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Abstract. Normalizers andgp-normalizers of maximal tori irp-compact
groups can be characterized by the Euler characteristic of the associated
homogeneous spaces. Applied to centralizers of elementary apajfanps

these criteria show that the normalizer of a maximal torus of the centralizer
is given by the centralizer of a preferred homomorphism to the normalizer
of the maximal torus; i.e. that “normalizer” commutes with “centralizer”.
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1. Introduction

The purpose of this paper is to formulate recognition criteria for the normal-
izer and thep-normalizer of a maximal torus ofi@compact group.

Fix a primep and consider a-compactgroupX. Let N (i): N(T) —» X
denote the normalizer amd, (i) : N,(T") — X thep-normalizer [6, 9.8] of
a maximal torus [6, 8.9]: T — X. N(T) is the middle term of a short
exact sequence [6, 3.2] of loop spaces

T — N(T) —» Wp(X)

whereWr(X) is the Weyl groupN,,(T') is the middle term of a short exact
sequence gf-compact groups

T — Np(T) — Wr(X),

whereWr(X), is a Sylowp-subgroup of¥’7(X). ThusN(T') is an ex-
tendedp-compact torus [7, 3.12] and/,,(T") is a p-compact toral group
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[6, 6.3]. The morphismV,,(i): N,(T) — X is a monomorphism [6, 3.2]

of p-compact groups. Before we can say thati): N(T) — X is a mo-

nomorphism, too, we need to define what it means for a morphism of an

extended-compact torus to p-compact group to be a monomorphism.
Let G be any extendeg-compact torus andl: G — X a morphism, i.e.

abased mapf: BG — BX. G fits into a short exact sequence

S—G—m

where the identity componest = G is ap-compact torus and the com-
ponent groupr = m(G) is finite. Definery(G) to be the kernel of the
conjugation actionr — Aut(m(S)) of the component group on the iden-
tity component.

Call G — X ap-monomorphisnif for some (hence (2.1) any) Sylow
p-subgroupl, — G, the restrictionG, — G — X is a monomorphism
of p-compact groups. ASylowp-subgroupof G is a morphisnt,, — G of
ap-compact toral grougr, to G which restricts to an isomorphism on the
identity components and induces a monomorphism on component groups
takingmo(G)) isomorphically onto a Sylow-subgroup ofr (G). N, (T') is
a Sylowp-subgroup ofV(7T") andN (i) : N(T') — X is ap-monomorphism.

Definition 1.1. The morphismf: G — X is a monomorphismif it is a
p-monomorphism and,(G) is ap-group.

With this definition, thep-monomorphismV (i): N(T) — X is a mo-
nomorphism for [13, 3.4.2}(N(T")) = mo(Cx (T')) is ap-group.

Let X/G denote the homotopy fibre & f : BG — BX.If fisamono-
morphism X /G is (3.1)F,-finite so theF,-Euler characteristig (X /G) is
defined. For instance [6, 8.10, 9.8 X/T) = |[Wr(X)|, x(X/Np(T)) =
[Wr(X) : Wr(X),|, and (3.3, 3.10) (X/N(T)) = 1.

Theorem 1.2. (3.4, 3.5, 3.6) Leff: G — X be a monomorphism from an
extendeg)-compact torugs to X. Thenf is conjugate to

1. the maximal torugif and only if y (X/G) # 0 andwo(G) is trivial.

2. thep-normalizerN, (i) if and only if x(X/G) # 0 mod p andmy(G)
is ap-group.

3. the normalizedV (7) if and only if x(X/G) = 1.

We say that two morphism& — X and H — X of extendedp-
compact tori taX areconjugatef there exists an isomorphisti — H,i.e.
a homotopy equivalencBG — BH, making

BG = BH
BX
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homotopy commutative.

Most work goes into proving (1.2.3). Indeed, (1.2.1) is already known
[7,2.15] and (1.2.2) quickly follows from [6, 7].

An application of this recognition principle, shows that, in a certain sense,
centralizers commute with normalizers. To be more precise,:|& — X
amonomorphism of an elementary abeliagroupV’ = (Z/p)?to X. Sup-
pose thap: V' — N(T)is a lift of v over N (i) such that composition with
N (i) induces a morphisr@'y ;) (V) : Cnry(p) — Cx (v) of centralizers.

Is Cn(ry(1) the normalizer of a maximal torus 6fx (v)? With a suitably
chosen lifty, itis.

Theorem 1.3. Letv: V — X be a monomorphism of an elementary abe-
lian p-group into X . There exists a lift.: V' — N(T') of v such that

Cniy(V): Cnery(p) — Cx (v)

is conjugate to the normalizer of a maximal torus(o¢ (v). If V' has rank
one (4.6), but not in general (4.14.3), the Jifis unique up to conjugacy

Alift p asin Theorem 1.3 will be calledmeferred liftof v.

This theorem is particularly useful (4.12) in connection with the central-
izer decomposition [7, 8.1] oBX and the N-conjecture forp-compact
groups. TheN-conjecture, see e.g. [10, 5.2] [17, 5.20], asserts that
compact groups are determined up to isomorphism by their maximal torus
normalizers. In [11], preferred lifts are used in a general approach to the
N-conjecture leading in [15, 14] to actual verifications of the conjecture in
a number of special cases.

I would like to thank W. Dwyer for a most helpful conversation during
the BCAT 94 and in particular for telling me how to exploit the result of [5]
in the proof of (1.3). | also benefited from conversations with R. Kane and
L. Smith. Special thanks are due to the Centre de Recerca Matanfatic
warm hospitality and support when part of this work was done.

2. Monomorphisms

Suppose thaty and H are extendeg-compact tori andX a p-compact
group. Note first of all, as tacitly required in the definition of a monomor-
phism, that Sylowp-subgroups of extendegcompact tori are essentially
uniquely determined.
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Lemma 2.1. Suppose thatr, — G andG), — G are Sylowp-subgroups
of G. Then there exists an isomorphigy — G/, such that

~

BG,

N

BG

BG,

commutes up to homotopy.

Proof. By covering space theory, there exists ap, — BG',, necessar-
ily ahomotopy equivalence, that makes the diagram homotopy commutative.
0

Letg: G — H andh: H — X be morphisms. Choose Sylowsub-
groupsG, — G andH, — H such thatry(g)(mo(G,)) < mo(Hp). Theng
restricts to amorphism,: G, — H,, and furtherto amorphisigy: S — T'
between the identity componerfis= Gy andT = Hy.

Call g: G — H a p-monomorphismf g,: G, — H, is a monomor-
phism ofp-compact toral groups anddamonomorphisnf gy: S — T'is a
monomorphism op-compact tori. Anyp-monomorphism is a 0-monomor-
phism.

Define therank of G, rk(G), to be the rank [6, 6.3] of. If g is a O-
monomorphismyk(G) < rk(H) [6, 8.11] and equality holds if and only if
go is an isomorphism.

MappingBS into the fibration sequend®S — BG — Bm(G) results
in another fibration sequence

map(BS, BS) — map(BS, BG) — map(BS, Bry(G))
which leads to the short exact sequence
(2.2) S — Cg(S) — 10(G)

of extendedp-compact tori. Note in particular that(C(S)) = 70(G).
The short exact sequence (2.2) is not quite natural but composition with
g: G — H andgg: S — T induces a commutative diagram

§ ——Cq(5) 0(G)

o o) |

T —Cu(S) ——m0(Cu(S))
CH(QO)T T
T——Cy(T) T0(H)

with exact rows where the two lower short exact sequences are isomorphic
providedgg is an isomorphism.
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Lemma 2.3. Suppose thaj is a 0-monomorphism. Then:
1. kermo(g) < 10(G).
2. Ifrk(GQ) = rk(H), thenty(G) = mo(g) (10 (H)).
3. Ifrk(G) = rk(H) and g is a p-monomorphism, the order &fr mo(g)
is prime top.
Proof. The first two statements follow from the commutative diagram
7T0(G) X 7T1(S) 4>7T1<S)
Wo(g)xﬂ(go)l Wl(go)l
7T0(H) X 7T1(T) 4>7T1(T)

expressing naturality of conjugation actions. Here(g) = m1(go) is a
monomorphism ify is a 0-monomorphism [16, 3.4] and an isomorphism if
alsoG and H have the same rank.

Under the assumptions of point (3 (g), is @ monomorphism. O

It follows that there aren’t any monomorphisms of extengembmpact
tori to p-compact toral groups besides the already known ones.

Proposition 2.4. Suppose thag: G — H is a p-monomorphism into a-
compact toral groupH. Theng is a monomorphism if and only @ is a
p-compact toral group.

Proof. Suppose is a monomorphism. Ther)(G) is ap-group since (2.3)
ker mo(g) < 70(G) andim my(g) < mo(H) arep-groups. O

The p-divisible groupS = (71(S) ® Q)/m1(S) = (Z/p=)™) is a
discrete approximatiofb, §6] to S.

Also G itself has [7 §3] a discrete approximation: Note thH?(wO(Q);
m1(9)) = H%(m0(Q); S) for any actionm(G) — Aut(m1(S)) = Aut(S).
Thus there is a bijection between fibrations

BS — BG — Bmy(G),
classified by elements df3(7y(G); 71(S)), and group extensions
S — G = m(G),

classified by elements df?(7y(G); S)).
By naturality of this correspondence, the fibre map: BG — BH
induces [7, 3.13] a morphism

§—— G —m0(G)
floi Ql lﬂo(g)
T—H—m(H)

of group extensions.
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Lemma 2.5. Suppose thaj: G — H is ap-monomorphism and : H —
X a monomorphism wheté(G) = rk(H). Then the following conditions
are equivalent:

1. hog: G — X isamonomorphism.

2. §: G — H is amonomorphism.

3. mo(g): m0(G) — mo(H) is a monomorphism.

4. mo(Cy(S)): mo(Ca(S)) = mo(Cr(S)) is @ monomorphism.

Proof. (1) = (2): Note thatthe discrete approximatign G, — H,tothe
monomorphisny,: G, — H, is [16, 3.4] a monomorphism and (2.3) that
ker mo(g) < 10(G). Sincery(G) is ap-group, so isker mo(g) and we may
then assume thaer mo(g) < mo(G,). It follows thatker g = G, Nker § =
ker g, is trivial.

(2) = (3): SinceG and H have the same rank, any monomorphism
G — H induces a monomorphismy (G) — mo(H).

(3) = (4): Obvious, sincery(C(S)) < m(G) andm(Cr(S)) <
mo(H).

(4) = (1): Being isomorphic to a subgroup of thegroupro(H) =
mo(Cu(S)), 10(G) = mo(Ci(5)) is ap-group. O

Let now f: G — X be a0-monomorphism. Thenk(G) < rk(X) [6,
8.11] and we say that is of maximal rankf rk(G) = rk(X).

Lemma 2.6. Let f: G — X be a0-monomorphism of maximal rank. Then
there exis-monomorphismsy (f)|S andN (f), unique up to conjugation,
such that the diagrams

N(T) N(T)
Y v O v
A G X

commute up to conjugacy. Moreovai(:) induces isomorphisms

of extendedh-compact tori. Iff is a p-monomorphism, so ar&(f) and
N(f)IS.

Proof. Let B(IN(f)|S) denote the unique conjugacy class corresponding
[13,3.4]toB(f|S) underthe bijectiofiBS, BN (T')] — [BS, BX]induced

by BN (i) so thatCy;)(S): Cn(ry(S) — Cx(9S) is the normalizer for a
maximal torus ofCx (.S). By maximality, f|.S is a maximal torus fotX
andCx (f|S) is ap-compact toral group, s6'y;(.S) is an isomorphism.
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Equivalently, the space of lift$,X /N (T))"%, of B(f|S) over BN (i) is
contractible.
The space of lifts oB f over BN (1),

(X/N(D)" = (X/N(T))")rmol,

is therefore also contractible. In particular, there exists a base Nt f)
of Bf over BN (i) and any two such lifts are vertically homotopica

Let now, in the maximal rank cas&/(f) = wo(N(f)) : mo(G) —
Wy (X) denote the homomorphism (defined up to conjugacy) between the
component groups induced BY( ). We now combine (2.5) and (2.6).

Corollary 2.7. Let f: G — X be ap-monomorphism of maximal rank.
Then the following conditions are equivalent:

1. f: G — X isamonomorphism.

2. N(f): G — N(T) is a monomorphism.

3. W(f): mo(G) — Wp(X) is a monomorphism.

4. mo(Cy(S)): mo(Cq(S)) — m(Cx(S)) is a monomorphism.

Thus all maximal rank monomorphisnds — X are obtained by re-
stricting N (i): N(T') — X to maximal rank subgroups < N(7') where
N(T) is a discrete approximation ¥ (7).

Corollary 2.8. For any maximal rank»-monomorphisny: G — X, ker

W (f) is a subgroup ofry(G) of order prime top. If X is connected,
ker W(f) = 10(G).

Proof. Use (2.3)andrecallthag(N (1)) = mo(Cr(N(T))) = mo(Cx (1))
is trivial for a connected{. O

3. Euler characteristic criteria

Recall that a space is[F,,-finiteif 4*(Y'; ) is finite dimensional oveF,,.
Then alsoH*(Y'; Q,), which stands fot*(Y; Z,,) ® Q,, is finite dimen-
sional overQ, [6, 4.3] and the Euler characteristic

X(Y) =) (~1)'dimg, H'(Y;Fp) = Y (~1)"dimg, H'(Y;Qy)
=0 =0
is defined. These notions generalize to pairs.
Consider ap-monomorphismf: G — X of an extended»-compact
torusG to ap-compact groupX. Let X/G denote the fibre oBf : BG —
BX.

Lemma 3.1. X/G isF,-finite.
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The proof of (3.1) depends on a little lemma which we for later reference
formulate in greater generality than needed now.

Lemma 3.2. Letp,: E£1 — B; be anm;-fold covering antpy: Fs — Bo
an mo-fold covering wheren; and my are prime top andm; = ms
mod p. Suppose that there exists a map

Ey —=E»

pli ipz

By — = B>

of coverings and thatEs, E, ) is F-finite. Then(Bs, By ) is F,-finite.

Proof. Consider the diagram, commutative except for the upper square,

H*(By;F,) <“— H*(By;F,)

tr’fT Ttrg
*

“m1 H*(Eqy;Fp) <L H*(Ey; Fp) ‘ma

p‘fT TPS

H*(B1;Fp) TH*<B2;]FP)

wheretr] andtrs are transfer homomorphisms. A diagram chase reveals
that multiplication bym; oncoker v* factors through a subspacecoker v*

and that multiplication byns onker v* factors through a subspacekef v*.
Thuscoker v* andker u* are finite dimensional vector spaces:itker v*
andker v* are. 0O

Proof of 3.1.Sinceg is ap-monomorphism, the total space of thg(G) :
mo(Gp)|-fold covering mapX /G, — X/G is F,-finite so by (3.2) also
(X/G,*) isF,-finite. O

The Euler characteristig(X/G) is, in the maximal rank case, deter-
mined by the homomorphisi¥ (f): mo(G) — Wr(X).

Lemma 3.3. LetG — X be ap-monomorphism. The Euler characteristic
of X/G is
(W (X) :imW(f)| ifrk(G) =rk(X)

X(X/G) = {0 if rk(G) < rk(X)

Consequentlyy(X/G) = 1if and only if f has maximal rank an®/( f) is
an epimorphism, ang(X/G) = 0 if and only ifrk(G) < rk(X).
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Proof. Puts = rk(G) andr = rk(X).

Assume first thatX is connected. Then [6, 9.7 *(BX;Q,) = R}
and H*(BG;Q,) = Rf whereRp = H*(BT;Q,), Rs = H*(BS;Q,),
W = Wrp(X), andr = mo(G)/70(G) is the image of the actiony(G) —
Aut(m(S)). SinceRY is noetherian (indeed a polynomial ring) aHd (X
/G;Q,) finite dimensional overQ,, the Serre spectral sequence for the
fibration X/G — BG — BX shows thatR?, is a finitely generated?’! -
module. Also, the homological dimensibrim pw (R3) < r < oo by [1,
4.4.4] and hence

Ey = Torpw (Qp, RY)

is finite dimensional ovefQ,. Moreover, as this is thé,-term for the
Eilenberg-Moore spectral sequence convergindgftq X/G;Q,), its Eu-
ler characteristig (E2) = x(X/G).

Change of rings [2, Proposition 7, p. 108],

R} ®q, B2 = R} ®q, Torpw (Qp, R) = Torgw (R}, RE) = RE,
and the multiplicative property of Poind@series yield

P(Rg,1)
P(RY 1)

7|~ + (1 - t3)O(1 — t?)
[W|=1 4+ (1 —-2)0(1 — t2)

P(Es,t) = = (1 —¢2)r—s

where the second identity exploits information [1, 2.4.3] about the first term
in the Poincat series of an invariant ring. Evaluationtat —1 provides
the formulas for the Euler characteristics. (Recall (2.8) that im W (f)
whens = r and X is connected.)

In the general case of a possibly non-connecdfedefineB(X,NG) to
be the fibre of the composifeG — Bm(G) — B(immo(f)) where the last
map is induced by the surjectionaf(G) onto itsimagem 7 (f) in 7o (X).
Then Xy N G is an extendeg-compact torus with @-monomorphism
Xo NG — Xjp. An inspection of the fibre map

B(XoNG) BlG B(imo(f))
BX, BX Bro(X)

reveals that the homogeneous spAG&- is homotopy equivalent to a dis-
joint union of |mo(X) : im mo(f)| copies ofXy/Xo N G. Hence

X(X/G) = |mo(X) s immo(f)] - x(Xo/Xo N G)
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wherey(Xo/Xo N G) is given by the above computations in the connected
case. In particulary (Xo/Xo N G) = 0 = x(X/G) if rk(G) = rk(Xo N
G) < rk(Xp) = rk(X), and in the maximal rank case,
(Wr(X) - im W (f)] = [mo(X) : immo(f)]
- [Wr(Xo) - im W(f[(Xo N G))|
= [mo(X) : immo(f)| - x(Xo/Xo N G)
= x(X/G)
where the first equality is a consequence of the commutative diagram
1—— 7T0(X0 M G) I 7T0(G) I lmﬂ'o(f) —1
W(f(XoﬂG))l W(f)l
11— WT(XO) e WT(X) —_— 7TO(X) —1
with exact rows. O

Proposition 3.4. The following conditions are equivalent for agymono-
morphismf: G — X:
1. f has maximal rank an&'(f): G — N(T') is an isomorphism.
2. f has maximal rank an@' (f): mo(G) — Wr(X) is an isomorphism.
3. fisamonomorphism and(X/G) = 1.
4. mo(Cy(S)): mo(Ca(S)) — mo(Cx(S)) is injective andy(X/G) = 1.
Proof. (1) and (2) are evidently equivalent, (2) and (3) are equivalent by
(3.3) while (3) and (4) are equivalent by (2.7)0
Suppose in particular thét is ap-compact toral group anfl: G — X
a monomorphism of maximal rank. Thé¥ (f): mo(G) — Wr(X) is in-
jective and the image is a Syloptsubgroup if and only ify(X/G) =
|[Wr(X) : im W(f)| is prime top.
Proposition 3.5. Let f: G — X be a monomorphism ofiacompact toral
groupG to X. Thenrk(G) < rk(X) and
1. ifrk(G) = rk(X), thenx(X/G) > 0. Moreover,f: G — X and thep-
normalizerN,(i): N,(T) — X are conjugate if and only it (X/G) #
0 mod p.
2. ifrk(G) < rk(X), theny(X/G) = 0.
Consequently,

The morphismg and N,,(i) are conjugate
< x(X/G) # 0mod p

& p fX(X/G) >0

& X(X/G) = [Wr(X) : Wr(X),|
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And even more special case arises wli&is ap-compact torus. Then,
in the maximal rank case,(X/G) = |Wr(X)| sincery(G) is trivial.

Proposition 3.6. (Cf. [7, 2.15].) Letf: G — X be a monomorphism of a
nontrivial p-compact toruss to X. Thenrk(G) < rk(X) and
1. if rk(G) = rk(X), thenx(X/G) > 0 and f: G — X is conjugate to
the maximal torug: 7' — X.
2. ifcd(G) < rk(X), thenx(X/G) = 0.
Consequently,
The morphismg andi are conjugate= x(X/G) # 0 < x(X/G) > 0
& X(X/G) = [Wr (X))
Example 3.7. Let f: G — H be a monomorphism betwegncompact
toral groups. Thenk(G) < rk(H). If rk(G) = rk(H), the restriction
fo: Go — Hytothe identity components is an isomorphisf) : 7o(G)
— mo(H ) amonomorphism, and the Euler characterigtil /G) = |mo(H)

simmo(f)|. If tk(G) < rk(H), then the Euler characteristi¢ H/G) = 0.
Consequently,

f: G — H is an isomorphism
& X(H/G) #0mod p < p Ix(H/G) >0
< x(H/G) =1.
Example 3.8. Let Z be ap-compact toral group and: Z — X a central

morphism. Then there exists [67] a lift N(z), unique up to conjugacy,
such that

commutes up to conjugacy. The induced niz) := mo(N(2)) : mo(Z)

— Wr(X) is central since the discrete approximation\¢z) is central.
DefineT N Z to be thep-compact toral group that fits into the commu-

tative diagram

TnZ z im W (2)

|

J\%T) Wi (X)

N<——D2

p

N

N(T) —— Wr(X)
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with exact rows. Consider the induced morphisms
T/TNZ — Ny(T)/Z — N(T)/Z — X/Z

where N (T')/Z is an extendegh-compact torus with identity component
T/T N Z and Sylowp-subgroupN,(T")/Z.

Since]\;((iﬁ/z ~ X/N,(T) is F,finite with Euler characteristic prime
to p, the monomorphisniV,(i)/Z: N,(T')/Z — X/Z is (3.5) thep-nor-
malizer of the maximal toru$'/T' N Z — X/Z.

Since theF,-finite spacej% ~ X/N(T) associated to the-mo-

nomorphism\ (i)/Z: N(T')/Z — X/Z has Euler characteristic 1, the in-

duced group homomorphisii (N (i)/Z): mo(N(T)/Z) — Wr7(X/Z)
X/7

is (3.3) surjective. But the regular covering magT — TRz with the

p-groupim W (z) as group of covering transformations shows [6, 4.14] that

(3.6) the orderx(%) of the Weyl groupWz 7z (X/Z) equals the
order of the component group(N(T')/Z) = Wr(X)/im W (z). Hence
W(N(i)/Z) is in fact an isomorphism and (i) /Z is (3.4) the normalizer

of the maximal torus o /Z.

Example 3.9. Let G be a compact Lie group whose component group
mo(G) is a finite p-group. Suppose th&f — G is a Lie theoretic max-
imal torus with normalizetN(7') — G andp-normalizerN,(T) — G.
DefineBG = (BG),, BN,(T) = (BN,(T))p, andBN(T) = (BN(T)),
whereK), is the partialp-completion [3, VII§6] that preserves the funda-
mental group ang-completes the universal covering space of the pointed,
connected spadk. (If the fundamental group ok happens to be a finite
group, the partigh-completion is the-completion.) Thet is ap-compact
group,T is ap-compact torus, an@/(7') is an extendeg-compact torus.
Since also [3, 11.5.3]

(G/T)p = C:;/]A} (G/NP(T))p = G/NP(T)7
(G/N(T))p = G/N(T)

we see [3, VII.6.3] thal — G, N,(T) — G, andN(T) — G arep-
monomorphisms with((G/T) = x(G/T) # 0, x(G/N,(T)) = x(G
/N,(T)) # 0 mod p, andx(G/N(T)) = x(G/N(T)) = 1. It now easily
follows from (3.4, 3.5, 3.6) tha¥ (T)) — G is the normalizer and/,,(T') —
G thep-normalizer of the maximal torus — G.

We shall later need a little information on the special case wiete
N(T) is the normalizer of the maximal torus.

The maximal torug: T'— X for X factors through the identity com-
ponentl” — Xy. The normalizerVy(T") of this maximal torus forX is
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related, cf. [16, 3.8], to the normaliz&f(T") of the maximal torus foX by
a short exact sequence

No(T) = N(T) = mo(X)
of extendegh-compact tori. The fibre map
BNy(T) —— BN(T) — Bmp(X)

L

BXO BX BWQ(X)

shows thatX /N (T") ~ Xy/No(T') and thus thafX/N(T') is a connected
homogeneous space with fundamental graypX/N (7)) = Wr(Xy).
(Use the fact thatr; (N(T")) — m1(X) is [16, 5.6] surjective to get the
expression for the fundamental group.)

Lemma 3.10. H*(X/N(T); Qp) = Q,.

Proof. As noted above, we may assume thats connected. Then the in-
duced map?*(BN (i); Qp): H*(BX;Q,) — H*(BN(T);Q,) is an iso-
morphism [6, 9.7] and the lemma follows from the Serre spectral sequence.
O

Finally, we turn to a somewhat different situation.

Let g: Y — X be a monomorphism of somecompact groupy” to
X. Thenrk(Y) < rk(X). In the maximal rank case, induces (2.6) a
normalizer morphismN (g), unique up to conjugacy, such that the diagram

N(S) 9L N (T)

L

Y X

g

commutes wheréV(S) — Y is the normalizer int” of a maximal torus
S — Y. Define theWeyl homomorphisio be the group homomorphism

Wi(g) = m(N(g)): Ws(Y) — Wr(X)
induced byN (g).

Corollary 3.11. (Cf.[16, 3.12].) Letg: Y — X be a monomorphism of
compact groups inducing an epimorphisgig): mo(Y") — m(X) of com-
ponent groups. Therk(Y) < rk(X) and

1. ifrk(Y) = rk(X), thenW (g): Ws(Y) — Wr(X) is injective and the
Euler characteristicy(X/Y) = |[Wp(X) : im W(g)|.
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2. ifrk(Y) < rk(X), theny(X/Y) = 0.
Consequently,

g:Y — X is an isomorphism

= N(g): N(S) — N(T) is an isomorphism
< x(X/Y) # 0andW (g) is an epimorphism
S x(X/Y)=1

The first implication can be reversed provideslg) is an isomorphism.

Proof. The homogeneous spa&eY is connected and the action of the fun-
damental groupr; (X/Y) on H,(Y/N(S);F,) associated to the fibration
of IF,-finite spaces

Y/N(S) = X/N(S) = X/Y

is nilpotent because [6, 11.6] it factors through the fipitgroupmo(Y").
Hence [7, 11.6]

X(X/N(S)) = x(Y/N(S)) - x(X/Y) = 1-x(X/Y) = x(X/Y)

by (3.10).

If rk(Y) = rk(X), thenW(g) is (2.5) injective and (3.3) the Eu-
ler characteristicy(X/N(S)) = |[Wr(X) : imW(g)|; otherwise (3.3)
X(X/N(S)) = 0. This proves (1) and (2).

Suppose thag(X/Y) = 1. ThenY and X have the same rank and
W (g) is bijective. Assumingr(g) is bijective, the Weyl homomorphism
W(go): Ws(Yo) — Wr(Xo), induced by the restrictiopy: Yy — Xy to
the identity components, is [16, 3.8] bijective too. Tlyss both a rational
isomorphism [6, 9.7] and a monomorphism, hence [16, 3.7] [7, 4.7] an
isomorphism.

The remaining statements are easily proved.

The Euler characteristic conditions formulated in this section have seem-
ingly not played any significant role in classical Lie group theory. In the next
section, they will be applied to analyze the centralizer of an elementary abe-
lian p-group.

4. Centralizers of elementary abelianp-groups

The content of this section constitutes a proof of (1.3).

Letrv: V — X be a monomorphism of an elementary abepagroup
V to thep-compact groupX. The centralizeC'x (v) = Cx(vV) is again
ap-compact group and'x (v) — X is a monomorphism [6, 5.1, 5.2]. The
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aim here is to identify the normalizer of a maximal torusCof (v) using
the recognition principle of (3.4).
Consider lifts

BN, (T)
iij
Bre /BN (T)
/ iBN(i)
BV BX

Bv

of Bv to BN,(T) and BN(T'). According to [7, 2.14] such lifts always
exist. Note thal” acts onT" and, by conjugation, ofiV(X) through the
homomorphisniV (i) := mo(p): V — Wr(X) induced byp.

The fibration

BT" — map(BV, BN(T)) — map(BV, BWr(X))

shows that the homotopy groupsBC 1) (1) are concentrated in degrees
< 2. The fundamental group,

(4.1) T (Cn(ry (1)) = mo(BT"Y, Bp) = my (T)Y,

is a free, finitely generated module ov&y. For the component group there
is a short exact sequence

0— HY(V,m(T)) — To(Cn(ry (1))
(4.2) = Cypp(x) (Im W (p)* =1

where the group to the right is the isotropy subgroupatfor the action
of the fundamental group; (map(BV, BWp(X)), BW (u)) = CWT(X)

(im W (1)) on the setro(BT"Y) = H?(V, 71(T)).

Corollary 4.3. Letu: V — N(T') be a lift ofv: V — X. Then the cen-
tralizer C () (1) is an extendeg-compact torus and'y (1 (1) — Cx (v)
is ap-monomorphism.

Proof. The above computation ofthe homotopy groups showsthat (1)

is an extendeg-compact torus. Moreove€)y, (r) (1) is @ Sylowp-sub-
group of Cy(ry(p) for a suitable liftu,: V' — N,(T') of u (4.4) and the
compositeC, 7y (1p) — Cnry(p) — Cx(v) is [7, 2.5] a monomor-
phism. O

Lemma 4.4. Any morphismu: V' — N(T) admits a liftu,: V — N,(T')
such thatlC'y, (1) (1p) = Cn (1) (1) is @ Sylowp-subgroup.
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Proof. Consider the covering map

Wr(X)/Wr(X),)" =[] BOw,)(hp) = BCwr) (1)

JpOp2ph

obtained by applyinghap(BYV, —) tothe coveringmapB N, (1)) — BN (T).

The components of the total space are indexed by conjugacy classes of ho-
momorphismgy,: V' — N,(T') with j, o i, conjugate tqu. Since the car-
dinality of the fibre is congruent mod to [Wr(X) : Wr(X),|, there
exists at least ong,, for which the number of sheets of the covering
BCn,(r)(kp) = BCn(r) () is prime top. O

In particular, the homogeneous space(v) /Cn r) (1) is (3.1)FF -finite
foranylift yu: V.— N(T)ofv: V. — X.

In order to establish the base for an inductional proof of (1.3), we first
consider the case wheléhas rank one.

The next lemma, which is the key observation, deals with the space
(X/N(T))"V of all lifts to BN (T) of Bv: BV — BX.

Lemma 4.5. Assume that: V — X is a monomorphism of a rank one
elementary abeliap-group V' to X. Then the homotopy fixed point space
(X/N(T))"V is F,-finite with Euler characteristig ((X/N(T))") = 1.

Proof. Pull back alongBv: BV — BX of the diagram

BN,(T) BN(T)

~

BX

produces a similar diagram of homotopy orbit spaces

(X/Np(T) v (X/N(T))ny

~

BV

where the horizontal map is a map o8V, i.e. al’-map between th& -
spacesY/N,(T') andX/N(T'), and anWr(X) : Wr(X),|-fold covering
map. This horizontal map induces [6, 10.6] another covering map

(Wr(X)/Wr(X),)" = (X/Np(D)" — (X/N(T)""
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of section, or homotopy fixed point, spaces. Using this map, build a com-
mutative diagram

BV x (X/Ny(T))"Y —— (X/Ny(T)) v

| |

BV x (X/N(T))"V —— (X/N(T)),,

where both vertical maps are covering maps and the horizontal ones are eval-
uation maps. From [6, 4.11], using [6, 5.7] to verify fhgcompleteness hy-
pothesis, we infer that the spac€/N,(T))"" and the pait(X/N,(T))nv,

BV x(X/N,(T))"V) areF,-finite. By (3.2), the homotopy fixed point space
(X/N(T))"V and the paif (X/N(T))nv, BV x (X/N(T))"V) areF,-

finite, too. Inthis situation, the Lefschetz numbrX /N (T'), (X /N (T))"V;

V) = 0[6, 4.17]. Hence the Euler characteristic of the trivialspace( X

/N (T))"V is given by

X(X/N(T)™) = A(X/N(T)™ 5V) = AX/N(T); V)
=AQyV)=1
using the additive property [6, 4.12] of Lefschetz numbers and (3.10).
We can now prove (1.3) for elementary abeliagroups of rank one.

Proposition 4.6. Assume that': V' — X is a monomorphism of a rank
one elementary abelign-group V' to X. Then there exists up to conjugacy
exactly one liftu: V' — N(T') of v such that

Cnry(1)o = Cn(ry(p) = Cx (v)
is a maximal torus for the centralizer of The normalizer of this maximal
torus is conjugate t@'y 1 (1) — Cx (v).
Proof. In the fibration

X/N@)Y =[] map(BV,BN(T))p, — map(BV, BX)p,
N(i)ou~v

the components of the total space are indexed by conjugacy classes of ho-
momorphismg:: V' — N(T') with N (i) o u conjugate ta.. The fibre can
also be described as a finite disjoint union

(X/NT)YY =~ [ Cx)/Cxnery(w)

N (i)ou~v
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of F)-finite spaces. Hence

1= Y x(Cx()/Cny(w))

N (i)ou~v

by the Euler characteristic computation of (4.5). Since all terms of this sum
are nonnegative (3.3), exactly one of them must be equal to 1 and the rest
equal to 0.

Let nowu: V — N(T') denote the uniquely determined preferred lift
of v for which the homogeneous spacg (v)/C () (1) has Euler charac-
teristic equal to 1. This lift is characterized by the property that the identity
components = Cy(ry(p)o is (3.4, 3.6) a maximal torus far'x (v). It re-
mains to show that the normalizer of the maximal tofus conjugate to
Cn(r) (1) = CN(T)(V)-

Consider the following list of statements

Cn ) (S x V) — Cx(S x V) is an isomorphism.
Cnr)(S) = Cx(S) is an isomorphism.

Cx (S) is ap-compact toral group.

Cx(S)/S is ap-compact toral group.
Ccy(s)/s(V) is homotopically discrete.

arwbdE

pertaining to the homomorphistx V' — Cn ) (V) xV — N(T) — X.
Accordingto (3.3, 3.4), the first statement implies the proposition. Moreover,
each statement implies the one above it: The implica®n=- (2) holds
because, sincé is ap-compact torusC'y ) (S) is known [13, 3.4.(3)] to
be conjugate to the maximal torus@f (.S) and(5) = (4) holds because
only in ap-compact toral group can the centralizer of a cygligroup be
homotopically discrete [5, 1.4]. Thus the proof has been reduced to the
verification of (5).

Let

(4.7)  BS" — map(BV,BCx(S)) — map(BV, B(Cx(S)/S))

be the fibration sequence obtained by map@ghnginto the fibation sequence
corresponding to the central extension [6, 8.2, 8.3]

S — Cx(S)— Cx(9)/S

of p-compact groups.

Each component of the fibre of (4.7) is homotopy equivaler ffor
BSpy = BS x BV andBS"Y = map(BV, BS) by centrality. Moreover,
S = Coy(s)(V) = Coy(v)(S) is the identity component of the centralizer
of the maximal toru$s — C'x (V') and hence the exact homotopy sequence
of fibration (4.7) shows that the base space compof&it, (s),s(V) is
aspherical, i.e. thaf'c, (5),5(V) is homotopically discrete. O
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Remark 4.8.Note that (4.5) and (4.6) are valid whenevér= Z/p" is a
cyclic p-group.

The scene is now set for an inductive proof of Theorem 1.3.

Proof of Theorem 1.3 etV be an elementary abeliargroup of rank at least
two. WriteV = V4 x Vo wherel; andl; are nontrivial elementary abelign
groups. Lets = v|Va: Vo — X be the restriction ofand, : V; — Cx (12)
the adjoint ofv.

We may inductively, by (4.6), assume that there exist aulift Vo —
N(T) of vg: Vo — X such thatCy(ry(p2) — Cx(v2) is conjugate to
the normalizer of a maximal torus and also a jift: V4 — Cn7)(u2) of
v1: Vi — Cx(vy) such that

CCN(T)(#z)(“l) - CCX(Vz)(Vl)

is conjugate to the normalizer of a maximaltorus. Equivaleatly,r) (1) —
Cx (v), whereu is adjoint tou , is conjugate to the normalizer of a maximal
torus. O

Remark 4.9.The proof of Theorem 1.3 shows that any preferredift:
Vo — N of the restrictionv|V; extendgo a preferred lift ofv. It is not true
(4.14), conversely, that any preferred lift festrictsto a preferred lift of
v|Vs.

Preferred lifts are easily recognized and constructed in case the mono-
morphismCx (v) — X is of maximal rank [7, 4.1] (which happens if and
only if v: V' — X factors throughCx (T") — X).

For any morphismu: V- — N(T'), let A(u): V — Aut(71(T)) denote
the homomorphisi¥ (u): V' — mo (V) followed by the monodromy action
of 7T()(N) onm(N) = 7T1(T).

Proposition 4.10. Letv: V — X be a monomorphism of a nontrivial ele-
mentary abeliarp-group into X and assume that'x (v) — X is a mono-
morphism of maximal rank. Then

1. All preferred lifts ofv are conjugate inV (7).
2. Aliftu: V. — N(T)ofv: V — X is a preferred lift if and only ifA ()
is trivial.

Proof. Clearly, if i is a preferred lift oi- andC'x (v) has maximal rank, then
(4.1) A(p) (V) fixesm1 (T") ® Q pointwise so the action af onm;(T) ® Q,
and hence om(T), is trivial.

The remaining assertions are proved by induction over the rank of
with the induction start provided by (4.6).

Suppose now thdt has rank greater than one and wiite= U @ U+
as a direct sum of two nontrivial elementary abeliagroups.



70 J.M. Mgller

Assume thati (1) is the trivial morphism. Let: U+ — Cx(v|U) and
pt: U — Cnry(u|U) be the adjoints of and . relative to the above
splitting of V. Note that the centralizer of! is the centralizer ofs and
that all threep-compact group€’x (v) — Cx (v|U) — X have the same
rank. Note also that botd (u|U) = A(u)|U and A(ut) = A(p)|UL —
Aut(my (T)AWV)) = Aut(m; (T)) are trivial homomorphisms. Now apply
the induction hypothesis twice to conclude, first, thdf is a preferred lift
of v|U and, next, that* is a preferred lift ofv*, or, equivalently, that is
a preferred lift ofv.

Finally, let ; and 2 be two preferred lifts of.. Then the associated
homomorphismsA(u1) and A(u9) are trivial. Applying the induction hy-
pothesis twice, we infer that the restrictions|U andu»|U are conjugate
in N(T') and that the adjointa{- and 3 are conjugate i€y 7y (u1|U) =
Cn(r)(p2|U). By adjointness, this shows that and u; are conjugate in
N(T). O

If the centralizer of the monomorphism V' — X has maximal rank,
there is a factorization: V' — Cx (T') of v through the centralizer of the
maximal torus. And since the centralizer®in N(7T') is isomorphic (2.6)
to the centralizer of" in X we obtain a lift ofy’ of v/ as in the diagram

Cnr)(T) —= N(T)

o

V- Ox(T)

X

and hence also a lift of. This is the preferred lift of.
This applies in particular wheX is connected andl” = Z/p has rank
one.

Corollary 4.11. Let X be a connecteg-compact group and” = Z/p a
rank one elementary abeligngroup. Thernu: V' — N(T) is the preferred
liftof v = N(i) o u: V — X ifand only if W () is trivial.

From (4.11) and (4.9) we see that foc@nnectech-compact group any
v admits a preferred lift. such tha@¥ (1) has a nontrivial kernel.

Example 4.12. Let f: X — X be an automorphism of whose normal-
izer morphismN (f): N(T) — N(T) is conjugate to the identity and let
v: V — X be a monomorphism of an elementary abelpagroup to X .
Choose a preferred lifi: V' — N (T') of v. Note thatf restricts to an auto-
morphismC' (V') of Cx (v) for fov = foN(i)opu = N(i)oN(f)ou =
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N (i) o p = v. Moreover, the diagram

Cnepn(V)

CN(T) (1) — CN(T) (1)
CN(i)(V)l \LCN(i)(V)
x(v) Cx(v)

Cr(V)

commutes up to conjugacy. Thus also the normalizer morphigais (V'))
= Cn(p) (V) of C(V) is conjugate to the identity. See [11] for an applica-
tion of this example.

Remark 4.13LetT — N(T) — Wy(X) be a discrete approximation [7,
3.12]toN(T) andji: V — N(T) a discrete approximation to a preferred
lift u: V— N(T') of v: V — X. The component group homomorphism
W(p): V — Wr(X) determines an action df on T (and onBT and
m1(7)). Let CWT(X)(im W (w))* denote the subgroup of those elements

w in the centralizer ofm W (1) for which Wi, wherew € N(T) is a
lift of w, is T-conjugate tqz. Then the short exact sequence (4.2) has the
form

1%HWWMﬂ%HWW%qWMWmWWV%1

wherelV (v) denotes the Weyl group @fx (v).

Example 4.14. (1) For any monomorphisivi — 7' into the maximal torus,
V = T — N(T) is the preferred lift o — 7" — X, i.e.Cn) (V) —

Cx (V) is the normalizer of the maximal tords= Cp(V) — Cx (V) [13,
3.4(3)].

(2) If p |/|Wp(X)|, X is connected and it follows from [6, 9.5] [7, 2.14] [13,
3.4(1)]thaf BV, BN (T')] = [BV, BX], so any monomorphism: V' — X
lifts uniquely to a monomorphism: V' — N (T') which therefore must be
the preferred lift ofv.

(3) Let A = Z/2 x Z/2 denote the diagonal subgroup of the normalizer
N(T) = O(2) of the maximal toru§” = SO(2) of SO(3). Then the inclu-
sionu: A — N(T) is a preferred lift of the inclusiomr: A — SO(3) for
Crnr)(A") = A" = Cg0(3)(A™). Let P be the permutation matrix of the
cycle(123). ThenPuP~! is another preferred lift of (the conjugacy class
of) v which isnotconjugate inV (7') to u.

(4) Write, in the above situation) = V @ V+ whereV = ANT. Then the
restrictionu | V is the preferred lift o | V buty | V- is not the preferred
lift of v | V+ (4.11).

The third of these examples, which shows that (4.11) and the uniqueness
part of (4.6) do not hold in general, is understood to take place in the category
of 2-compact groups by means of (3.9) and (4.15).



72 J.M. Mgller

Lemma 4.15. LetG be acompact Lie group whose component gro(ér)

is a p-group and letC (V') denote the centralizer of a homomorphism
f:V — G ofan elementary abeligngroupV into G. Then the component
group of C¢ (V) is [9, A.4] a p-group and the adjoint to the-completion

of BV x BCq(V) — BG,

—

BCg(V) — BCa(V),
is [8, 1.1] [4, 2.5] a homotopy equivalence.

The above discussion focused on the normalizer of the maximal torus. |
close this note with a few words on the analogous, but much easier, problem
for thep-normalizer.

With 1 denoting a preferred lift of as in (1.3) angk, alift of asin (4.4),
Cn, (1) (pp) — Cx (v) is conjugate to the-normalizer of a maximal torus
of the centralizeC'x (v). The existence of such a lift to thenormalizer is,
however, more easily proved directly (even in a more general situation).

Proposition 4.16. Letrv: G — X be amonomorphism ofacompact toral
groupG into X. There exists a lifi,,: G — N,(T") of v such that

Cn,@)(G): Cn,1y(1tp) = Cx (V)
is conjugate to the-normalizer of a maximal torus @f'x (v).

Proof. Let N,(v) — Cx(v) denote thep-normalizer of a maximal torus
of the centralizelCx (v). The adjoint,G x N,(v) — X, of this homo-
morphism admits [7, 2.14] a lift x N,(v) — N,(T') over N,(i). The
restrictiony,: G — N,(T') to G is a lift of v with the property that the
p-normalizer N, (v) — Cx(v) factors throughCy () (1p) — Cx(v).
ConverselyCy, (1) (1p) — Cx(v) factors throughv,(v) — Cx(v) for
general reasons [7, 2.14] and hence (3.7) thesetammpact toral groups
are isomorphic. O

5. Preferred actions

In this section we look at actions of elementary abelisgroups or cyclic
p-groups orp-compact groups and preferred actions on the maximal torus
normalizer.

Let V be an elementary abeliangroup (or (4.8) a cyclig-group) and
X ap-compact group. Assume th&X is al/-space, i.e. that there exists
a fibration

(5.1) BX — BXpy — BV
over BV with fibre BX and homotopy orbit spacB X}y .
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We shallfirstrelate the maximal torus normalizer&cdnd.X ;.. Choose
a maximal torus normalizé¥y,, — Xp, for thep-compact group [12, 3.1]
Xv. Let BN denote the fibre oBN,y — BX;,y andBN — BX the
factorization of BN — BNy — BXjy through the fibreBX.

Lemma5.2. N — X is conjugate to the normalizer of a maximal torus of
X.

Proof. It is evident from the commutative diagram

N Ny 174
X Xpv 174

with exact rows thatN= — X is a monomorphism and that/N ~
Xpv /Npy has Euler characteristic 1. Now apply 3.4.(3[0

A V-action onX is [5, 1.2] a sectiorBv of the fibration (5.1). Define
B(X"™) = (BX"V, Bv) to be the component containitiy of the section
space. TherX " is again ap-compact group [6, 5.8], the homotopy fixed
pointp-compact group. The following proposition shows the existence of a
preferredl/ -action on/V.

Proposition 5.3. TheV-actionBv: BV — BXjy on X restricts to al/ -
action By: BV — BNy on N such that the induced morphisky* —

X" is conjugate to a maximal torus normalizer of the homotopy fixed point
p-compact groupX ™.

Proof. Chooseu: V' — Ny to be a preferred lift of the monomorphism
v:V — Xpy. ThenmoCy,, (1) maps ontaryCy, , (v) and it follows that
there is a commutative diagram with exact rows

N ——Cny () —= V'

.

X HCXhV(V) —V

whereV” is the image ofr(CY,, (v)) in V. As in the proof Lemma 5.2
we infer that since the middle vertical monomorphism is conjugate to the
normalizer of a maximal torus, so is the left vertical monomorphism.
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