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Abstract. Normalizers andp-normalizers of maximal tori inp-compact
groups can be characterized by the Euler characteristic of the associated
homogeneous spaces. Applied to centralizers of elementary abelianp-groups
these criteria show that the normalizer of a maximal torus of the centralizer
is given by the centralizer of a preferred homomorphism to the normalizer
of the maximal torus; i.e. that “normalizer” commutes with “centralizer”.
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1. Introduction

The purpose of this paper is to formulate recognition criteria for the normal-
izer and thep-normalizer of a maximal torus of ap-compact group.

Fix a primep and consider ap-compact groupX. LetN(i) : N(T ) → X
denote the normalizer andNp(i) : Np(T ) → X thep-normalizer [6, 9.8] of
a maximal torus [6, 8.9]i : T → X. N(T ) is the middle term of a short
exact sequence [6, 3.2] of loop spaces

T → N(T ) → WT (X)

whereWT (X) is the Weyl group.Np(T ) is the middle term of a short exact
sequence ofp-compact groups

T → Np(T ) → WT (X)p

whereWT (X)p is a Sylowp-subgroup ofWT (X). ThusN(T ) is an ex-
tendedp-compact torus [7, 3.12] andNp(T ) is a p-compact toral group
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[6, 6.3]. The morphismNp(i) : Np(T ) → X is a monomorphism [6, 3.2]
of p-compact groups. Before we can say thatN(i) : N(T ) → X is a mo-
nomorphism, too, we need to define what it means for a morphism of an
extendedp-compact torus to ap-compact group to be a monomorphism.

LetG be any extendedp-compact torus andf : G → X a morphism, i.e.
a based mapBf : BG → BX. G fits into a short exact sequence

S → G → π

where the identity componentS = G0 is ap-compact torus and the com-
ponent groupπ = π0(G) is finite. Defineτ0(G) to be the kernel of the
conjugation actionπ → Aut(π1(S)) of the component group on the iden-
tity component.

Call G → X a p-monomorphismif for some (hence (2.1) any) Sylow
p-subgroupGp → G, the restrictionGp → G → X is a monomorphism
of p-compact groups. ASylowp-subgroupof G is a morphismGp → G of
a p-compact toral groupGp to G which restricts to an isomorphism on the
identity components and induces a monomorphism on component groups
takingπ0(Gp) isomorphically onto a Sylowp-subgroup ofπ0(G). Np(T ) is
a Sylowp-subgroup ofN(T ) andN(i) : N(T ) → X is ap-monomorphism.

Definition 1.1. The morphismf : G → X is a monomorphismif it is a
p-monomorphism andτ0(G) is ap-group.

With this definition, thep-monomorphismN(i) : N(T ) → X is a mo-
nomorphism for [13, 3.4.2]τ0(N(T )) = π0(CX(T )) is ap-group.

LetX/G denote the homotopy fibre ofBf : BG → BX. If f is a mono-
morphism,X/G is (3.1)Fp-finite so theFp-Euler characteristicχ(X/G) is
defined. For instance [6, 8.10, 9.5],χ(X/T ) = |WT (X)|, χ(X/Np(T )) =
|WT (X) : WT (X)p|, and (3.3, 3.10)χ(X/N(T )) = 1.

Theorem 1.2. (3.4, 3.5, 3.6) Letf : G → X be a monomorphism from an
extendedp-compact torusG to X. Thenf is conjugate to

1. the maximal torusi if and only ifχ(X/G) 6= 0 andπ0(G) is trivial.
2. thep-normalizerNp(i) if and only ifχ(X/G) 6= 0 mod p andπ0(G)

is ap-group.
3. the normalizerN(i) if and only ifχ(X/G) = 1.

We say that two morphismsG → X and H → X of extendedp-
compact tori toX areconjugateif there exists an isomorphismG → H, i.e.
a homotopy equivalenceBG → BH, making

BG
' //

##FFFFFFFF BH

{{xxxxxxxx

BX
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homotopy commutative.
Most work goes into proving (1.2.3). Indeed, (1.2.1) is already known

[7, 2.15] and (1.2.2) quickly follows from [6,7].
An application of this recognition principle, shows that, in a certain sense,

centralizers commute with normalizers. To be more precise, letν : V → X
a monomorphism of an elementary abelianp-groupV = (Z/p)d toX. Sup-
pose thatµ : V → N(T ) is a lift of ν overN(i) such that composition with
N(i) induces a morphismCN(i)(V ) : CN(T )(µ) → CX(ν) of centralizers.
Is CN(T )(µ) the normalizer of a maximal torus ofCX(ν)? With a suitably
chosen liftµ, it is.

Theorem 1.3. Let ν : V → X be a monomorphism of an elementary abe-
lian p-group intoX. There exists a liftµ : V → N(T ) of ν such that

CN(i)(V ) : CN(T )(µ) → CX(ν)

is conjugate to the normalizer of a maximal torus ofCX(ν). If V has rank
one (4.6), but not in general (4.14.3), the liftµ is unique up to conjugacy

A lift µ as in Theorem 1.3 will be called apreferred lift of ν.
This theorem is particularly useful (4.12) in connection with the central-

izer decomposition [7, 8.1] ofBX and theN -conjecture forp-compact
groups. TheN -conjecture, see e.g. [10, 5.2] [17, 5.20], asserts thatp-
compact groups are determined up to isomorphism by their maximal torus
normalizers. In [11], preferred lifts are used in a general approach to the
N -conjecture leading in [15,14] to actual verifications of the conjecture in
a number of special cases.

I would like to thank W. Dwyer for a most helpful conversation during
the BCAT 94 and in particular for telling me how to exploit the result of [5]
in the proof of (1.3). I also benefited from conversations with R. Kane and
L. Smith. Special thanks are due to the Centre de Recerca Matematicà for
warm hospitality and support when part of this work was done.

2. Monomorphisms

Suppose thatG andH are extendedp-compact tori andX a p-compact
group. Note first of all, as tacitly required in the definition of a monomor-
phism, that Sylowp-subgroups of extendedp-compact tori are essentially
uniquely determined.
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Lemma 2.1. Suppose thatGp → G andG′
p → G are Sylowp-subgroups

of G. Then there exists an isomorphismGp → G′
p such that

BGp
' //

""EE
EE

EE
EE

E
BG′

p

||yy
yy

yy
yy

BG

commutes up to homotopy.

Proof. By covering space theory, there exists a mapBGp → BG′
p, necessar-

ily a homotopy equivalence, that makes the diagram homotopy commutative.
ut

Let g : G → H andh : H → X be morphisms. Choose Sylowp-sub-
groupsGp → G andHp → H such thatπ0(g)(π0(Gp)) < π0(Hp). Theng
restricts to a morphismgp : Gp → Hp and further to a morphismg0 : S → T
between the identity componentsS = G0 andT = H0.

Call g : G → H a p-monomorphismif gp : Gp → Hp is a monomor-
phism ofp-compact toral groups and a0-monomorphismif g0 : S → T is a
monomorphism ofp-compact tori. Anyp-monomorphism is a 0-monomor-
phism.

Define therank of G, rk(G), to be the rank [6, 6.3] ofS. If g is a 0-
monomorphism,rk(G) ≤ rk(H) [6, 8.11] and equality holds if and only if
g0 is an isomorphism.

MappingBS into the fibration sequenceBS → BG → Bπ0(G) results
in another fibration sequence

map(BS, BS) → map(BS, BG) → map(BS, Bπ0(G))

which leads to the short exact sequence

S → CG(S) → τ0(G)(2.2)

of extendedp-compact tori. Note in particular thatπ0(CG(S)) = τ0(G).
The short exact sequence (2.2) is not quite natural but composition with
g : G → H andg0 : S → T induces a commutative diagram

S

g0

��

// CG(S)

Cg(S)
��

// τ0(G)

��
T // CH(S) // π0(CH(S))

T // CH(T )

CH(g0)

OO

// τ0(H)

OO

with exact rows where the two lower short exact sequences are isomorphic
providedg0 is an isomorphism.
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Lemma 2.3. Suppose thatg is a 0-monomorphism. Then:

1. ker π0(g) < τ0(G).
2. If rk(G) = rk(H), thenτ0(G) = π0(g)−1(τ0(H)).
3. If rk(G) = rk(H) andg is a p-monomorphism, the order ofker π0(g)

is prime top.

Proof. The first two statements follow from the commutative diagram

π0(G) × π1(S)

π0(g)×π1(g0)
��

// π1(S)

π1(g0)
��

π0(H) × π1(T ) // π1(T )

expressing naturality of conjugation actions. Here,π1(g) = π1(g0) is a
monomorphism ifg is a 0-monomorphism [16, 3.4] and an isomorphism if
alsoG andH have the same rank.

Under the assumptions of point (3),π0(g)p is a monomorphism. ut
It follows that there aren’t any monomorphisms of extendedp-compact

tori to p-compact toral groups besides the already known ones.

Proposition 2.4. Suppose thatg : G → H is a p-monomorphism into ap-
compact toral groupH. Theng is a monomorphism if and only ifG is a
p-compact toral group.

Proof. Supposeg is a monomorphism. Thenπ0(G) is ap-group since (2.3)
ker π0(g) < τ0(G) andim π0(g) < π0(H) arep-groups. ut

The p-divisible groupŠ = (π1(S) ⊗ Q)/π1(S) ∼= (Z/p∞)rk(G) is a
discrete approximation[6, §6] to S.

Also G itself has [7,§3] a discrete approximation: Note thatH3(π0(G);
π1(S)) ∼= H2(π0(G); Š) for any actionπ0(G) → Aut(π1(S)) ∼= Aut(Š).
Thus there is a bijection between fibrations

BS → BG → Bπ0(G),

classified by elements ofH3(π0(G);π1(S)), and group extensions

Š → Ǧ → π0(G),

classified by elements ofH2(π0(G); Š)).
By naturality of this correspondence, the fibre mapBg : BG → BH

induces [7, 3.13] a morphism

Š

ǧ0

��

// Ǧ

ǧ

��

// π0(G)

π0(g)
��

Ť // Ȟ // π0(H)

of group extensions.
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Lemma 2.5. Suppose thatg : G → H is ap-monomorphism andh : H →
X a monomorphism whererk(G) = rk(H). Then the following conditions
are equivalent:

1. h ◦ g : G → X is a monomorphism.
2. ǧ : Ǧ → Ȟ is a monomorphism.
3. π0(g) : π0(G) → π0(H) is a monomorphism.
4. π0(Cg(S)) : π0(CG(S)) → π0(CH(S)) is a monomorphism.

Proof. (1) ⇒ (2): Note that the discrete approximationǧp : Ǧp → Ȟp to the
monomorphismgp : Gp → Hp is [16, 3.4] a monomorphism and (2.3) that
ker π0(g) < τ0(G). Sinceτ0(G) is ap-group, so isker π0(g) and we may
then assume thatker π0(g) < π0(Gp). It follows thatker ǧ = Ǧp ∩ ker ǧ =
ker ǧp is trivial.

(2) ⇒ (3): SinceG andH have the same rank, any monomorphism
Ǧ → Ȟ induces a monomorphismπ0(G) → π0(H).

(3) ⇒ (4): Obvious, sinceπ0(CG(S)) < π0(G) andπ0(CH(S)) <
π0(H).

(4) ⇒ (1): Being isomorphic to a subgroup of thep-groupτ0(H) =
π0(CH(S)), τ0(G) = π0(CG(S)) is ap-group. ut

Let nowf : G → X be a0-monomorphism. Thenrk(G) ≤ rk(X) [6,
8.11] and we say thatf is of maximal rankif rk(G) = rk(X).

Lemma 2.6. Letf : G → X be a0-monomorphism of maximal rank. Then
there exist0-monomorphisms,N(f)|S andN(f), unique up to conjugation,
such that the diagrams

N(T )

N(i)
��

N(T )

N(i)
��

S

N(f)|S <<zzzzzzzz

f |S
// X G

N(f)
<<yyyyyyyy

f
// X

commute up to conjugacy. Moreover,N(i) induces isomorphisms

CN(i)(S) : CN(T )(S) → CX(S) CN(i)(G) : CN(T )(G) → CX(G)

of extendedp-compact tori. Iff is a p-monomorphism, so areN(f) and
N(f)|S.

Proof. Let B(N(f)|S) denote the unique conjugacy class corresponding
[13, 3.4] toB(f |S) under the bijection[BS, BN(T )] → [BS, BX] induced
by BN(i) so thatCN(i)(S) : CN(T )(S) → CX(S) is the normalizer for a
maximal torus ofCX(S). By maximality,f |S is a maximal torus forX
andCX(f |S) is ap-compact toral group, soCN(i)(S) is an isomorphism.
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Equivalently, the space of lifts,(X/N(T ))hS , of B(f |S) over BN(i) is
contractible.

The space of lifts ofBf overBN(i),

(X/N(T ))hG ' ((X/N(T ))hS)hπ0(G) ,

is therefore also contractible. In particular, there exists a based liftBN(f)
of Bf overBN(i) and any two such lifts are vertically homotopic.ut

Let now, in the maximal rank case,W (f) = π0(N(f)) : π0(G) →
WT (X) denote the homomorphism (defined up to conjugacy) between the
component groups induced byN(f). We now combine (2.5) and (2.6).

Corollary 2.7. Let f : G → X be a p-monomorphism of maximal rank.
Then the following conditions are equivalent:

1. f : G → X is a monomorphism.
2. Ň(f) : Ǧ → Ň(T ) is a monomorphism.
3. W (f) : π0(G) → WT (X) is a monomorphism.
4. π0(Cf (S)) : π0(CG(S)) → π0(CX(S)) is a monomorphism.

Thus all maximal rank monomorphismsG → X are obtained by re-
strictingN(i) : N(T ) → X to maximal rank subgroupšG < Ň(T ) where
Ň(T ) is a discrete approximation toN(T ).

Corollary 2.8. For any maximal rankp-monomorphismf : G → X, ker
W (f) is a subgroup ofτ0(G) of order prime top. If X is connected,
ker W (f) = τ0(G).

Proof. Use (2.3) and recall thatτ0(N(T )) = π0(CT (N(T ))) = π0(CX(T ))
is trivial for a connectedX. ut

3. Euler characteristic criteria

Recall that a spaceY is Fp-finite if H∗(Y ; Fp) is finite dimensional overFp.
Then alsoH∗(Y ; Qp), which stands forH∗(Y ; Zp) ⊗ Q,, is finite dimen-
sional overQp [6, 4.3] and the Euler characteristic

χ(Y ) =
∞∑
i=0

(−1)i dimFp H i(Y ; Fp) =
∞∑
i=0

(−1)i dimQp H i(Y ; Qp)

is defined. These notions generalize to pairs.
Consider ap-monomorphismf : G → X of an extendedp-compact

torusG to ap-compact groupX. Let X/G denote the fibre ofBf : BG →
BX.

Lemma 3.1. X/G is Fp-finite.
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The proof of (3.1) depends on a little lemma which we for later reference
formulate in greater generality than needed now.

Lemma 3.2. Letp1 : E1 → B1 be anm1-fold covering andp2 : E2 → B2
an m2-fold covering wherem1 and m2 are prime top and m1 = m2
mod p. Suppose that there exists a map

E1

p1

��

v // E2

p2

��
B1 u

// B2

of coverings and that(E2, E1) is Fp-finite. Then(B2, B1) is Fp-finite.

Proof. Consider the diagram, commutative except for the upper square,

H∗(B1; Fp) H∗(B2; Fp)
u∗

oo

H∗(E1; Fp)

tr∗
1

OO

H∗(E2; Fp)
v∗

oo

tr∗
2

OO

H∗(B1; Fp)

p∗
1

OO

@A

GF

·m1

//

H∗(B2; Fp)
u∗

oo

p∗
2

OO

BC

ED

·m2

oo

wheretr∗
1 andtr∗

2 are transfer homomorphisms. A diagram chase reveals
that multiplication bym1 oncoker u∗ factors through a subspace ofcoker v∗
and that multiplication bym2 onker u∗ factors through a subspace ofker v∗.
Thuscoker u∗ andker u∗ are finite dimensional vector spaces ifcoker v∗
andker v∗ are. ut
Proof of 3.1.Sinceg is ap-monomorphism, the total space of the|π0(G) :
π0(Gp)|-fold covering mapX/Gp → X/G is Fp-finite so by (3.2) also
(X/G, ∗) is Fp-finite. ut

The Euler characteristicχ(X/G) is, in the maximal rank case, deter-
mined by the homomorphismW (f) : π0(G) → WT (X).

Lemma 3.3. LetG → X be ap-monomorphism. The Euler characteristic
of X/G is

χ(X/G) =

{
|WT (X) : imW (f)| if rk(G) = rk(X)
0 if rk(G) < rk(X)

Consequently,χ(X/G) = 1 if and only iff has maximal rank andW (f) is
an epimorphism, andχ(X/G) = 0 if and only ifrk(G) < rk(X).
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Proof. Puts = rk(G) andr = rk(X).
Assume first thatX is connected. Then [6, 9.7]H∗(BX; Qp) = RW

T
andH∗(BG; Qp) = Rπ

S whereRT = H∗(BT ; Qp), RS = H∗(BS; Qp),
W = WT (X), andπ ∼= π0(G)/τ0(G) is the image of the actionπ0(G) →
Aut(π1(S)). SinceRW

T is noetherian (indeed a polynomial ring) andH∗(X
/G; Qp) finite dimensional overQp, the Serre spectral sequence for the
fibrationX/G → BG → BX shows thatRπ

S is a finitely generatedRW
T -

module. Also, the homological dimensionhdimRW
T

(Rπ
S) ≤ r < ∞ by [1,

4.4.4] and hence

E2 = TorRW
T

(Qp, R
π
S)

is finite dimensional overQp. Moreover, as this is theE2-term for the
Eilenberg-Moore spectral sequence converging toH∗(X/G; Qp), its Eu-
ler characteristicχ(E2) = χ(X/G).

Change of rings [2, Proposition 7, p. 108],

RW
T ⊗Qp E2 ∼= RW

T ⊗Qp TorRW
T

(Qp, R
π
S) ∼= TorRW

T
(RW

T , Rπ
S) ∼= Rπ

S ,

and the multiplicative property of Poincaré series yield

P (E2, t) =
P (Rπ

S , t)
P (RW

T , t)
= (1 − t2)r−s |π|−1 + (1 − t2)O(1 − t2)

|W |−1 + (1 − t2)O(1 − t2)

where the second identity exploits information [1, 2.4.3] about the first term
in the Poincaŕe series of an invariant ring. Evaluation att = −1 provides
the formulas for the Euler characteristics. (Recall (2.8) thatπ ∼= im W (f)
whens = r andX is connected.)

In the general case of a possibly non-connectedX, defineB(X0 ∩G) to
be the fibre of the compositeBG → Bπ0(G) → B(im π0(f)) where the last
map is induced by the surjection ofπ0(G) onto its imageim π0(f) in π0(X).
Then X0 ∩ G is an extendedp-compact torus with ap-monomorphism
X0 ∩ G → X0. An inspection of the fibre map

B(X0 ∩ G)

��

// BG

��

// B(im π0(f))

��
BX0 // BX // Bπ0(X)

reveals that the homogeneous spaceX/G is homotopy equivalent to a dis-
joint union of|π0(X) : imπ0(f)| copies ofX0/X0 ∩ G. Hence

χ(X/G) = |π0(X) : imπ0(f)| · χ(X0/X0 ∩ G)
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whereχ(X0/X0 ∩ G) is given by the above computations in the connected
case. In particular,χ(X0/X0 ∩ G) = 0 = χ(X/G) if rk(G) = rk(X0 ∩
G) < rk(X0) = rk(X), and in the maximal rank case,

|WT (X) : imW (f)| = |π0(X) : imπ0(f)|
· |WT (X0) : imW (f |(X0 ∩ G))|

= |π0(X) : imπ0(f)| · χ(X0/X0 ∩ G)
= χ(X/G)

where the first equality is a consequence of the commutative diagram

1 // π0(X0 ∩ G)

W (f |(X0∩G))
��

// π0(G)

W (f)
��

// im π0(f)
��

��

// 1

1 // WT (X0) // WT (X) // π0(X) // 1

with exact rows. ut
Proposition 3.4. The following conditions are equivalent for anyp-mono-
morphismf : G → X:

1. f has maximal rank andN(f) : G → N(T ) is an isomorphism.
2. f has maximal rank andW (f) : π0(G) → WT (X) is an isomorphism.
3. f is a monomorphism andχ(X/G) = 1.
4. π0(Cf (S)) : π0(CG(S)) → π0(CX(S)) is injective andχ(X/G) = 1.

Proof. (1) and (2) are evidently equivalent, (2) and (3) are equivalent by
(3.3) while (3) and (4) are equivalent by (2.7).ut

Suppose in particular thatG is ap-compact toral group andf : G → X
a monomorphism of maximal rank. ThenW (f) : π0(G) → WT (X) is in-
jective and the image is a Sylowp-subgroup if and only ifχ(X/G) =
|WT (X) : imW (f)| is prime top.

Proposition 3.5. Letf : G → X be a monomorphism of ap-compact toral
groupG to X. Thenrk(G) ≤ rk(X) and

1. if rk(G) = rk(X), thenχ(X/G) > 0. Moreover,f : G → X and thep-
normalizerNp(i) : Np(T ) → X are conjugate if and only ifχ(X/G) 6=
0 mod p.

2. if rk(G) < rk(X), thenχ(X/G) = 0.

Consequently,

The morphismsf andNp(i) are conjugate

⇔ χ(X/G) 6= 0 mod p

⇔ p 6 |χ(X/G) > 0
⇔ χ(X/G) = |WT (X) : WT (X)p|
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And even more special case arises whenG is ap-compact torus. Then,
in the maximal rank case,χ(X/G) = |WT (X)| sinceπ0(G) is trivial.

Proposition 3.6. (Cf. [7, 2.15].) Letf : G → X be a monomorphism of a
nontrivial p-compact torusG to X. Thenrk(G) ≤ rk(X) and

1. if rk(G) = rk(X), thenχ(X/G) > 0 andf : G → X is conjugate to
the maximal torusi : T → X.

2. if cd(G) < rk(X), thenχ(X/G) = 0.

Consequently,

The morphismsf andi are conjugate⇔ χ(X/G) 6= 0 ⇔ χ(X/G) > 0
⇔ χ(X/G) = |WT (X)|

Example 3.7. Let f : G → H be a monomorphism betweenp-compact
toral groups. Thenrk(G) ≤ rk(H). If rk(G) = rk(H), the restriction
f0 : G0 → H0 to the identity components is an isomorphism,π0(f) : π0(G)
→ π0(H)a monomorphism, and the Euler characteristicχ(H/G) = |π0(H)
: imπ0(f)|. If rk(G) < rk(H), then the Euler characteristicχ(H/G) = 0.
Consequently,

f : G → H is an isomorphism

⇔ χ(H/G) 6= 0 mod p ⇔ p 6 |χ(H/G) > 0
⇔ χ(H/G) = 1.

Example 3.8. Let Z be ap-compact toral group andz : Z → X a central
morphism. Then there exists [6,§7] a lift N(z), unique up to conjugacy,
such that

N(T )

N(i)
��

Z

N(z)
<<zzzzzzzz

z
// X

commutes up to conjugacy. The induced mapW (z) := π0(N(z)) : π0(Z)
→ WT (X) is central since the discrete approximation toN(z) is central.

DefineT ∩ Z to be thep-compact toral group that fits into the commu-
tative diagram

T ∩ Z

��

// Z

��

// im W (z)
��

��
T // Np(T )

��

// WT (X)p
��

��
T // N(T ) // WT (X)
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with exact rows. Consider the induced morphisms

T/T ∩ Z → Np(T )/Z → N(T )/Z → X/Z

whereN(T )/Z is an extendedp-compact torus with identity component
T/T ∩ Z and Sylowp-subgroupNp(T )/Z.

Since X/Z
Np(T )/Z ' X/Np(T ) is Fp-finite with Euler characteristic prime

to p, the monomorphismNp(i)/Z : Np(T )/Z → X/Z is (3.5) thep-nor-
malizer of the maximal torusT/T ∩ Z → X/Z.

Since theFp-finite space X/Z
N(T )/Z ' X/N(T ) associated to thep-mo-

nomorphismN(i)/Z : N(T )/Z → X/Z has Euler characteristic 1, the in-
duced group homomorphismW (N(i)/Z) : π0(N(T )/Z) → WT/Z(X/Z)
is (3.3) surjective. But the regular covering mapX/T → X/Z

T/T∩Z with the
p-groupim W (z) as group of covering transformations shows [6, 4.14] that
(3.6) the orderχ( X/Z

T/T∩Z ) of the Weyl groupWT/T∩Z(X/Z) equals the
order of the component groupπ0(N(T )/Z) ∼= WT (X)/ im W (z). Hence
W (N(i)/Z) is in fact an isomorphism andN(i)/Z is (3.4) the normalizer
of the maximal torus ofX/Z.

Example 3.9. Let G be a compact Lie group whose component group
π0(G) is a finitep-group. Suppose thatT → G is a Lie theoretic max-
imal torus with normalizerN(T ) → G andp-normalizerNp(T ) → G.
DefineBĜ = (BG)p, BN̂p(T ) = (BNp(T ))p, andBN̂(T ) = (BN(T ))p

whereKp is the partialp-completion [3, VII,§6] that preserves the funda-
mental group andp-completes the universal covering space of the pointed,
connected spaceK. (If the fundamental group ofK happens to be a finitep-
group, the partialp-completion is thep-completion.) Then̂G is ap-compact
group,T̂ is ap-compact torus, and̂N(T ) is an extendedp-compact torus.
Since also [3, II.5.3]

(G/T )p = Ĝ/T̂ , (G/Np(T ))p = Ĝ/N̂p(T ),

(G/N(T ))p = Ĝ/N̂(T )

we see [3, VII.6.3] thatT̂ → Ĝ, N̂p(T ) → Ĝ, andN̂(T ) → Ĝ arep-
monomorphisms withχ(Ĝ/T̂ ) = χ(G/T ) 6= 0, χ(Ĝ/N̂p(T )) = χ(G
/Np(T )) 6= 0 mod p, andχ(Ĝ/N̂(T )) = χ(G/N(T )) = 1. It now easily
follows from (3.4, 3.5, 3.6) that̂N(T ) → Ĝ is the normalizer and̂Np(T ) →
Ĝ thep-normalizer of the maximal toruŝT → Ĝ.

We shall later need a little information on the special case whereG =
N(T ) is the normalizer of the maximal torus.

The maximal torusi : T → X for X factors through the identity com-
ponentT → X0. The normalizerN0(T ) of this maximal torus forX0 is
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related, cf. [16, 3.8], to the normalizerN(T ) of the maximal torus forX by
a short exact sequence

N0(T ) → N(T ) → π0(X)

of extendedp-compact tori. The fibre map

BN0(T )

��

// BN(T )

��

// Bπ0(X)

BX0 // BX // Bπ0(X)

shows thatX/N(T ) ' X0/N0(T ) and thus thatX/N(T ) is a connected
homogeneous space with fundamental groupπ1(X/N(T )) ∼= WT (X0).
(Use the fact thatπ1(N(T )) → π1(X) is [16, 5.6] surjective to get the
expression for the fundamental group.)

Lemma 3.10. H∗(X/N(T ); Qp) ∼= Qp.

Proof. As noted above, we may assume thatX is connected. Then the in-
duced mapH∗(BN(i); Qp) : H∗(BX; Qp) → H∗(BN(T ); Qp) is an iso-
morphism [6, 9.7] and the lemma follows from the Serre spectral sequence.
ut

Finally, we turn to a somewhat different situation.
Let g : Y → X be a monomorphism of somep-compact groupY to

X. Then rk(Y ) ≤ rk(X). In the maximal rank case,g induces (2.6) a
normalizer morphism, N(g), unique up to conjugacy, such that the diagram

N(S)

��

N(g) // N(T )

��
Y g

// X

commutes whereN(S) → Y is the normalizer inY of a maximal torus
S → Y . Define theWeyl homomorphismto be the group homomorphism

W (g) = π0(N(g)) : WS(Y ) → WT (X)

induced byN(g).

Corollary 3.11. (Cf. [16, 3.12].) Letg : Y → X be a monomorphism ofp-
compact groups inducing an epimorphismπ0(g) : π0(Y ) → π0(X) of com-
ponent groups. Thenrk(Y ) ≤ rk(X) and

1. if rk(Y ) = rk(X), thenW (g) : WS(Y ) → WT (X) is injective and the
Euler characteristicχ(X/Y ) = |WT (X) : imW (g)|.
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2. if rk(Y ) < rk(X), thenχ(X/Y ) = 0.

Consequently,

g : Y → X is an isomorphism

⇒ N(g) : N(S) → N(T ) is an isomorphism

⇔ χ(X/Y ) 6= 0 andW (g) is an epimorphism

⇔ χ(X/Y ) = 1

The first implication can be reversed providedπ0(g) is an isomorphism.

Proof. The homogeneous spaceX/Y is connected and the action of the fun-
damental groupπ1(X/Y ) on H∗(Y/N(S); Fp) associated to the fibration
of Fp-finite spaces

Y/N(S) → X/N(S) → X/Y

is nilpotent because [6, 11.6] it factors through the finitep-groupπ0(Y ).
Hence [7, 11.6]

χ(X/N(S)) = χ(Y/N(S)) · χ(X/Y ) = 1 · χ(X/Y ) = χ(X/Y )

by (3.10).
If rk(Y ) = rk(X), then W (g) is (2.5) injective and (3.3) the Eu-

ler characteristicχ(X/N(S)) = |WT (X) : imW (g)|; otherwise (3.3)
χ(X/N(S)) = 0. This proves (1) and (2).

Suppose thatχ(X/Y ) = 1. ThenY andX have the same rank and
W (g) is bijective. Assumingπ0(g) is bijective, the Weyl homomorphism
W (g0) : WS(Y0) → WT (X0), induced by the restrictiong0 : Y0 → X0 to
the identity components, is [16, 3.8] bijective too. Thusg0 is both a rational
isomorphism [6, 9.7] and a monomorphism, hence [16, 3.7] [7, 4.7] an
isomorphism.

The remaining statements are easily proved.ut
The Euler characteristic conditions formulated in this section have seem-

ingly not played any significant role in classical Lie group theory. In the next
section, they will be applied to analyze the centralizer of an elementary abe-
lian p-group.

4. Centralizers of elementary abelianp-groups

The content of this section constitutes a proof of (1.3).
Let ν : V → X be a monomorphism of an elementary abelianp-group

V to thep-compact groupX. The centralizerCX(ν) = CX(νV ) is again
ap-compact group andCX(ν) → X is a monomorphism [6, 5.1, 5.2]. The
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aim here is to identify the normalizer of a maximal torus ofCX(ν) using
the recognition principle of (3.4).

Consider lifts

BNp(T )

Bjp

��
BN(T )

BN(i)
��

BV
Bν

//

Bµ
::uuuuuuuuu

Bµp

CC����������������
BX

of Bν to BNp(T ) andBN(T ). According to [7, 2.14] such lifts always
exist. Note thatV acts onT and, by conjugation, onWT (X) through the
homomorphismW (µ) := π0(µ) : V → WT (X) induced byµ.

The fibration

BT hV → map(BV, BN(T )) → map(BV, BWT (X))

shows that the homotopy groups ofBCN(T )(µ) are concentrated in degrees
≤ 2. The fundamental group,

π1(CN(T )(µ)) ∼= π2(BT hV , Bµ) ∼= π1(T )V ,(4.1)

is a free, finitely generated module overZp. For the component group there
is a short exact sequence

0 → H1(V, π1(T )) → π0(CN(T )(µ))
→ CWT (X)(im W (µ))µ → 1(4.2)

where the group to the right is the isotropy subgroup atBµ for the action
of the fundamental groupπ1(map(BV, BWT (X)), BW (µ)) ∼= CWT (X)
(im W (µ)) on the setπ0(BT hV ) ∼= H2(V, π1(T )).

Corollary 4.3. Let µ : V → N(T ) be a lift of ν : V → X. Then the cen-
tralizerCN(T )(µ) is an extendedp-compact torus andCN(T )(µ) → CX(ν)
is ap-monomorphism.

Proof. The above computation of the homotopy groups shows thatCN(T )(µ)
is an extendedp-compact torus. Moreover,CNp(T )(µp) is a Sylowp-sub-
group ofCN(T )(µ) for a suitable liftµp : V → Np(T ) of µ (4.4) and the
compositeCNp(T )(µp) → CN(T )(µ) → CX(ν) is [7, 2.5] a monomor-
phism. ut
Lemma 4.4. Any morphismµ : V → N(T ) admits a liftµp : V → Np(T )
such thatCNp(T )(µp) → CN(T )(µ) is a Sylowp-subgroup.
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Proof. Consider the covering map

(WT (X)/WT (X)p)
V →

∐
jp◦µp'µ

BCNp(T )(µp) → BCN(T )(µ)

obtained by applyingmap(BV,−) to the covering mapBNp(T ) → BN(T ).
The components of the total space are indexed by conjugacy classes of ho-
momorphismsµp : V → Np(T ) with jp ◦ µp conjugate toµ. Since the car-
dinality of the fibre is congruent modp to |WT (X) : WT (X)p|, there
exists at least oneµp for which the number of sheets of the covering
BCNp(T )(µp) → BCN(T )(µ) is prime top. ut

In particular, the homogeneous spaceCX(ν)/CN(T )(µ) is (3.1)Fp-finite
for any lift µ : V → N(T ) of ν : V → X.

In order to establish the base for an inductional proof of (1.3), we first
consider the case whereV has rank one.

The next lemma, which is the key observation, deals with the space
(X/N(T ))hV of all lifts to BN(T ) of Bν : BV → BX.

Lemma 4.5. Assume thatν : V → X is a monomorphism of a rank one
elementary abelianp-groupV to X. Then the homotopy fixed point space
(X/N(T ))hV is Fp-finite with Euler characteristicχ

(
(X/N(T ))hV

)
= 1.

Proof. Pull back alongBν : BV → BX of the diagram

BNp(T ) //

$$JJJJJJJJJ
BN(T )

zzuuuuuuuuu

BX

produces a similar diagram of homotopy orbit spaces

(X/Np(T ))hV

&&MMMMMMMMMM
// (X/N(T ))hV

xxqqqqqqqqqq

BV

where the horizontal map is a map overBV , i.e. aV -map between theV -
spacesX/Np(T ) andX/N(T ), and an|WT (X) : WT (X)p|-fold covering
map. This horizontal map induces [6, 10.6] another covering map

(WT (X)/WT (X)p)
V → (X/Np(T ))hV → (X/N(T ))hV



Normalizers of maximal tori 67

of section, or homotopy fixed point, spaces. Using this map, build a com-
mutative diagram

BV × (X/Np(T ))hV

��

// (X/Np(T ))hV

��
BV × (X/N(T ))hV // (X/N(T ))hV

where both vertical maps are covering maps and the horizontal ones are eval-
uation maps. From [6, 4.11], using [6, 5.7] to verify theFp-completeness hy-
pothesis, we infer that the space(X/Np(T ))hV and the pair((X/Np(T ))hV ,
BV ×(X/Np(T ))hV ) areFp-finite. By (3.2), the homotopy fixed point space
(X/N(T ))hV and the pair((X/N(T ))hV , BV × (X/N(T ))hV ) areFp-
finite, too. In this situation, the Lefschetz numberΛ(X/N(T ), (X/N(T ))hV ;
V ) = 0 [6, 4.17]. Hence the Euler characteristic of the trivialV -space(X
/N(T ))hV is given by

χ((X/N(T ))hV ) = Λ((X/N(T ))hV ;V ) = Λ(X/N(T );V )
= Λ(Qp;V ) = 1

using the additive property [6, 4.12] of Lefschetz numbers and (3.10).ut
We can now prove (1.3) for elementary abelianp-groups of rank one.

Proposition 4.6. Assume thatν : V → X is a monomorphism of a rank
one elementary abelianp-groupV to X. Then there exists up to conjugacy
exactly one liftµ : V → N(T ) of ν such that

CN(T )(µ)0 → CN(T )(µ) → CX(ν)

is a maximal torus for the centralizer ofν. The normalizer of this maximal
torus is conjugate toCN(T )(µ) → CX(ν).

Proof. In the fibration

(X/N(T ))hV →
∐

N(i)◦µ'ν

map(BV, BN(T ))Bµ → map(BV, BX)Bν

the components of the total space are indexed by conjugacy classes of ho-
momorphismsµ : V → N(T ) with N(i) ◦ µ conjugate toν. The fibre can
also be described as a finite disjoint union

(X/N(T ))hV '
∐

N(i)◦µ'ν

CX(ν)/CN(T )(µ)
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of Fp-finite spaces. Hence

1 =
∑

N(i)◦µ'ν

χ
(
CX(ν)/CN(T )(µ)

)

by the Euler characteristic computation of (4.5). Since all terms of this sum
are nonnegative (3.3), exactly one of them must be equal to 1 and the rest
equal to 0.

Let now µ : V → N(T ) denote the uniquely determined preferred lift
of ν for which the homogeneous spaceCX(ν)/CN(T )(µ) has Euler charac-
teristic equal to 1. This lift is characterized by the property that the identity
componentS = CN(T )(µ)0 is (3.4, 3.6) a maximal torus forCX(ν). It re-
mains to show that the normalizer of the maximal torusS is conjugate to
CN(T )(µ) = CN(T )(V ).

Consider the following list of statements

1. CN(T )(S × V ) → CX(S × V ) is an isomorphism.
2. CN(T )(S) → CX(S) is an isomorphism.
3. CX(S) is ap-compact toral group.
4. CX(S)/S is ap-compact toral group.
5. CCX(S)/S(V ) is homotopically discrete.

pertaining to the homomorphismS×V → CN(T )(V )×V → N(T ) → X.
According to (3.3, 3.4), the first statement implies the proposition. Moreover,
each statement implies the one above it: The implication(3) ⇒ (2) holds
because, sinceS is ap-compact torus,CN(T )(S) is known [13, 3.4.(3)] to
be conjugate to the maximal torus ofCX(S) and(5) ⇒ (4) holds because
only in ap-compact toral group can the centralizer of a cyclicp-group be
homotopically discrete [5, 1.4]. Thus the proof has been reduced to the
verification of (5).

Let

BShV → map(BV, BCX(S)) → map(BV, B(CX(S)/S))(4.7)

be the fibration sequence obtained by mappingBV into the fibation sequence
corresponding to the central extension [6, 8.2, 8.3]

S → CX(S) → CX(S)/S

of p-compact groups.
Each component of the fibre of (4.7) is homotopy equivalent toBS for

BShV = BS × BV andBShV = map(BV, BS) by centrality. Moreover,
S → CCX(S)(V ) = CCX(V )(S) is the identity component of the centralizer
of the maximal torusS → CX(V ) and hence the exact homotopy sequence
of fibration (4.7) shows that the base space componentBCCX(S)/S(V ) is
aspherical, i.e. thatCCX(S)/S(V ) is homotopically discrete. ut
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Remark 4.8.Note that (4.5) and (4.6) are valid wheneverV = Z/pr is a
cyclic p-group.

The scene is now set for an inductive proof of Theorem 1.3.

Proof of Theorem 1.3.LetV be an elementary abelianp-group of rank at least
two. WriteV = V1×V2 whereV1 andV2 are nontrivial elementary abelianp-
groups. Letν2 = ν|V2 : V2 → X be the restriction of andν1 : V1 → CX(ν2)
the adjoint ofν.

We may inductively, by (4.6), assume that there exist a liftµ2 : V2 →
N(T ) of ν2 : V2 → X such thatCN(T )(µ2) → CX(ν2) is conjugate to
the normalizer of a maximal torus and also a liftµ1 : V1 → CN(T )(µ2) of
ν1 : V1 → CX(ν2) such that

CCN(T )(µ2)(µ1) → CCX(ν2)(ν1)

is conjugate to the normalizer of a maximal torus. Equivalently,CN(T )(µ) →
CX(ν), whereµ is adjoint toµ1, is conjugate to the normalizer of a maximal
torus. ut
Remark 4.9.The proof of Theorem 1.3 shows that any preferred liftµ2 :
V2 → N of the restrictionν|V2 extendsto a preferred lift ofν. It is not true
(4.14), conversely, that any preferred lift ofν restrictsto a preferred lift of
ν|V2.

Preferred lifts are easily recognized and constructed in case the mono-
morphismCX(ν) → X is of maximal rank [7, 4.1] (which happens if and
only if ν : V → X factors throughCX(T ) → X).

For any morphismµ : V → N(T ), let A(µ) : V → Aut(π1(T )) denote
the homomorphismW (µ) : V → π0(N) followed by the monodromy action
of π0(N) onπ1(N) = π1(T ).

Proposition 4.10. Letν : V → X be a monomorphism of a nontrivial ele-
mentary abelianp-group intoX and assume thatCX(ν) → X is a mono-
morphism of maximal rank. Then

1. All preferred lifts ofν are conjugate inN(T ).
2. A lift µ : V → N(T ) of ν : V → X is a preferred lift if and only ifA(µ)

is trivial.

Proof. Clearly, ifµ is a preferred lift ofν andCX(ν) has maximal rank, then
(4.1)A(µ)(V ) fixesπ1(T )⊗Q pointwise so the action ofV onπ1(T )⊗Q,
and hence onπ1(T ), is trivial.

The remaining assertions are proved by induction over the rank ofV
with the induction start provided by (4.6).

Suppose now thatV has rank greater than one and writeV = U ⊕ U⊥
as a direct sum of two nontrivial elementary abelianp-groups.
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Assume thatA(µ) is the trivial morphism. Letν⊥ : U⊥ → CX(ν|U) and
µ⊥ : U⊥ → CN(T )(µ|U) be the adjoints ofν andµ relative to the above
splitting of V . Note that the centralizer ofν⊥ is the centralizer ofν and
that all threep-compact groupsCX(ν) → CX(ν|U) → X have the same
rank. Note also that bothA(µ|U) = A(µ)|U andA(µ⊥) = A(µ)|U⊥ →
Aut(π1(T )A(µ)(V )) = Aut(π1(T )) are trivial homomorphisms. Now apply
the induction hypothesis twice to conclude, first, thatµ|U is a preferred lift
of ν|U and, next, thatµ⊥ is a preferred lift ofν⊥, or, equivalently, thatµ is
a preferred lift ofν.

Finally, let µ1 andµ2 be two preferred lifts ofν. Then the associated
homomorphismsA(µ1) andA(µ2) are trivial. Applying the induction hy-
pothesis twice, we infer that the restrictionsµ1|U andµ2|U are conjugate
in N(T ) and that the adjointsµ⊥

1 andµ⊥
2 are conjugate inCN(T )(µ1|U) =

CN(T )(µ2|U). By adjointness, this shows thatµ1 andµ2 are conjugate in
N(T ). ut

If the centralizer of the monomorphismν : V → X has maximal rank,
there is a factorizationν : V → CX(T ) of ν through the centralizer of the
maximal torus. And since the centralizer ofT in N(T ) is isomorphic (2.6)
to the centralizer ofT in X we obtain a lift ofµ′ of ν ′ as in the diagram

CN(T )(T )

∼=
��

// N(T )

��
V

µ′ ;;vvvvvvvvvv

ν′
// CX(T ) // X

and hence also a lift ofν. This is the preferred lift ofν.
This applies in particular whenX is connected andV ∼= Z/p has rank

one.

Corollary 4.11. Let X be a connectedp-compact group andV ∼= Z/p a
rank one elementary abelianp-group. Thenµ : V → N(T ) is the preferred
lift of ν = N(i) ◦ µ : V → X if and only ifW (µ) is trivial.

From (4.11) and (4.9) we see that for aconnectedp-compact group any
ν admits a preferred liftµ such thatW (µ) has a nontrivial kernel.

Example 4.12. Let f : X → X be an automorphism ofX whose normal-
izer morphismN(f) : N(T ) → N(T ) is conjugate to the identity and let
ν : V → X be a monomorphism of an elementary abelianp-group toX.
Choose a preferred liftµ : V → N(T ) of ν. Note thatf restricts to an auto-
morphismCf (V ) of CX(ν) for f ◦ ν = f ◦N(i) ◦µ = N(i) ◦N(f) ◦µ =
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N(i) ◦ µ = ν. Moreover, the diagram

CN(T )(µ)

CN(i)(V )
��

CN(f)(V )
// CN(T )(µ)

CN(i)(V )
��

CX(ν)
Cf (V )

// CX(ν)

commutes up to conjugacy. Thus also the normalizer morphismN(Cf (V ))
= CN(f)(V ) of Cf (V ) is conjugate to the identity. See [11] for an applica-
tion of this example.

Remark 4.13.Let Ť → Ň(T ) → WT (X) be a discrete approximation [7,
3.12] toN(T ) andµ̌ : V → Ň(T ) a discrete approximation to a preferred
lift µ : V → N(T ) of ν : V → X. The component group homomorphism
W (µ) : V → WT (X) determines an action ofV on Ť (and onBT and
π1(T )). Let CWT (X)(im W (µ))µ denote the subgroup of those elements

w in the centralizer ofim W (µ) for which w̌µ̌w̌−1, wherew̌ ∈ Ň(T ) is a
lift of w, is Ť -conjugate tǒµ. Then the short exact sequence (4.2) has the
form

1 → H1(V ;π1(T )) → W (ν) → CWT (X)(im W (µ))µ → 1

whereW (ν) denotes the Weyl group ofCX(ν).

Example 4.14. (1) For any monomorphismV → T into the maximal torus,
V → T → N(T ) is the preferred lift ofV → T → X, i.e.CN(T )(V ) →
CX(V ) is the normalizer of the maximal torusT ∼= CT (V ) → CX(V ) [13,
3.4(3)].
(2) If p 6| |WT (X)|, X is connected and it follows from [6, 9.5] [7, 2.14] [13,
3.4(1)] that[BV, BN(T )] ∼= [BV, BX], so any monomorphismν : V → X
lifts uniquely to a monomorphismµ : V → N(T ) which therefore must be
the preferred lift ofν.
(3) Let ∆ ∼= Z/2 × Z/2 denote the diagonal subgroup of the normalizer
N(T ) = O(2) of the maximal torusT = SO(2) of SO(3). Then the inclu-
sionµ : ∆ → N(T ) is a preferred lift of the inclusionν : ∆ → SO(3) for
CN(T )(∆n) = ∆n = CSO(3)(∆n). Let P be the permutation matrix of the
cycle(1 2 3). ThenPµP−1 is another preferred lift of (the conjugacy class
of) ν which isnot conjugate inN(T ) to µ.
(4) Write, in the above situation,∆ = V ⊕V ⊥ whereV = ∆∩T . Then the
restrictionµ | V is the preferred lift ofν | V butµ | V ⊥ is not the preferred
lift of ν | V ⊥ (4.11).

The third of these examples, which shows that (4.11) and the uniqueness
part of (4.6) do not hold in general, is understood to take place in the category
of 2-compact groups by means of (3.9) and (4.15).
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Lemma 4.15. LetG be a compact Lie group whose component groupπ0(G)
is a p-group and letCG(V ) denote the centralizer of a homomorphism
f : V → G of an elementary abelianp-groupV intoG. Then the component
group ofCG(V ) is [9, A.4] a p-group and the adjoint to thep-completion
of BV × BCG(V ) → BG,

BĈG(V ) → BCĜ(V ),

is [8, 1.1] [4, 2.5] a homotopy equivalence.

The above discussion focused on the normalizer of the maximal torus. I
close this note with a few words on the analogous, but much easier, problem
for thep-normalizer.

With µ denoting a preferred lift ofν as in (1.3) andµp a lift of µ as in (4.4),
CNp(T )(µp) → CX(ν) is conjugate to thep-normalizer of a maximal torus
of the centralizerCX(ν). The existence of such a lift to thep-normalizer is,
however, more easily proved directly (even in a more general situation).

Proposition 4.16. Letν : G → X be a monomorphism of ap-compact toral
groupG into X. There exists a liftµp : G → Np(T ) of ν such that

CNp(i)(G) : CNp(T )(µp) → CX(ν)

is conjugate to thep-normalizer of a maximal torus ofCX(ν).

Proof. Let Np(ν) → CX(ν) denote thep-normalizer of a maximal torus
of the centralizerCX(ν). The adjoint,G × Np(ν) → X, of this homo-
morphism admits [7, 2.14] a liftG × Np(ν) → Np(T ) over Np(i). The
restrictionµp : G → Np(T ) to G is a lift of ν with the property that the
p-normalizerNp(ν) → CX(ν) factors throughCNp(T )(µp) → CX(ν).
Conversely,CNp(T )(µp) → CX(ν) factors throughNp(ν) → CX(ν) for
general reasons [7, 2.14] and hence (3.7) these twop-compact toral groups
are isomorphic. ut

5. Preferred actions

In this section we look at actions of elementary abelianp-groups or cyclic
p-groups onp-compact groups and preferred actions on the maximal torus
normalizer.

Let V be an elementary abelianp-group (or (4.8) a cyclicp-group) and
X a p-compact group. Assume thatBX is aV -space, i.e. that there exists
a fibration

BX → BXhV → BV(5.1)

overBV with fibreBX and homotopy orbit spaceBXhV .
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We shall first relate the maximal torus normalizers ofX andXhV . Choose
a maximal torus normalizerNhV → XhV for thep-compact group [12, 3.1]
XhV . Let BN denote the fibre ofBNhV → BXhV andBN → BX the
factorization ofBN → BNhV → BXhV through the fibreBX.

Lemma 5.2. N → X is conjugate to the normalizer of a maximal torus of
X.

Proof. It is evident from the commutative diagram

N

��

// NhV

��

// V

X // XhV
// V

with exact rows thatN → X is a monomorphism and thatX/N '
XhV /NhV has Euler characteristic 1. Now apply 3.4.(3).ut

A V -action onX is [5, 1.2] a sectionBν of the fibration (5.1). Define
B(Xhν) = (BXhV , Bν) to be the component containingBν of the section
space. ThenXhν is again ap-compact group [6, 5.8], the homotopy fixed
pointp-compact group. The following proposition shows the existence of a
preferredV -action onN .

Proposition 5.3. TheV -actionBν : BV → BXhV onX restricts to aV -
actionBµ : BV → BNhV on N such that the induced morphismNhµ →
Xhν is conjugate to a maximal torus normalizer of the homotopy fixed point
p-compact groupXhν .

Proof. Chooseµ : V → NhV to be a preferred lift of the monomorphism
ν : V → XhV . Thenπ0CNhV

(µ) maps ontoπ0CXhV
(ν) and it follows that

there is a commutative diagram with exact rows

Nhµ

��

// CNhV
(µ)

��

// V ′

Xhν // CXhV
(ν) // V ′

whereV ′ is the image ofπ0(CXhV
(ν)) in V . As in the proof Lemma 5.2

we infer that since the middle vertical monomorphism is conjugate to the
normalizer of a maximal torus, so is the left vertical monomorphism.ut
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