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Abstract 

Unirwsitet. UGversitetsparkerr 5. DK-ZIW Kobetdtaw @. 

Moller. J.M.. Self-homotopy equivalences of group cohomology spaces. Journal of Pure and 
Applied Algebra 73 (1991) 23-37. 

The group of homotopy classes of self-homotopy equivalences of a space with or~ly two 
nonvanishing homotopy groups is computed by means of a differential in a Lyndon spectral 
sequence. 

1. Introduction 

For any (based) connected topological space X, let (E(X, *)) E(X) denote the 
group of (based) homotopy classes of (based) self-homotopy equivalences of X. 

Suppose that v is a group and 8 E H”+‘(m, A) an (n + 1)-dimensional, n 2 2, 
cohomology class of 7r with coefficients in the Z(n)-module A. Associate to 8 the 
unique homotopy type X0 with 7r,(Xe) = n, n,,(X,) = A as a r-module, rr,(X,) = 

0 for i # 1, n, and with k-invariant 6 E HI*+ ‘(n, A). 
The purpose of this paper is to investigate the groups &(X0, *) and &(X0). In 

short, the computation of &(X6, *) is reduced, or translated, to the computation of 
a differential d!$“+’ in a Lyndon spectral sequence naturally associated with the 
given data. The group &(X0) has a similar, although more complicated and less 
transparent description, but ca : also be viewed as a quotient group of E(X~, *) 

with respect to a homomorphic image of 7r. 
These results can also be interpreted as the complete computation of the group 

of self-homotopy equivalences for any finite-dimensional CW-complex with only 

one nontrivial homotopy group, apart from possibly the fundamental group. 

below the dimension of the space. 

0022-4039/91/$03.50 0 1991 - Elsevier Science Publishers B.V. (North-Holland) 



24 J. M. Mdler 

The special case 8 = 0, which is much simpler than the general case, was also 

treated in [lo]. 

Partial results on the group &(X0, *) already occur in the literature [ 1,7, 11,121. 

2. Reduction of problem 

Throughout this paper, let 71 be a (not necessarily abelian) group, A a 
rr-module, and 8 E H”’ ‘(n, A), n 2 2, some fixed group cohomology class. 

Let o : En-, Br be the functorial Milnor construction [4] of a universal 
numerable principal m-bundle. For any group endomorphism Q! : n+ vr, let 
Ecu : ET+ Err and Bat: Br-, B?r be -kc12 induced maps. Choose base points 
e, E Err and b,, = o(e,) E BIT that are preserved by Al these induced maps. 

The Eilenberg-Mac Lane complex K(A, n + 1) has a topological realization as a 
topological (left) rr-module [8]. We shall write the topological group structure as 
addition. Consider also the loop space i2K(A, n + 1) and the path space 
PK(A, n + l), based at 0 E K(A, n + l), with their inherited topological r- 
module structures: If u, u E PK(A, n + 1) are paths, then u + u is the path 
(u + u)(t) = u(t) + u(t), : E I= [0, lj, and vu, for 7 E CCT, is the path (vu)(t) = 
qu(t). Equip the product Err x PK(A, n + 1) with the usual r-action: (e, u)q = 
(eq, q%), e E En, u E PK(A, n + l), q E m. 

Now realise the cohomology class 8 as a ?r-equivariant map 8 : En- 
K(A. n + 1) and let 

Then there is a fibration 

and Xe is a concrete manifestation of the homotopy type with 8 as its only 
nonzero k-invariant. 

For any map u : K* Y between topological spaces X and Y and any subspace 
A C X, denote by F,,(X, A; Y) the space, equipped with the compactly generated 
topology associated to the compact-open topology [ 131, of all maps u : X+ Y with 

VIA = uIA. The group E(X, *) is the group of invertible elements in the monoid 
q,F,(X, *; X) of homotopy classes of based self-maps on X. 

Consider the pull back diagrams 

I I P I I P 

F,(Br, b,; Bn)g FJX,, *; Brr) F,(Bq B& Fp(X,; 13~). 
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where ( p) J? is (pre-) post-composition with p and ($,(X0, *; X0)) 9JXe; X0) is 
the space of all (based) fibre maps of XH. The two horizontal maps p are weak 
homotopy equivalences, see Corollary 2.3 below. the vertical maps p are fibra- 
tions, and hence the inclusions 

are weak homotopy equivalences, which means that we can consider (&(X0, *)) 
E(X,) as the group of (based) fibre homotopy classes of (based) fibre homotopy 
equivalences of X0. Moreover, there is a fibration 

9JXe; X0)-+ BIT 

which records where the fibre goes under the free fibre maps of Xti. The fibre, 
9 of this fibration contains 9,(X@, *; X0) and from [9, Theorem 3.11 one 
de*duces that the inclusion induces an isomorphism on rri for 05 i < n. In 
particular, m = q(Bw) acts on +$(X0, *; X@) wit.. set of orbits equal to 
rr&(;ei,; X0). Thus to compute &(X0), it suffices to compute &(X0, *) with 
rr-action. Furthermore, the computation of &(X0, *) is facilitated by the fact that 
the base space F,(Br, *; Brr) is weakly equivalent, see Lemma 2.2 below, to the 
discrete monoid End(r) of group endomorphisms of 7~. However, not all 
self-maps of Brr can be covered by a fibre map. 

Lemma 2.1. Let f:Xe + X0 be a based jibre map. Then q,(f) E End(A) is a 
T, ( f )-homomorphism and 

df )*e = T,(f )*O 

Here, and in the following, the group endomorphism cp : A-, A is called an 
a-homomorphism, a! EEnd(n), if cp(qa) = cx($(p(a) for all q E r, a E A. 

The lemma follows easily from an analysis of the transgression homomorphism 
r, : Ef” --) H”+‘(n, -4) in the Serre spectral sequence for X0 with local coefficients 
in A [6]. 

Motivated by Lemma 2.1, we introduce E, to be the subgroup of Aut(rr) X 
Aut(A) consisting of all those pairs ((u, cp) for which 9 is an a-automorphism and 
(p&r-‘)*0 = 6 in H”+‘(T, A). (In [5, IV], the pair (CC’, cp) is called a change of 
groups .) 

Lemma 2.1 states that (n,(f), q,( f )) E E, for any based fibre map f. We shall 
later see that in fact any element of & has such a topological realization; at least 

if dim X0 5 n this is well known [7]. 
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I finish this chapter by proving two facts that were used above. For the first 
lemma, let X be a connected CW-complex and u : X-, Bw a map. 

Lemma 2.2. The map induced by ?r, 

F,(X,*; f?++Hom(w,(X,*), w) 

is a weak homotopy equivalence. 

PrwC (Cf. (2, Lemma 21 and [9, Theorem 6.31.) Let I = (0, l] denote the unit 
interval and i = (0, 1) its boundary. Without loss of generality, X has a CW- 
decomposition with @skeleton X0 = (*}. 

Elementary obstruction theory implies (13, Theorem V.4.31 that the map 
f-) r,(f) of the lemma induces a bijection on v,,. 

Since I x S’ x X, i z 1 9 is formed from I x (S’ v X) U i x S’ x X by attaching 
cells of dimensions 2 i + 2 23, any two maps S’ x X-+ Bn that agree on 
S’ v X = S’ x {*} U {*} x X are homotopic (rel. S’ v X). Thus, by adjointness, 

Ir,F,(X, *; Ba) = w~F,.~,,(S’ x X, s’ v X; Ba) = 0 

Corollary 2.3. The two maps 

F,(Bw, bo; Bn)%‘,‘,(X,, *; Bw), F,(Bn; B&FP(X,; Blr) 

are weak homotopy equivalences. 

Proof’. In the based case, this follows immediately from the naturality of the 
equivalence of Lemma 2.2. As to the free case, extend ~5 to a map of evaluation 
fibrations 

F,(Bn, 6,; Bn)s F,(X,, *; Blr) 

I 

II 

I 
Fl ( Bw; Bn)- 

I 

F,(X,; B@ 

I 
Blrr ” r Bn 

and look at the induced map of the associated long exact homotopy 
sequences. Cl 
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3. Homologid algebra 

Recall that 8 E H”‘l(lr, A), where w is any group and A any r-mlr;ldule. The 
purpose of this section is to define two group extensions related to 8, 

For any group G, let (B,(G), a) denote the normalized bar resolution of G; 
B,,(G) is the free abelian group generated by all symbols g[ g, 1 Q . l 1 g,,), 1 # gi, 
gEG. 

The complex Hom,(B,(n), A) can be viewed as an f&-module complex with 
action 

where CIY -‘(x[xI 1 l l l Ix,]) = ~-‘(x)[cr-I(x,)~~~~ILI-‘(x,)], x, x+I~, and f~ 
Hom,(B,(lr), A). Form the bicomplex 

MP4 = Hom,<B,<E,), Hom,(B,(n), A)) 

with respect to this action. The first filtration on M** determines a first quadrant 
spectral sequence with 

EC4 = HP(E,, H4(?r, A)) 

converging to the cohomology of Tot(M). In particular, there exists a differential 

d,: Hn+L(n, A)+ H2(Elp, H”(a, A)) 

taking 8 to some 2-dimensional cohomology class d2(@ We now describe d&9) 
more explicitly. 

Lemma 3.1. Choose for each (ar, p)E Efi a cochain {(r, cp} F Hom,(B,(~), A) 
with {~,~}~=e-~ecu-~. Then the 2-cocycle k,: B,(E,)-, Hn(w, A) that takes 
[cu, SIB, #] E B,(E,) to (the cohomology class of) * 

lies (up to sign) in the cohomology class dz(e). Cl 

Above, 8 (also) denotes a cocycle representing 8 E H”(n, A). 

Remark 3.2. Form the semi-direct product II” >Q EH with respect to the obvious 
action 

E, -Aut(a) x Aut(A)%Aut(lr) 
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of E, on 7~. The short split-exact sequence 

and the 7r M E,-module structure on A provided by 

generate [5, Theorem XI. 10. I] a Lyndon-Hochschild-Serre spectral sequence 

H*(E,, H*(T, A)) + H”(n >Q E,, A) 

isomorphic on the E,, -level to the first spectral sequence of M**. In particular, 

H(Tot(M)) = H(T x E,, A). 

For 7 E n? let i(x) = qxr~-’ denote conjugation by q_ Since (11,~) acts trivially 

on H”(rr, A) [5, Proposition IV.5.61, 8(q) = (I), q) is a homomorphism WTT-, E,. 
The image is a normal subgroup so E&r := coker 8 is a group. Let also 
z(n)A := ker 8. Then 

is an exact sequence of groups. 
Next we shall see that cochains of the form {;i, q}, v E n, can be constructed 

systematically: Let s,Jq) : B,(T) + B,, + , (7~) be the Z( +homomorphism with 
value 

i=O 

on the free generator [x1] l l l Ix,J E B,,( 7~). Then we have the following lemma: 

Lemma 3.3. -es,,(v)a = e -7jeij-! 

Proof. Let g(v) be the 7rsr-module complex endomorphism of B,(T) with value 
+j-lx,] * l l Iij-‘x,,] on the free generator [x,] l l l ]x,,] E B,(T), cf. [5, Proposition 

IV.5.61; s(q) is a chain homotopy of the identity map to g(q) : as(q) + 

s(q)a= g(?j)- 1. Thus -es(v)a= -e(as(rl)++)a)= e - eg(q) =e -$ij-'. 
cl 

In the following, we always use (f, q} = --es,,(q). If 7 E Z(rr),, then {f,q} is 
a cocycle; denote its cohomology class by Z,J 7). 

Lemma 3. . The function Ze : Z(T& + H”(n, A) is a group homomorphism. 



Self-komotopy equivnlertces 29 

Proof. For given group elements 5, q E r, let s( 5, I)) be he degree-2 rr-module 
complex homomorphism with value 

C (-l)i+j+‘[x*( l * ’ lXi_,l~l5-‘Xil 
ISiCjSn 

. . . lS-'Xj_~!~l~-i~-lX,I ’ l ’ )71-1~-1,,,3 

on the free generator [x, 1 l l l Ix,,] E BJn). Then 

and hence the n-cochain -Bs(q)g( 5) + 8s( 5~) - Os( 6) is a coboundary. If 5 E 
2(7&, Bs(q)g({)=(& 5)4s(q)= es(q) so that if also qEZ(7&, we deduce 

+hat 0 = Z&7) - Ze(&) + Z,(S). *r q 

Lemma 3.5. For q E Z(7& and (QI, Q) E E,, (0, Q)Z&) = Z&(V))- 

Proof. The cocycle 

Q{$ I)}“-’ = -Qes,(q)(Y-’ = -(pea-‘s,,((Y(q)) 

= c-0 + -Icy, Qm?Mrl)) 

= -‘%(cw(rl)) - {a, Qb,,(‘h))a 

= (+), &7)) - 1% Qb,,(a(d)a 

is cohomologous to {a(q), (Y(V)}. Cl 

Lemma 3.5 shows that the action of E,h on H”( vr, A) descends to one of the 
quotient H”(n, A) /Z,, where Ze is short for ZJZ(7r)J, and we shall now define 
a certain 2-dimensional cohomology class of E&r with coefficients in this 
Ed k-module. 

For each orbit x E E&r, choose a representative (cy,, cp,) E x C E, . Consider 
the E, /n-module homomorphism 

k: B2(EBh)-+ H”(T, A)lZ, , 

whose value on the tree generator [xl y] E B,(EJn) is 

where k, is the cocycle of Lemma 3.1. 
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Lemma 3.6. The cochain k is a cocycle whose cohomology class in H’( E, In, 
H”(r, A) iZ,) is independent of the choices made. 

The proof of Lemma 3.6 is deferred until Section 5. 
Denote the cohomology classes d,(8) = [k,] and [k] by [ ti]* and [6], respective- 

ly. The main idea of this paper is to show that the group (&(X0, *)) E(X~) of 
(based) homotopy equivalences of X6 is the middle term of a group exte 
the congruence class corresponding [5, Theorem IV.4. I] to ([ 01,) [ 01. 

4. Based homotopy equivalences 

The purpose of this section is to determine the group &(X0, *) of based 
homotopy classes of based homotopy equivalences of X0. As shown in Section 2, 
we may identify &(Xrr, *) with the group of invertible elements in the monoid 
+F,(X, , *; X,J of based fibre homotopy equivalence classes of based fibre maps 
of x0. 

Consider the obvious homomorphism 

( %r, , r,,) : &(X0, *) * Aut( rr) x Aut(A) 

induced by the functors V, and T,~. Lemma 2.1 asserts that the image is contained 
in the subgroup E@. We now prove that, in fact, we have the following: 

Lemma 4.1. The image of ( 7;r, , T,, ) is EO . 

Proof. Suppose (a, cp) E Eti. Thei 

e-cpeoEd: (En, e,,)-+(K(A, n + l), 0) 

is rr-homotopic to the constant map. Let 

-h cP>:m, e,,) -+ (P&A, n + l), 0) 

be the adjoint of any such rr-homotopy such that {a, q}(e)(l) - 8e - @EC’(e) 
for all e E Em Then the based fibre map [(Y, cp] that takes (e, u)n E X0 to 

(Es(e), CPU + {a, ‘~)Ea(e)b 

projects onto (a, cp) by (7~) m-,,). 0 

Lemma 4.2. The kernel of (q , n,,) is H”( 7~ A). 
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Proof. The kernel K consists of based Bn-homotopy classes of based Bn-maps 
k : XH -+ -4&, with q,(k) = 1. Associate to any such k the primary difference 
S’,(k, 1) E H”(X,; A) of k and the identity; see [13, VI.6]. In the diagram 

O+ H’(~T, A)+ H’(X,; A)$ Hom,(A. A) 

T 
S”(-. 1) 

K 

the row, coming from the Serre spectral sequence, is exact and the vertical arrow 
is an injective map which, since i*S’(k, 1) = r,,(k) - 1 = 1 - 1 = 0. in fact takes K 
into H”(r, A). 

Conversely, let x: Err+RK(A, n + 1) be a n-map and S:X,+X, the 
Bn-map given by 

.?((e, u)7r) = (e, u + x(e)) 7r . 

Then S”(X, 1) = x E H”(m, A). Consequently, S’(-. 1) is a bijection and a 
homomorphism. Cl 

The results of Lemma 4.1 and Lemma 4.2 are well knov I at least if dim X, 5 II 
[7], see also [l, 121. However, the method used here seems to be more direct than 
the ones used elsewhere. Another reason for including proofs here is that the 
applied notation will be used extensively in the following. 

The preceding two lemmas show the existence of an extension 

[A].+ :O+ H”(T, A)-+ &(X0, *)+ Ep 1 

of H”(n, A) by E. with middle term E(X~, *). Moreover, if f : X, -+ XH is a fib-e 

homotopy equivalence and k : Xti + Xti a &-map, then 

q(f)*s”( fkf -! 1) = S”( fk f) = 71;,( f),s”(k I), 

showing that the associated action of EH on H”(n. A) is exactly the one used 
“,zction 3. 

in 

The main result of this paper now asserts the following: 

Theorem 4.3. The above e.utension with middle term E(X,, *) belongs to I 

congruence class [O], E H’(E,. H”(r, A)). 

Proof. The idea is to construct a factor set for this topologically defined extension 
and compare it to the 2-cocycle of Lemma 3.1. 
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Fv- all (cu, q) E Fe, choose a r-map, or a n-homotopy, 

{a, cp}: ET-, PK(A, II+ 1) 

as in the proof of Lemma 
satisfy the identity 

4.1. The associated fibre homotopy equivalences 

and &,[a, VI/~, $1 the associated &-map as in the proof of Lemma 4.2. 
For b E B,,(T) and i E T,(Z) the standard l-cell of the unit interval I, put 

{a, <p}(b) = d”+*(Q, {a, d)(i@b) 

where d” + ’ (0, (a, cp>) E Hom,(T,(I)@ B.&T), A) is the difference cocycle [13, 
Theorem VISA] of (the sections associated to) the n-maps 0 and { cy, 50). Then 
[13, Theorem V.5.6’1 { cy, rp)a = 8 - @cu -I. Hence the factor set [5, IV l] for the 
extension [ O]*, 

with the primary difference represented by the n-cocycle taking b E B,,(T) to 

is up to sign a 2-cocycle as described in Lemma 3.1. Cl 

If in particular 8 = 0, d,(8) = 0, and hence 

E(X(, , *) = H”(n, A) x1 E,, 

in accordance with [ il)]. 

It is much easier to compute the higher homotopy groups [9, Theorem 3.11: 

rj(F, (& 7 *; X0 ), f) = Z?‘-‘(rr, r,( f)*A) for i > 0. 



5. Free homotopy equivalences 

Recall from Section 2 that to determine the group E(X) of free homotopy 
classes of free homotopy equivalence of X6 it suffices to find the left z-action on 
~~,~r(x,. *; X, ) arising from the fibration 3, ( Xr, q X0) --, B whose fibre is (n - l)- 
equivalent to 9,(X0. *; X0). 

We shall need a systematic way of constructing the fibre maps { ;?. q}. q E n. 

This can be done by using [ 10, Lemma 2.11 quoted here as Lemma 5.1. 

Lemma 5.1. There exist maps F : En x En--, En and p : Err x Brr+ Br srtch 
that ol_c = ~(1 x o) and 

(1) F(eGL e) = (E(+i)e)rl* fi(e. e,,r)) = erl, 
(2) F(e, rlv E(i)- ‘e) = F(e, 9 %h 

0) a, 9 y7) = a, 9 e,h 

foralle,,e,,e,EErand qEr. Cl 

For any q E 7r, choose now a path o(q): I-, En from e,,q to e,,. (Note that 
o(q) is unique up to a homotopy with fixed end-points and that we can assume 
that f%(q)(l) = (0) for if 8 is chosen as a r-fibration, then the r-space K’(O) is 
connected.) Define 

{f, q}: En-, PK(A, n + 1) 

to be the equivartant function 

1% q)(e)(t) = es(rl)(t. e) - 0s(~)(O, e) , t E 2 , e E En , 

where s(r))(t, e) = F(a(q-l)(t), e). (Note that s(q) is a homotopy of g(q)e = 
(E(q)- ‘e)q- ’ to the identity and that the inverse of the homotopy (117,~) via the 
prism operator [3,5] induces the chain homotopy {f, 77) of Section 3.) As in 
Section 4, let 

[rl, rl](e, 4~ = (Wi)e, qu + (17, q}E(?)e)r , (e, 4 E X0 9 

be the associated fibre self map of XA. 

Lemma 5.2. The action of q E r on q9, (X0, *; X0) is induced by post-composi- 
tion with [+j, q]. 

Proof. For s, t E I = [0, 11, put a(q),(s) = u(r])(s(t - 1) + 1). From the essential 

uniqueness of the path a(q) and (2) of Lemma 5.1 it follows that the fibre map 
[ij, ~1 is fibre homotopic to the fibre map 
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of x,. 
For t E I and (e, z+r E X,,, let now El: Xt, -+ X@ be the fibre map 

E,((e, @a) = (@(a(#), 4, u + @(u(q),, e) - 847 . 

Then E, is the identity, E,, = [i, Q], and pE,(*) = oa(q)(f) represents the 
homotopy class 7 E 7~ = rr,(Bn). In other words, the homotopy 

obtained by post-composition with the El’s, t E I, is a homotopy over q and thus 
post-composition with E,, = [+, 771 is an q-admissible map; see [ 13, IV] for the 
terminology used here. Cl 

The end of the exact homotopy sequence for the fibration 9, (X@; X0)+ B?r 
contains an exact sequence of sets 

where aq = [i, ~1 = q l 1. 

Lemma 5.3. The above sequence is an exact sequence of groups. 

Proof. Clearly, the forgetful map i * is a group homomorphism. Using Lemma 5.2 
and the fact that the group 7r acts on the set &(X0, *) we find that 

for all 5, 7j E 7r; i.e., also a is a homomorphism. Cl 

Thus im a is a norma. subgroup of &(X0, *) and the quotient group &(X0, *) / 

im d is isomorphic to Ed. Since E( X0, *) is the middle term of the short exact 
sequence [e],, it follows that the quotient &(X0) is the middle term of a short 
exact sequence of the form 

[e]: O- H”(r, A)lZ,-+ &(X0)+ E&m 1 

because of the following lemma: 

emma 5. . (n!. q,)d = 8 and H”(K A) n a(n) = ZJZ(T),). 



Proof. Let q E r. By constmcting. (n,, r&(r)) = (q. rtt )[ij. q] = (ij. q) = ii(q). 

and thus a(q)E H”(m. A)=ker(rr,. m,,) iff FEZ, and then S”‘([+J]. l)= 

1% rl) = Z,(r)). q 

The justification for christening this short exact sequence ]O] is the following: 

Theorem 5.5. The above group extensiorz bebngs to corzgrttsrtce e/ass 
[t3] E H’(E,ln, H”(w, A)lZ,). 

Proof of Lemma 3.6 and Theorem 5.5. Consider the quctient map [ 61, --* [@I: 

0-H”(n. A)-----, 

1 

&(X@. *)-E 

O+ H”(IT, 
1 I 

e-1 

1 
A)lZp E(X,, *)/n+ E&r--, 1 

Choose for each orbit x E E&T a representative (a., . cp, ) E E,, for x’. Define 
k[x]y] E H”(n, A), or k[x]y]: E ST--, RK(A, II + I), to be the solution to the 
equation 

where q E 7r and (G. ~)(a!~,., cp,,.) = ((u,. &(a,.. q_,.). Then k : &(EJr)+ 
H”(n, A) /Z, is obviously a factor set [5, IV.41 for the extension [O]. 

To finish the proof, check that (1) is satisfied with 

and note that the self-map e-, (E( ij)e)q of En can be disregarded since it is 
rr-homotopic to the identity. Cl 

Note finally that the material presented above covers the worst case among all 
2-stage Postnikov systems. 

To make this remark precise, let Xr; be homotopy type with only one nonzero 
k-invariant k E H”+’ (m, m; A) where n > m > 1 are integers and 7r and A are 
abeiian groups. As before, Aut(n) x Aut(A) acts on the singular cochain complex 
S*( K( n, nz), A) and on the graded ring H”( IT, m; A). Let E, be the stabilizer of 

k. The double complex 

Hom&S,(E,), S*(K(n, nl), A)) - 

produces a spectral sequence with 

E? = HP(E,, H”(IT, m; A)) 
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and a differential 

0.u + 1 
d2 : H"+'(n, m; A)Ek --j H’(E,, H”(n, m; A)). 

The considerations of the first sections of this paper can now be repeated, and 
this time in a simpler fashion since J is abelian and there is no m-module structure 
on A, to give the following theorem: 

Theorem 5.6. There exists a short exact sequence 

in the congruence class d:*““(k); furthermore, E(X~, *) = E(X~). 0 

The last remark of this theorem follows from the stronger statement that the 
inclusion map 

is (m - l)-connected. 
The existence of the short exact sequence of Theorem 5.6 was apparently first 

proved in [ll]. 
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