theorem 1.1. Let X be a nonabelian connected compact Lie group equipped with
an action of a cyclic group G. Then the identity component of the fixed point group
XG is nontrivial.

In this note we prove an analog for p-compact groups of this statement. First,
we need a few concepts.

Suppose that X is a p-compact group [4] with classifying space BX and that G
is a finite group.

Definition 1.2. A G-action on X is a sectioned fibration

BX // (BX)hG
//
BGoo

Ba

over BG with fibre BX .

If G is a finite p-group, it is known [4, 5.8] that each component of the sec-
tion space (BX)hG is the classifying space of a p-compact group. We define the
homotopy fixed point p-compact group for the G-action to be the p-compact group

XhG = Ω((BX)hG, Ba)

whose classifying space is the component containing the section Ba.
Having introduced these concepts, we can now formulate the main result of

this note. (A connected p-compact group is nontrivial if its classyfying space is
noncontractible.)

Theorem 1.3. Let X be a nonabelian connected p-compact group equipped with an
action of a cyclic p-group G. Then the identity component of the homotopy fixed
point p-compact group XhG is nontrivial.
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The following consequence of this theorem, whose proof relies on a Lefschetz
number calculation, is immediate.

Corollary 1.4. Let ν : G→ Y be a monomorphism of a cyclic p-group into a (not
necessarily connected) p-compact group Y which is not a p-compact toral group.
Then the identity component of the centralizer CY (G) of ν is nontrivial.

The self-centralizing diagonal subgroup (Z/2Z)n of O(n) shows that noncyclic
subgroups may have discrete centralizers.

Corollary 1.4 plays an important role in the proof of the main result of [9].

2. A Lefschetz number calculation

Let X be a connected p-compact group, G = Z/pr, r ≥ 0, a cyclic p-group and

BX // (BX)hG
//
BGoo

Ba

an action of G on X . The homotopy fixed point p-compact group XhG is the section
space of the fibrewise looping

X // XhG
//
BGoo

of the G-action. Consider the associated monodromy homomorphisms

G→ Aut∗(BX),(1)

G→ Aut∗(X)(2)

of G into the groups of based homotopy classes of based self-homotopy equivalences
of the fibres and the induced representations

G→ AutH∗
Qp

(BX),(3)

G→ AutH∗
Qp

(X)(4)

of G in the p-adic rational cohomology algebras. Of course, representation (4)
induces yet another representation

G→ QH∗
Qp

(BX)(5)

of G in the graded vector space of indecomposables.
Let Bg : BX → BX and g : X → X be the self-homotopy equivalences induced

by a generator g ∈ G. We shall compute the Lefschetz number

Λ(X ;G) =
∑

(−1)i traceHi
Qp

(g)

for the action of G on X in terms of the irreducible summands of the representation
(5).

Recall [4, §4] that the cyclic group G admits r + 1 essentially distinct irre-
ducible representations ρ0, ρ1, . . . , ρr over the p-adic numbers. Here, ρ0 is the triv-
ial representation and ρi, 1 ≤ i ≤ r, is the composition of the reduction map
G = Z/pr → Z/pi with the action of Z/pi, regarded as the group of pith roots of
unity, on the extension field Qp(ωi) of Qp by a primitive pith root of unity ωi. The
dimension of ρi, 1 ≤ i ≤ r, is [Qp(ωi) : Qp] = pi − pi−1.
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Proposition 2.1. Suppose that the G-representation QH∗
Qp

(BX) contains the ir-

reducible representation ρi with multiplicity ni, 0 ≤ i ≤ r. Then

Λ(X ;G) =

{
pn1+···+nr if n0 = 0,

0 if n0 6= 0

is the Lefschetz number for the action of G on X. In particular, Λ(X ;G) = 0 if
and only if G fixes a nonzero vector of QH∗

Qp
(BX).

Proof. Note that the monodromy action (2) of G on X = ΩBX is the looping of
the monodromy action (1) on BX and that the Eilenberg–Moore spectral sequence
provides a functorial isomorphism between the graded object Gr(H∗

Qp
(X)) associ-

ated to a filtration of H∗
Qp

(X) and the exterior algebra E(Σ−1QH∗
Qp

(BX)) on the

desuspension of QH∗
Qp

(BX). Combining this with the isomorphism

QH∗
Qp

(BX) ∼= n0ρ0 ⊕ n1ρ1 ⊕ · · · ⊕ nrρr

of G-representations induces yet another isomorphism

Gr(H∗
Qp

(X)) ∼= E(Σ−1ρ0)
⊗n0 ⊗ E(Σ−1ρ1)

⊗n1 ⊗ · · · ⊗ E(Σ−1ρr)
⊗nr

of G-representations. By the additivity [4, 4.12] of traces in exact sequences, then,
the Lefschetz number

Λ(X ;G) =

r∏
i=0

Λni
i

where Λi is the trace for the action of G on E(Σ−1ρi).
Since E(Σ−1ρ0) is the trivial representation, Λ0 = 0.
When i > 0, we pass to an algebraic closure of Qp. Then ρi splits into 1-

dimensional representations and we see that Λi = Φi(1) where Φi is the character-
istic polynomial for g acting on ρi or, equivalently, for ωi acting on Qp(ωi). Hence
Φi is the pith cyclotomic polynomial so Φi(1) = p and the proposition follows.

The consequence below is evident if we recall [4, 4.5, 5.7, 5.10] that the Lefschetz
number Λ(X ;G) computes the Euler characteristic of XhG and that a p-compact
group is homotopically discrete if it looks so in p-adic rational cohomology.

Corollary 2.2. The following conditions are equivalent:

(1) XhG has a nontrivial identity component.
(2) χ(XhG) > 0.
(3) Λ(X ;G) > 0.
(4) G fixes a nonzero vector of QH∗

Qp
(BX).

The proof of Theorem 1.3 has now been reduced to the following

Lemma 2.3. Suppose that X is nonabelian (i.e. not a p-compact torus). Then G
fixes a nonzero vector of QH∗

Qp
(BX).

Proof. Let T → X be a maximal torus with Weyl group W . The dual weight
lattice L = π2(BT ) is then a Zp[W ]-module whose rationalization L ⊗ Q exhibits
W as a reflection group over Qp. The action of G on the symmetric invariants
Sym((L ⊗ Q)∗)W ∼= H∗

Qp
(BX) factors [4, 8.11, 9.5], [8, §3] through N(W )/W

where N(W ) is the normalizer of W < Aut(L⊗Q).
Suppose first that X is almost simple, i.e. [5, 1.6] that the center of X is finite

and that L⊗Q is a simple Qp[W ]-module. Then the reflection groupW is one of the
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irreducible reflection groups on the Shephard–Todd–Clark–Ewing list as presented
e.g. in [6, p. 165]. The list provides information about the indecomposables of the
invariant ring in that the degrees of each reflection group are given.

If p > 2, the list shows that dimQp QH
i
Qp

(BX) < p − 1 for all i. (In fact

QH i
Qp

(BX) has dimension ≤ 2 with dimension 2 occurring only in case 2a (where

the degrees given in [6] are incorrect) and in case 19, neither of which are realizable
for p = 3.) Since a nontrivial p-adic representation of a cyclic p-group requires at
least p− 1 dimensions, G must act trivially on all of QH∗

Qp
(BX) (which is nonzero

if X is nontrivial [4, 5.10]).
The case p = 2 requires separate treatment. The only irreducible 2-adic re-

flection groups are the classical Coxeter groups together with group number 24 of
rank 3, W = Z/2Z × GL3(F2), realized by DI(4) [3]. If W is one of the classi-
cal Coxeter groups, the effect of an element of the normalizer N(W ) on the de-
gree 4 invariants is multiplication by u2, 2u2, or 3u2, where u ∈ Q∗

2 is a 2-adic
unit [7, 1.7]. Since −1 doesn’t have this form, the 1-dimensional G-representation
H4

Qp
(BX) = QH4

Qp
(BX) is the trivial one. Generators for the ring of invariant

polynomials of the unique nonclassical 2-adic reflection group are [1, p. 101]

y8 = x1x
3
2 + x2x

3
3 + x3x

3
1,

y12 = det

(
∂2y8

∂xi∂xj

)
,

y28 = det

(
∂2y8
∂xi∂xj

∂y12
∂xi

∂y12
∂xj

0

)
,

where the subscript on the variable y denotes the dimension of the corresponding
indecomposable cohomology class. Note that if an element of N(W ) takes y8 to
its opposite, then also y12 is taken to its opposite but y28 remains fixed. Thus
any element of 2-power order in N(W )/W must fix either y8 or y28 (considered as
elements of H∗

Qp
(BX)).

This proves the lemma for all almost simple p-compact groups.
Next suppose that X is simply connected and nontrivial. Then there exist, by the

splitting theorem [5], almost simple p-compact groups X1, . . . , Xn with dual weight
lattices L1, . . . , Ln and Weyl groups W1, . . . ,Wn such that X ∼= X1 × · · · × Xn

and L ∼= L1 × · · · × Ln as W ∼= W1 × · · · × Wn-modules. The efffect of Bg on
H∗

Qp
(BX) =

⊗
H∗

Qp
(BXi) has, cf. [8, 3.5], the form

H∗
Qp

(Bg) = (A1 ⊗ · · · ⊗An) ◦ σ
where Ai is an automorphism of H∗

Qp
(BXi), 1 ≤ i ≤ n, and σ is a permutation

within the isomorphism classes of these algebras. Hence

QH∗
Qp

(Bg) = (QA1 ⊕ · · · ⊕QAn) ◦ σ
on QH∗

Qp
(BX) =

⊕
QH∗

Qp
(BXi). There are now essentially two distinct cases

to consider. Namely, the case where σ is trivial and the case where σ is a cyclic
permutation of p -power order > 1. The first case was treated above and in the
second case, QH∗

Qp
(Bg) fixes the diagonal. Hence the fixed point vector space

QH∗
Qp

(BX)
G

is nontrivial for any nontrivial simply connected p-compact group X .

Finally, up to isogeny any connected p-compact group has the form X × S [11,
5.4] where X is simply connected and S is a p-compact torus and any automorphism
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is a product of an automorphism of X with an automorphism of S [10, 4.3]. Hence

QH∗
Qp

(BX ×BS)
G ∼= QH∗

Qp
(BX)

G ⊕QH∗
Qp

(BS)
G

is nontrivial if X is nontrivial.

We conclude this note with the easy proof of Corollary 1.4.

Proof of Corollary 1.4. Let π be the component group and X the identity compo-
nent of Y . The p-compact group extension

XhG → CY (G) → Cπ(G)

shows that XhG and CY (G) have isomorphic identity components.
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